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Abstract 

Several genome-scale metabolic reconstruction software platforms have been developed 

and are being continuously updated. These tools have been widely applied to reconstruct 

metabolic models for hundreds of microorganisms ranging from important human pathogens 

to species of industrial relevance. However, these platforms, as yet, have not been 

systematically evaluated with respect to software quality, best potential uses and intrinsic 

capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear 

for potential users which tool best fits the purpose of their research. In this work, we 

performed a systematic assessment of the current genome-scale reconstruction software 

platforms. To meet our goal, we first defined a list of features for assessing software quality 

related to genome-scale reconstruction, which we expect to be useful for the potential users 

of these tools. Subsequently, we used the feature list to evaluate the performance of each 

tool. In order to assess the similarity of the draft reconstructions to high-quality models, we 

compared each tool’s output networks with that of the high-quality, manually curated, models 

of Lactobacillus plantarum and Bordetella pertussis, representatives of gram-positive and 

gram-negative bacteria, respectively. We showed that none of the tools outperforms the 
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others in all the defined features and that model builders should carefully choose a tool (or 

combinations of tools) depending on the intended use of the metabolic model.  

Author Summary 

Metabolic networks that comprise biochemical reactions at genome-scale have become very 

useful to study and predict the phenotype of important microorganisms. Several software 

platforms exist to build these metabolic networks. Based on different approaches and 

utilizing a variety of databases it is, unfortunately, unclear what are the best scenarios to 

use each of these tools. Hence, to understand the potential uses of these tools, we created 

a list of relevant features for metabolic reconstruction and we evaluated the tools in all these 

categories. Here, we show that none of the tools is better than the other in all the evaluated 

categories; instead, each tool is more suitable for particular purposes. Therefore, users 

should carefully select the tool(s) that best fit the purpose of their research.  This is the first 

time these tools are systematically evaluated and this overview can be used as a guide for 

selecting the correct tool(s) for each case. 

Introduction 

Genome-scale metabolic models (GSMM’s) have been a successful tool in Systems Biology 

during the last decades [1,2], largely due to the wide range of areas for which the scientific 

community have found an application. GSMMs, for example, predict cellular behavior under 

different biological conditions, or can be used to design drug targets for important 

pathogens; they help to design improved strains through metabolic engineering strategies 

or to predict metabolic interactions in microbial communities; they have been used to study 

evolutionary processes or to give a rationale to lab experiments (see excellent reviews [3,4]). 

The reconstruction process that forms the basis of a GSMM is very time consuming. Usually, 

this process starts with the annotation of a genome and the prediction of candidate metabolic 
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functions at a genome-scale. The draft reconstruction is then refined by the user in an 

iterative manner though an exhaustive review of each reaction, metabolite and gene in the 

network. After curation, the genome-scale metabolic reconstruction is transformed into a 

mathematical structure, an objective function is given, constraints are set to account for 

specific media conditions and the resulting GSMM is evaluated to try to reproduce the 

experimental data. This iterative process of manual refinement is the limiting step of the 

whole process because it continues until the GSMM achieves a desired performance 

determined by the model builder. Hundreds of GSMMs have been reconstructed using this 

procedure, for which protocols have been described [5] and reviews are available [6,7]. 

Several genome-scale reconstruction tools have been developed over the last 15 years to 

assist researchers in the reconstruction process [8,9]. These tools are designed to speed 

up such process by automating several tasks that otherwise should be performed manually, 

such as draft network generation or gap-filling, and/or by providing useful information to the 

user to curate the reconstruction. There has been an outstanding increase in the number of 

new tools for genome-scale reconstruction which reflects the increasing interest to create 

high-quality GSMMs [10]. Consequently, there is a need for a systematic assessment of the 

performance of these tools, as many researchers are uncertain which tool to choose when 

they want to reconstruct their favorite organisms.   

In this work, we installed and applied the most promising genome-scale reconstruction tools 

to provide a systematic evaluation of their performance and outputs. With each tool we 

reconstructed draft networks for Lactobacillus plantarum [11] and Bordetella pertussis [12], 

representatives of gram-positive and gram-negative bacteria, respectively, and for which 

high-quality GSMMs already exist. We used the manually curated GSMMs as a benchmark 

to assess the features of the tool-generated draft models.  
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Current state of genome-scale reconstruction tools 

Here we provide a brief description of the current reconstruction tools (see also S1 Table).  

AutoKEGGRec (2018). AutoKEEGRec [13] is an easy-to-use automated tool that uses the 

KEGG databases to create draft genome-scale models for any microorganism in that 

database. It runs in MATLAB and is compatible with COBRA Toolbox v3 [14]. One of the 

advantages of this tool is that multiple queries (microorganisms) can be processed in one 

run making it appropriate for cases where several microorganisms need to be reconstructed. 

The main limitation of this tool, which is directly related to the use of the KEGG database, is 

the lack of a biomass reaction, transport and exchange reactions in the draft genome-scale 

models. 

AuReMe (2018). AuReMe [15] (Automatic Reconstruction of Metabolic Models) is a 

workspace that ensures a good traceability of the whole reconstruction process, a feature 

that makes this tool unique. A Docker image is available for AuReMe, so users are easily 

able to run AuReMe in any platform without having to pre-install required packages 

(Windows, Linux or Mac). AuReMe creates GSMMs with a template-based algorithm [16] 

but it is also designed to incorporate information from different databases such as MetaCyc 

[17] and BIGG [18] . 

CarveMe (2018). CarveMe [19] is a command-line python-based tool designed to create 

GSMMs, ready to use for Flux Balance Analysis (FBA), in just a few minutes. Its unique top-

down approach involves the creation of models from a BIGG-based manually curated 

universal template. The implementation of its own gap-filling algorithm allows this tool to 

prioritize the incorporation into the network of reactions with higher genetic evidence. The 

authors of this tool showed that the performance of the generated models is similar to the 

manually curated models.   
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MetaDraft (2018). MetaDraft [20,21] is a Python-based user-friendly software designed to 

create GSMMs from previously manually curated ones. It contains in its internal database 

BIGG models ready to be used as templates although any other model can be used as 

template. Users can define a specific order of templates in order to prioritize the 

incorporation of information related to reactions if there is a reaction match in two or more 

templates. One of the advantages of Metadraft is that it supports the latest features of the 

current SBML standards, i.e. SBML Level 3 [22] including the FBC Version 2 [23] and 

Groups packages [24]. 

RAVEN version 2 (2018). RAVEN [25] (Reconstruction, Analysis and Visualization of 

Metabolic Networks) is a tool for genome-scale metabolic reconstruction and curation that 

runs in MATLAB is compatible with COBRA Toolbox v3 [14]. In contrast to the first version 

which only allowed reconstruction using the KEGG database [26], this evaluated version 

also allows the novo reconstruction of GSMMs using MetaCyc and from template models. 

Additionally, algorithms to merge network from both databases are provided inside RAVEN. 

The addition of MetaCyc allows the incorporation of transporters and spontaneous reactions 

to the reconstructed networks. 

ModelSEED version 2.2 (2018). ModelSEED [27] is a web resource for genome-scale 

reconstruction and analysis. This tool allows creation of GSMMs, not only for 

microorganisms but also for plants. The first step of its pipeline for genome-scale 

reconstruction is the genome annotation which is performed by RAST [28]. Users can select 

or even create a media to be used for gap-filling. In contrast to the first version, the second 

version allows creation of models in less than ten minutes (including annotation) and it 

provides aliases/synonyms of reactions and metabolites in other databases.  

Pathway Tools version 22.0 (2018). Pathway tools [29] is a software environment that 

support creation and curation of organism-specific databases. One of the most useful 
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features is that users can interactively explore, visualize and edit different components of 

the created databases such as genes, operons, enzymes (including transporters), 

metabolites, reactions and pathways. Also, visualization of the whole network is possible by 

using Cellular Overview diagrams, in which experimental data such as gene expression can 

be mapped using different colors depending on the expression level.  

Merlin version 3.8 (2018). Merlin [30] is a java application for genome-scale reconstruction 

based on the KEGG database. One of the most useful resources of Merlin is the re-

annotation of genomes though the online service of BLAST (EBI) or HMMER. Several 

parameters in the annotation algorithms such as the expected value threshold and the 

maximum number of hits can be changed by the user if required, which makes this tool very 

flexible. The interface allows to compare gene function agreement between the annotation 

and UniProt providing information to the user for manual curation.  

Kbase (2018). Kbase [31] (The United States Department of Energy Systems Biology 

Knowledgebase) is an open-source software that allows, among a variety of functions, the 

reconstruction and analysis of microbes, plants and communities. Kbase is a platform that 

integrates several tasks such as annotation, reconstruction, curation and modeling, making 

suitable for the whole process of reconstruction. One of the unique features of this software 

is the use of narratives which are tutorials where users can interactively learn particular 

topics and reproduce previous results. 

CoReCO (2014). CoReCo [32] (Comparative Reconstruction) is a novel approach for the 

simultaneous reconstruction of multiple related species. The pipeline of CoReCo includes 

two steps: First, it finds proteins homologous to the input set of protein-coding sequences 

for each species.  Second, it generates gapless metabolic networks for each species based 

on KEGG stoichiometry data. Thus, CoReCo allows a direct comparison between the 

reconstructed models, e.g. to study evolutionary aspects.  
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MEMOSys version 2 (2014). MEMOSys [33] (Metabolic Model Reseach and development 

System) is a database for storing and managing genome-scale models, rather than a 

reconstruction tool. This tool allows tracking of changes during the development of a 

particular genome-scale model. 20 genome-scale models are publicly available for exporting 

and modifying. Child models can be created from the 20 available models and then modified 

and compared with parent models. All the differences between different version of the 

models can be listed to track changes in the networks.   

FAME (2012). FAME [34] (Flux Analysis and Modeling Environment) is a web-based 

application for creating and running GSMMs. This tool can reconstruct genome-scale 

models for any microorganism in KEGG database. One of the most interesting features of 

FAME is that analysis results can be visualized on familiar KEGG-like maps. It is foremost 

a tool for running and analyzing models and is used -by us- for educational purposes. One 

of the limitations of FAME is that models cannot be generated for microorganisms which are 

not in KEGG database.   

GEMSiRV (2012). GEMSiRV [35] (Genome-scale Metabolic Model Simulation, 

Reconstruction and Visualization) is a software platform for network drafting and editing. A 

manually curated model is used as template to generate a draft network for the species 

under study. Among the tools inside the toolbox, MrBac [36] can be used to generate 

reciprocal orthologous-gene pairs which are then used by GEMSiRV to generate the draft 

model. One of the limitations of this tool is that only one template can be used per run.  

Other tools. Microbes Flux (2012) [37], Subliminal (2011) [38] and GEMSystem (2006) [39] 

are no longer maintained, as confirmed by the authors of the corresponding articles. 

Results 

To assess the reconstruction tools, we performed both a qualitative and quantitative 

evaluation. As a first step, we created a list of relevant features for genome-scale 
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reconstruction and software quality and we scored each tool depending on the performance 

(1: poor, 5: outstanding). These features are related to software performance, ease of use, 

similarity of output networks with regard to manually-curated models and adherence to 

common data standards. The criteria to assign a particular score in each feature is specified 

in S2 Table. Many of these features have not been assessed in previous reviews [8,9]. 

Subsequently, to assess how similar the generated draft networks are to high-quality 

models, we reconstructed with different reconstruction tools the metabolic networks of two 

bacteria for which high-quality manually-curated genome-scale models already were 

available. We chose to reconstruct the metabolic network of Lactobacillus plantarum and 

Bordetella pertussis, representatives of gram-positive and gram-negative bacteria, 

respectively. These microorganisms were selected because the corresponding GSMMs are 

not stored in the BIGG database, so tools that are able to use the BIGG database (AuReMe, 

CarveME, MetaDraft, RAVEN) in the reconstruction process cannot use the specific 

information for these microorganisms. If E. coli or B. subtilis would have been chosen instead 

we would have favored these tools because high-quality models for E. coli or B. subtilis 

already exist in the BIGG database and they would have been used as templates or inputs. 

The networks were generated using seven tools: AuReMe, CarveMe, Merlin, MetaDraft, 

ModelSEED, Pathway Tools and RAVEN. These cover most of the freely available software 

platforms. The general features of these tools are listed in Table 1.  
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Table 1. List of selected genome-scale metabolic reconstruction tools and their main 
features 

Reconstruction 
tool 

Mapping method 
Reactions are 
inherited from 

Associated 
databases 

Version 
Type of 

software 

AuReMe Pantograph 
(Inparanoid and 
OrthoMCL) 

Template 
model(s) 

BIGG-MetaCyc 1.2.1 Command line 

CarveMe Diamond, eggNOG-
mappera  

Template 
model 

BIGG 1.2.1 Command line 

Merlin Mapping from 
annotation with 
BLAST or HMMER 

Database KEGG 3.8 Standalone 
inferface 

MetaDraft Autograph 
(Inparanoid) 

Template 
model(s) 

BIGG 0.8.1 Standalone 
inferface 

ModelSEED Annotation ontology 
map from RAST data 

Template 
model 

ModelSEED 2.2 Online service 

Pathway Tools Pathologic Database MetaCyc 22.0 Standalone 
inferface 

RAVEN Autograph-type 
method from BLASTP 
and Bidirectional 
BLASTPb 

Database-  
Template 
model(s) 

KEGG-MetaCyc 2.0.1 Command line 

a eggNOG-mapper should be run externally by the user 
b Bidireactional BLASTP is used with template models and BLASTP with databases (KEGG 
and Metacyc) 
 

General assessment overview 

None of the tools got a perfect score for all of the evaluated features and usually, strengths 

in some tools are weaknesses in others (Fig 1, S3 table to see detailed evaluation). For 

example, on the one hand, ModelSEED and CarveMe were evaluated as outstanding when 

we checked whether the whole reconstruction process is automatic; Merlin was evaluated 

as poor because users should interfere more to get a network ready to perform FBA. On the 

other hand, we consider Merlin as outstanding with respect to a workspace for manual 

refinement and information to assist users during this step; CarveMe and ModelSEED do 

not provide further information for manual refinement nor a workspace for manual curation, 

so they were evaluated as poor in this category.  

In some cases, all the tools got the maximum score possible. For instance, all the tested 

tools are properly supported by specialist teams and also maintain up-to-date databases. In 

other cases, none of the tools got the maximum score. This was the case for automatic 

refinement of networks using experimental data. Some of the tools, such as ModelSEED 
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and CarveMe can use media composition to gap-fill the network. AuReMe and Pathway 

Tools also can use, in addition to media composition, known metabolic products to gap-fill 

the network. In spite of that, none of the tools can also use Biolog phenotype arrays, knock-

out experiments and different types of omics data (transcriptomic, proteomic, metabolomic, 

etc.) to automatically curate the network. Although some efforts have been done in this area 

[40–43], this seems like a major challenge for future tool development that should lead to 

improved metabolic reconstructions.  

Compliance with the latest SBML standards has been pointed as one of the critical points to 

share and represent models [44]. Consequently, we evaluated if the tools use the latest 

SBML features in the import (inputs) and export (outputs) of networks. For inputs, we 

checked if the tools were able to read networks in SBML Level 3 [22]. We additionally 

checked if the output networks satisfy the following three features: use of SBML Level 3 [22] 

with FBC annotations [23], SBML Groups [24] and MIRIAM compliant CV annotations 

[22,45]. These features are used, for example, for models in the BIGG database and they 

ensure that the information is stored in a standard way. For inputs, we found that among the 

tools that are able to import and use networks (AuReMe, MetaDraft, RAVEN) MetaDraft and 

RAVEN are able to use SBML Level 3 while AuReMe is not. For outputs, MetaDraft and 

Merlin and RAVEN were the only ones that exported the networks with all the three features. 

However, the networks created with RAVEN only had MIRIAM fields in the MAT files and 

they lack MIRIAM compliant CV annotations in the SBML files. In addition, AuReMe and 

CarveMe lack MIRIAM compliant CV annotations and SBML Groups, and Pathway Tools 

and ModelSEED exported the networks in SBML Level 2. 

Network comparison 

We reconstructed draft networks for both Lactobacillus plantarum WCFS1 and Bordetella 

pertussis Tohama I with each reconstruction tool. L. plantarum is a lactic acid bacterium 
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(LAB), used in the food fermentation industry and as a probiotic [46–48]. Its GSMM 

comprises 771 unique reactions, 662 metabolites and 728 genes, and it has been used to 

design a defined media for this LAB [49], to explore interactions with other bacteria [50] and 

as a reference for reconstructing other LAB [51]. In contrast to this LAB, B. pertussis is a 

gram-negative bacterium, and the causative agent of the Whooping cough, a highly-

contagious respiratory disease [52]. The metabolic network of this pathogen was recently 

reconstructed and it comprises 1672 unique reactions, 1255 metabolites and 770 genes. 

In total, 29 networks were created for L. plantarum and 27 for B. pertussis. The specific 

inputs and parameters for creating each network can be found in S1 File. Genes, metabolites 

and reactions were extracted from the SBML files and compared with those in the manually 

curated model. For convenience, the manually curated model of L. plantarum will be called 

hereafter iLP728, and the manually curated model of B. pertussis, iBP1870 

Comparison of gene sets. Genes are the basis from which genome-scale model are 

reconstructed. When a gene is included in a metabolic reconstruction, there is at least one 

biochemical reaction associated with that gene. When a gene is not in the reconstruction, 

either the reconstruction tool couldn’t find an orthologous gene in the reference database or 

an orthologous gene was found but no biochemical reaction is associated to that gene. 

Genes sets are interesting to compare because if a gene present in the manually-curated 

model is absent in a draft reconstruction, that could explain why some biochemical reactions 

are missing in the draft. Alternatively, if a gene is absent in the manually-curated model but 

present in a draft reconstruction, that could explain the presence of reactions that should not 

be in the reconstruction. Moreover, gene sets are simple to compare among reconstructions 

because gene identifiers in all the cases are the same (the locus tag in the genome 

annotation) and so, in contrast to metabolites and reactions, there is no mapping-related 

bias in the comparison. 
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To assess how similar the draft networks were to the corresponding manually curated 

networks we calculated the Jaccard Distance (𝐽𝐷) as well as the ratio between the 

percentage of covered genes and the percentage of additional genes (𝑅) (S4-S7 Tables). 

The 𝐽𝐷 has been used before to measure distance between genome-scale metabolic 

reconstructions, based on reaction sets [53]; here we also applied it to compare 

reconstructions in terms of genes and metabolites. We called 𝐽𝐷𝑔, 𝐽𝐷𝑟 and  𝐽𝐷𝑚 to the 𝐽𝐷 

between two reconstructions when they are compared in terms of genes, reactions and 

metabolites, respectively. Analogously, we called 𝑅𝑔, 𝑅𝑟 and 𝑅𝑚 to the 𝑅 when 

reconstructions are compared in terms of genes, reactions and metabolites, respectively. In 

general terms, a value of 0 in the 𝐽𝐷 means that the networks are identical and a value of 1 

means that the networks are totally different. For the 𝑅, higher values reflect a higher 

similarity to the original network and lower values reflect a lower similarity with the original 

network. 

The values in the 𝐽𝐷𝑔 ranged from 0.38 to 0.60 in L. plantarum and from 0.45 to 0.67 in B. 

pertussis (S4 and S5 Tables), while values in the 𝑅𝑔 ranged from 1.19 to 13.16 in L. 

plantarum and from 0.84 to 3.54 in B. pertussis (S6 and S7 Tables). Although the similarity 

of the generated draft networks seems slightly better for L. plantarum than for B. pertussis, 

we found that it depends on which metric is analyzed. With the exception of one network, 

the 𝑅𝑔 showed that all the draft networks of L. plantarum were more similar to iLP728 than 

the draft networks of B. pertussis to iBP1870, using the analog parameter settings. In 

contrast, the 𝐽𝐷𝑔 showed that AuReMe, ModelSEED, RAVEN and Merlin generated draft 

networks of L. plantarum which are more similar to iLP728 than the draft networks of B. 

pertussis with regard to iBP1870, and that CarveMe, MetaDraft and Pathway Tools 

generated draft networks slightly more similar for B. pertussis.  
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Additionally, when sorting the values of both metrics, we noticed that the 𝐽𝐷𝑔 order does not 

correspond to that made with the 𝑅𝑔. The lowest 𝐽𝐷𝑔 among the draft reconstructions for L. 

plantarum was obtained in the network generated with AuReMe when the gram-positive set 

of templates was used; for B. pertussis, it was obtained with MetaDraft. In contrast, the 

highest 𝑅𝑔 among the draft reconstructions for L. plantarum was obtained in the network 

generated with AuReMe when only Lactococcus lactis was used as template; for B. 

pertussis, it was obtained with MetaDraft when Escherichia coli template was used.  

Although the similarity scores for both metrics are not entirely consistent, some trends were 

observed. The networks more similar, in terms of genes, to the manually curated models 

were generated by MetaDraft, AuReMe and RAVEN (Fig 2). However, since parameters 

settings and inputs have a big effect on the similarity scores, the usage of these tools does 

not automatically ensure obtaining a draft network similar, in terms of genes, to a manually 

curated model. This is particularly true for RAVEN which also generated some networks with 

high 𝐽𝐷𝑔 and low 𝑅𝑔 scores.  

We further analyzed the percentage of genes covered in the manually curated models and 

the percentage of genes not in the manually curated models to explain differences in 𝑅𝑔. 

For both species we observed a wide variation in both variables (Figs 3 and 4). Among the 

five networks of L. plantarum with the highest coverage, two were created with AuReMe and 

three with RAVEN; for B. pertussis, four were created with RAVEN and one with CarveMe. 

However, the networks created with RAVEN that recovered the highest percentages of 

genes also added an important number of genes which were not present in the manually 

curated models, decreasing the values in the 𝑅𝑔. In addition, AuReMe and MetaDraft 

created conservative draft networks with the lowest number of additional genes, which 

explains the higher values in the 𝑅𝑔. Finally, tools such as ModelSEED, Pathway Tools and 

Merlin consistently created reconstructions with gene coverages not ranging in the highest 
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values (in comparison with other networks) and adding a relatively large number of genes 

not present in the manually curated models, which explains why they had lower values in 

the 𝑅𝑔.   

For L. plantarum we found 1608 different genes in total with all the tools, of which 880 were 

not present in iLP728. For B. pertussis, 1887 different genes were found, of which 1117 

were not present in iBP1870. In addition, 92 genes were correctly predicted in all the draft 

networks for iLP728; for iBP1870 this was 121 genes. The distribution of metabolic pathways 

associated to those genes is wide for both species, with carbohydrate metabolism and 

amino acid metabolism accounting for more than 50% of the metabolic processes (S8 and 

S9 Tables). Additionally, 35 and 41 genes were not recovered in any network for iLP728 

and iBP1870, respectively. The metabolic functions associated to those genes were very 

specific, with polysaccharide biosynthesis (63%) and transport (20%) top in the list for L. 

plantarum and with transport (41%) and ferredoxin/thioredoxin related reactions (26%) for 

B. pertussis. Finally, one gene in L. plantarum, which was associated to riboflavin 

biosynthesis, was recovered by all the networks but it was not present in iLP729. For B. 

pertussis, three such genes were found. These genes were associated to alternate carbon 

metabolism and cell envelope biosynthesis. 

Comparison of reaction sets. Genes and biochemical reactions are connected within a 

reconstruction though gene-protein-reaction (GPR) associations. However, genes and 

reactions relationships are ultimately represented in reconstructions as boolean rules known 

as gene-reaction rules. With the exception of exchange, sink, demand, spontaneous and 

some transport reactions (e.g. those governed by diffusion), each reaction has a defined 

gene-reaction rule in the reference database used by each reconstruction tool. During the 

process of reconstruction, if orthologous genes are found that satisfy the gene-reaction rule 

of a particular reaction, that reaction is included in the draft reconstruction. Other reactions 
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may be added to the draft reconstruction based on others criteria, such the probability of a 

particular pathway to exist in the microorganism under study or the need to fill particular 

gaps in the network in order to produce biomass. Nonetheless we expect that networks 

which are more similar in terms of genes will also be more similar in terms of reactions. 

In contrast to genes, however, reactions are labeled with different identifiers in different 

databases. Thus, the same reaction can be stored with two different identifiers in two 

different databases. During the reconstruction process, reactions are added from the 

reference database to the draft reconstruction and tools using different databases will 

generate reconstructions comprising reactions with different identifiers. We therefore used 

MetaNetX [54] to map reactions among reconstructions built with different databases. In this 

approach, reactions were compared using their identifiers (case sensitive string 

comparison). In addition, we compared networks using reaction equations, i.e., we 

compared reactions using their attributes instead of their identifiers. In this second approach, 

we considered that two reactions were the same if they had the same metabolites with the 

same stoichiometric coefficients. Some exceptions were made to also match reactions that 

differ only in proton stoichiometry (due to differences in metabolites charge) or to catch 

reactions which are written in the opposite direction (reactants in the side of products).  

For most networks, comparison through reaction identifiers resulted in a lower percentage 

of coverage than through reaction equation comparison (S10 and S11 Tables). This lower 

coverage was due to some missing relationships between different databases in MetaNetX, 

which we discovered when comparing with the reaction equations. In total, 264 new unique 

reaction synonyms pairs were automatically discovered for both species with the second 

approach (S12 Table). To further overcome the missing relationships in MetaNetX, a semi-

automatic algorithm was developed to assist the discovery of new metabolite synonyms. In 
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total, 174 new metabolites synonyms were discovered (S13 Table) which led to the 

discovery of 319 additional reaction synonyms (S14 Table).  

The comparison through reaction equations showed a wide variation in reaction coverage 

and percentage of additional reactions for both species (Figs 5 and 6). In addition, for those 

networks created with RAVEN (KEGG), ModelSEED and Merlin we observed a large 

number of reactions with a partial match with the manually curated model. These partial 

matches emerge from differences in proton stoichiometry, which indicates the existence of 

an important number of metabolites with different charge than those found in the manually 

curated models. In contrast to the gene sets comparison, where the coverage was as high 

as 88% and 83%, we only observed a maximum coverage of 72% and 57%, for L. plantarum 

and B. pertussis, respectively, even when considering partial matches. For both species, on 

average, around 50% of the reactions that were not recovered in the manually-curated 

models don’t have gene-reaction associations. If we take all the unique genes associated to 

the remaining 50% of the reactions, on average, around 40% of those are not in the draft 

models, which can explain why we observed an important decrease in the coverage of 

reactions.   

We again calculated the 𝐽𝐷𝑟 and the 𝑅𝑟 to assess how similar the networks were, in this 

case in terms of reactions. The first observation we made is that, independent of the metric 

and for both species, each reconstruction was less similar in terms of reactions than in terms 

of genes, which is consistent with the decrease in coverage. In addition, as in the gene 

comparison, the order of scores for the 𝑅𝑔 and the 𝑅𝑟 by magnitude, was not the same. If 

we compare the similarity scores for reactions sets with the ones for genes sets, we see 

almost the same trend but with one difference. AuReMe and MetaDraft are still the tools with 

the best similarity scores but now CarveMe goes up in the list of scores and RAVEN goes 
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down (Fig 7, S4-S7 Tables). This was particularly true for B. pertussis where two networks 

reconstructed with CarveMe got the two first places in the 𝐽𝐷𝑟 list. 

Although RAVEN generated some reconstructions with high genes sets similarity to the 

manually curated models, it did not for reactions sets similarity. We therefore analyzed one 

of the networks reconstructed with RAVEN in more detail, one that was consistently in the 

top-5 list for both species for both metrics. We found two reasons for the decrease in 

performance. First, the analyzed network was created based on KEGG, so metabolites were 

not labelled as intracellular or extracellular. Hence no transport or exchange reactions were 

present. Although there are functions to incorporate this kind of reactions in RAVEN, that is 

considered as manual curation because users must specify which compounds should be 

transported, and we here only tested how much work would it take to transform these draft 

networks into high-quality reconstructions. Second, due to some not intuitive duplicated 

entries in the BIGG database, the translation of metabolites though MetaNetX dit not always 

result in a match with the manually curated model. For example, the reaction R04534 in the 

draft created with RAVEN was never mapped to the reaction HDER4 in iLP728 because in 

MetaNetX R04534 is associated with 3OAR100, a duplicated reaction of HDR4 in BIGG. It 

was also not recovered when comparing reaction equations because the metabolites in 

R04534 were mapped to those in 3OAR100, not to those in HDR4. 

We further analyzed reactions that were present and absent in all the reconstructions to 

understand to which kind of metabolic processes they were related. 71 reactions in iLP728 

and 91 in iBP1870 were always found in all the draft networks. In agreement with the genes 

sets analysis, the associated metabolic processes are mainly amino acid metabolism, 

nucleotide metabolism and carbohydrate metabolism (S15 and S16 Tables). Additionally, 

168 reactions in iLP1870 and 609 in iBP1870 were not found by any tool. In both species, 

around 10% of those reactions were biomass-related reactions and from the rest, most of 
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them were exchange reactions, transport reactions without gene associations and reactions 

in other categories that were not in the BIGG database (S17 and S18 Tables). Only one 

reaction, associated to amino acid metabolism, was found in all the draft networks of L. 

plantarum but not in iLP728; four reactions, associated mainly to carbohydrate metabolism, 

were found in all the draft networks but not in iBP1870. 

Comparison of metabolite sets. Other important elements within metabolic 

reconstructions are metabolites. When a biochemical reaction is added to the draft network 

during the reconstruction process, all the reactants and products are added to the network 

too. As the draft metabolic networks were created with different tools, each of which using 

its own set of databases, they had different identifiers for the same metabolite. For those 

networks whose identifiers were different from BIGG, we again used MetaNetX and our own 

additional dictionary to map metabolites.  

We calculated the 𝐽𝐷𝑚 and the 𝑅𝑚 to assess the metabolite sets similarity. For almost all 

the draft networks in both species, the values in the 𝐽𝐷𝑚 were between the 𝐽𝐷𝑔 and the 𝐽𝐷𝑟; 

we found the same for the 𝑅𝑚  (S4 – S7 Tables). Again, when sorting the networks according 

to their metric scores, we found the same trends than for reactions sets. The first position in 

the lists were networks either reconstructed with MetaDraft, AureMe or CarveMe. Moreover, 

independently of the metric and the species, MetaDraft reconstructed 40% of the networks 

among those in the top-5.   

208 metabolites in iLP728 and 266 in iBP1870 were correctly predicted in all the draft 

networks. These metabolites were in both cases mainly associated to carbohydrate 

metabolism and amino acid metabolism (S19 and S20 Tables). 86 metabolites in iLP728 

and 312 in iBP1870 were not recovered in any network. Of those, 16 were related to the 

biomass of L. plantarum and 20 others were not in the BIGG database. For iBP1870, 47 

were biomass-related and 127 others were not in the BIGG database. Finally, 9 and 13 
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metabolites were recovered in all the networks but they were not present in iLP728 and 

iBP1870, respectively. Mainly, they were associated to metabolism of cofactors and vitamins 

and amino acid metabolism in the case of L. plantarum and carbohydrate metabolism and 

glycan biosynthesis in the case of B. pertussis (S21 and S22 Tables). 

Topological Analysis. To compare the topological features of each network, we 

calculated the number of dead-end metabolites, the number of orphan reactions, the number 

of unconnected reactions and other metrics (S23 and S24 Tables).  

iLP728 has 113 dead-end metabolites while iBP1870 has 60. This is consistent with the 

observation that many pathways are disrupted in L. plantarum leading for example to well-

known auxotrophies for many amino acids [49,55]. With the exception of CarveMe, all the 

tools generated networks with a high number of dead-end metabolites, ranging from 237 

and 996, and from 379 to 976, for L. plantarum and B. pertussis, respectively. The low 

number of dead-end metabolites in CarveMe is caused by the use of a manually curated 

universal model as a template which lacks dead-end metabolites. 

Without considering exchange and demand/sink reactions, 128 and 449 reactions without 

gene associations (called orphan reactions) were found in iLP728 and iBP1870, 

respectively. These reactions are mainly associated to transport reactions, amino acid 

metabolism and biomass formation. AuReMe and RAVEN returned metabolic networks with 

no orphan reactions. These tools only include reactions with genomic evidence and others 

lacking this support, such as exchange reactions, are not included. MetaDraft and 

ModelSEED returned networks with a low amount of orphan reactions, which are related in 

the case of MetaDraft to duplicated reactions and in the case of ModelSEED, to exchange 

reactions. In contrast, CarveMe, Pathway Tools and Merlin returned networks with a 

significantly larger number of orphan reactions (ranging from 66 to 345 in L. plantarum and 

from 115 to 736 in B. pertussis). For CarveMe, this is due to the inclusion of transport and 
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spontaneous reactions as well as reactions needed to create biomass (from gap-filling); for 

Pathway tools it is because of the addition of reactions to complete probable pathways and 

spontaneous reactions; for Merlin, this is solely due to spontaneous reactions.  

Discussion 

In this work, we reviewed the current state of all the reconstruction tools we could find in the 

literature and performed a systematic evaluation of seven of them. None of the tools 

performed well in all the evaluated categories so users should carefully select the tool(s) 

that suit the purpose of their investigation. For example, if a high-quality draft is required and 

models are available for a phylogenetically close species, MetaDraft or AuReMe could be 

selected, reducing thus the time needed to obtain a high-quality manually-curated model. Of 

these, MetaDraft was the most robust for handling models and since it has a graphical user 

interface, it is also suitable for non-specialists. AuReMe, on the contrary, offered a 

command-line workspace where the traceability is the priority. Although we were not able to 

use RAVEN in the template mode, this tool allowed us to automate the generation of several 

reconstructions, it had a high flexibility with parameters and it offered integration with the 

KEGG and MetaCyc databases which makes it very appropriate for less studied species. 

ModelSEED, CarveMe and Pathway Tools were the fastest tools to generate 

reconstructions having a great potential for large-scale studies how is has been proven in 

previous works [53,56]. The first two tools provided networks which are ready to perform 

FBA, however presumably because of the automatic gap-filling procedure, too many 

reactions that should be manually verified must be expected. Pathway Tools and Merlin 

provided a platform suitable for manual curation which nicely guide the user though the 

whole reconstruction process.          

The list of features that we defined not only can be used by model builders to select the best 

tool(s) but also by developers as a guide for improving them. We highlight four features, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558411doi: bioRxiv preprint 

https://doi.org/10.1101/558411
http://creativecommons.org/licenses/by/4.0/


which are in accordance with the FAIR guiding principles for scientific data management 

and stewardship [57], that should be considered as a priority by developers to ensure 

management of reconstructions in a standard way: 1) To be findable: All the genes, 

metabolites and reaction in a reconstruction should be assigned with unique and persistent 

identifiers, and synonyms or aliases in other databases should be provided whenever 

possible 2) To be accessible: exhaustive control of versions should be implemented so users 

will be able to submit small but significant changes to draft reconstructions, to trace changes 

made during the reconstruction process, or to retrieve a particular version if desired. 3) To 

be interoperable: output (and input if applied) reconstructions should be written with the 

latest features of the SBML standards 4) To be reusable: In relationship with providing a 

detailed provenance, transparency of decisions through the whole reconstruction process 

should be ensured so users can see why a particular reaction was added and at which stage 

(draft network generation, gap-filling, refinement, etc.). 

Genome-scale reconstructions are usually evaluated after they are converted into genome-

scale models [5] i.e., mathematical structures where simulations can be performed under 

constraints that describe specific experimental conditions. Thus, GSMMs are tested by their 

accuracy to predict experimental data such as knock-outs, nutritional requirements and 

growth rates on different conditions. However, most of the drafts we generated were not 

suitable to perform FBA, mainly due to the lack of biomass-related, transport and exchange 

reactions. Thus, we limited the evaluation of the drafts to the comparison with manually-

curated, genome-scale reconstructions. The later are valuable by themselves as 

knowledgebases because they contain extensive information from literature. Here, we 

prescribed that the manually-curated reconstructions are the gold standard, which implies 

that they cannot be improved and that is obviously not true. Many reconstructions of for 

example, E. coli, S. cerevisiae and H. sapiens have gone through multiple rounds of 
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improvements during the years [58–60]. As reference databases used by reconstruction 

tools increase in size and quality, so will the reconstructions which are based on them. 

Therefore, some of the reactions which were suggested by the tools and which are not in 

the manually-curated models could indeed be reactions which would improve the quality of 

the reconstructions. Whether one of those reactions should be in the reconstruction or not 

will depend not only on the genomic evidence but also on the scope and context of the 

reconstruction. Many reactions are usually not incorporated because they are not needed 

for modeling purposes [5]. Thus, similarity scores shouldn’t be taken alone to assess the 

quality of draft reconstructions. Indeed, additional reconstructions of Lactobacillus plantarum 

that we made with CarveMe and ModelSEED and which were gap-filled using a modified 

version of CDM (S2 File), a media that support the growth of this microorganism in vivo [49], 

showed a general performance close to the manually curated model, suggesting that 

although the networks are not so similar as others created with different tools, the core 

metabolism remains similar. Despite that, the performance of these networks is dependent 

on the media composition which is used for the gap-filling (S1 Fig), and therefore if there is 

no experimentally determined media, some false positive and false negative predictions 

could emerge. For example, if very accurate predictions regarding nutritional requirement 

are needed to design a microbial community, automatic reconstructions for which an 

experimentally determined media composition is not provided during gap-filling could result 

in false predictions.   

A correct mapping of identifiers among different databases is crucial to perform a proper 

comparison between metabolic networks. Important efforts such as MetaNetX [54] and 

Borgifier [61] have been done to facilitate this titanic task. The first of those tools allowed us 

to map most of the metabolites and reactions among the different reconstructions but 

naturally some relationships were missing. To overcome this limitation, we implemented an 
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algorithm to search reaction equations, even when they have differences in proton 

stoichiometry due to different protonation states or even if the reactions are written in the 

opposite direction. As a second step to further reduce the fraction of metabolites which were 

not mapped and though a semi-automatic and iterative process, we determined 174 new 

relationships. In spite of our efforts, still some relationships were missing which evidence 

the complexity of the problem. Since recent efforts have made clearer the type of issues 

arising in different databases [62], we emphasize the importance of standards, which could 

make easier the identification of synonyms because of the presence of high-quality 

information, and the need of an outstanding mapping system.  

Systematic assessments of tools for systems biology have become very popular [63,64] due 

to the great impact they have in the community of potential users who certainly are searching 

the best tool to apply in their research. Knowing the strengths and limitations of each tool 

allow users to select the best tool(s) for their case, to save time in preliminary tests and to 

focus more on the analysis and modelling using those reconstructions. Moreover, to provide 

genome-scale models of high quality, in terms of usability and standards, has become a 

priority during the last years. Efforts such as those done by Memote [44] highlight the need 

for suites that test the quality of genome-scale models to ensure high-quality outputs, not 

only in terms of their content as knowledgebases but also in terms of standards. 

Conclusions  

All the assessed reconstruction tools showed strengths and weaknesses in different areas 

and none of the tools outperformed the others in all the categories. In particular, template-

based reconstruction tools such as AuReMe, MetaDraft and CarveMe generated networks 

with a higher reactions sets similarity to manually curated networks than other tools. In 

addition, tools such as Pathway Tools and Merlin provide a proper workspace and useful 

information for manual refinement which could be suited for cases where much time can be 
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dedicated to this step. RAVEN provides a platform in which biochemical information from 

different databases and approaches can be merged, which could be useful for less 

characterized species. Finally, tools such as CarveMe and ModelSEED provide ready-to-

use metabolic networks which can be useful for a fast generation of model-driven hypothesis 

and exploration but users will have to be aware of potential false results.  

There seems to be a trade-off between coverage and similarity, and it remains to be seen 

how much room for improvement there is. We see three clear features that would improve 

any tool: better standards that would allow easier integration of the best of tools, exhaustive 

version control during the reconstruction process, and algorithms that can use experimental 

data for inclusion of genes and reactions into the models. 

Materials and Methods 

Protein sequences 

We used the protein sequences or the GenBank files of the different microorganisms as 

input to generate the genome-scale metabolic reconstructions with each of the selected 

tools. All the protein sequences were downloaded from NCBI. For Lactobacillus plantarum 

strain WCFS1 and Bordetella Pertussis strain Tohama I we used the protein sequences 

deposited under the NCBI accession numbers NC_004567.2 and NC_002929.2 

respectively. 

Reconstruction 

The specific parameters and inputs used to reconstruct the draft networks with each tool 

can be found in S1 file.  

AuReMe. We used AuReMe version 1.2.1, which was downloaded using Docker 

Toolbox, to generate the draft reconstructions.  
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To generate the genome-scale metabolic reconstructions of Lactobacillus plantarum 

we used three different set of templates from the BIGG database: 1) Lactococcus 

lactis (iNF517). 2) Lactococcus lactis (iNF517), Bacillus subtilis (iYO844), 

Staphylococcus aureus (iSB619), Clostridium ljungdahlii (iHN637) and 

Mycobacterium Tuberculosis (iNJ661). 3) Lactococcus lactis (iNF517), Bacillus 

subtilis (iYO844), Staphylococcus aureus (iSB619), Clostridium ljungdahlii (iHN637), 

Mycobacterium Tuberculosis (iNJ661), Escherichia coli (iML1515), Klebsiella 

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172), Shigella boydii 

(iSbBs512_1146), Shigella sonnei (iSSON_1240), Pseudomonas putida (iJN746), 

Yersinia pestis (iPC815), Helicobacter pylori (iIT341), Geobacter metallireducens 

(iAF987), Salmonella entérica (STM_v1_0), Thermotoga marítima (iLJ478), 

Synechocystis sp (iJN678) and Synechococcus elongatus (iJB785) 

For Bordetella pertussis we used Escherichia Coli as template (iML1515).  

CarveMe. We used CarveMe version 1.2.1 (downloaded from 

https://github.com/cdanielmachado/carveme on August 1st, 2018) to generate the 

draft reconstructions. Two genome-scale metabolic reconstructions were generated 

for Lactobacillus plantarum using the universal bacterial template and the gram-

positive bacterial template, respectively. For B. pertussis, the universal bacterial 

template and the gram-negative bacterial template were used.  

Merlin. We used Merlin version 3.8 (downloaded from https://merlin-

sysbio.org/index.php/Downloads on August 1st, 2018) to generate the draft 

reconstructions. For all the networks, we first annotated the genomes with EBI 

through MERLIN using default parameters. Then, we loaded KEGG metabolic data 
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and integrated the annotation with the model. Finally, we created gene-reaction-

protein associations and removed unbalanced reactions to be able to export the 

network to SBML format.   

MetaDraft. We used MetaDraft version 0.8.1, which was obtained by request from 

Brett Olivier on May 1st of 2018, to generate the draft reconstructions. Now available 

from https://systemsbioinformatics.github.io/cbmpy-metadraft/.  

To generate the genome-scale metabolic reconstructions of Lactobacillus plantarum 

we used three different set of templates from the BIGG database: 1) Lactococcus 

lactis (iNF517). 2) Lactococcus lactis (iNF517), Bacillus subtilis (iYO844), 

Staphylococcus aureus (iSB619), Clostridium ljungdahlii (iHN637) and 

Mycobacterium Tuberculosis (iNJ661). 3) Lactococcus lactis (iNF517), Bacillus 

subtilis (iYO844), Staphylococcus aureus (iSB619), Clostridium ljungdahlii (iHN637), 

Mycobacterium Tuberculosis (iNJ661), Escherichia coli (iML1515), Klebsiella 

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172), Shigella boydii 

(iSbBs512_1146), Shigella sonnei (iSSON_1240), Pseudomonas putida (iJN746), 

Yersinia pestis (iPC815), Helicobacter pylori (iIT341), Geobacter metallireducens 

(iAF987), Salmonella entérica (STM_v1_0), Thermotoga marítima (iLJ478), 

Synechocystis sp (iJN678) and Synechococcus elongatus (iJB785) 

To generate the genome-scale metabolic reconstructions of Bordetella pertussis we 

used three different set of templates from the BIGG database: 1) Escherichia coli 

(iML1515). 2) Escherichia coli (iML1515), Klebsiella pneumoniae (iYL1228), Shigella 

flexneri (iSFxv_1172), Shigella boydii (iSbBs512_1146), Shigella sonnei 

(iSSON_1240), Pseudomonas putida (iJN746), Yersinia pestis (iPC815), 
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Helicobacter pylori (iIT341), Geobacter metallireducens (iAF987), Salmonella 

entérica (STM_v1_0), Thermotoga marítima (iLJ478), Synechocystis sp (iJN678) 

and Synechococcus elongatus (iJB785). 3) Escherichia coli (iML1515), Klebsiella 

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172), Shigella boydii 

(iSbBs512_1146), Shigella sonnei (iSSON_1240), Pseudomonas putida (iJN746), 

Yersinia pestis (iPC815), Helicobacter pylori (iIT341), Geobacter metallireducens 

(iAF987), Salmonella entérica (STM_v1_0), Thermotoga marítima (iLJ478), 

Synechocystis sp (iJN678), Synechococcus elongatus (iJB785), Lactococcus lactis 

(iNF517), Bacillus subtilis (iYO844), Staphylococcus aureus (iSB619), Clostridium 

ljungdahlii (iHN637) and Mycobacterium Tuberculosis (iNJ661).  

ModelSEED. We used ModelSEED version 2.2 web service on August 16st of 2018 

to generate the draft reconstructions. Models were created using different template 

models. No media was specified to create the models.  

Pathway Tools. We used Pathway Tools version 22.0 to generate the draft 

reconstructions. Four networks were created with the Desktop mode using different 

cut-off values for pathways prediction and one was made with the Lisp-console with 

default parameters. All the networks were exported manually with the Desktop mode 

RAVEN. We used RAVEN version 2.0.1, which was downloaded from 

https://github.com/SysBioChalmers/RAVEN, to generate the draft reconstructions. 

Different models were created using different databases (KEGG and MetaCyc) and 

different values in the parameters for orthology searches.  
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Pre-processing of L. plantarum and B. pertussis network 

We pre-processed the manually curated networks in order to compare them with the draft 

networks. We semi-automatically changed metabolite and reaction identifiers to match those 

of the BIGG database. Also, we removed duplicated reactions (those with the same reaction 

equation). Before deletion of a duplicated reaction, the associated gene-reaction rule was 

transferred to or merged with the gene-reaction rule of the reaction that was kept in the 

network.  

Comparison of gene sets 

We define the union of all the unique genes found in a particular metabolic network as the 

gene set in that network. We compared gene sets from each draft network with those in the 

corresponding manually curated model by case sensitive string comparison.  

Comparison of metabolite sets 

Each metabolic network contains a set of metabolites. For those networks generated with 

reconstruction tools using the BIGG database (AuReMe, CarveMe and MetaDraft) we 

compared metabolites just by string comparison. For other reconstruction tools (Merlin, 

ModelSEED, Pathway Tools and RAVEN), we mapped the metabolites using MetaNetX 

version 3.0 [54]. As metabolite identifiers in the manually curated models contain at the end 

of the string a character describing the specific compartment in which the metabolite is 

located (for example glc_c for glucose in the cytoplasmic space) and in MetaNetX they do 

not, we used the following procedure to compare metabolites: For each metabolic network 

and for each metabolite we removed the compartment char from the metabolite identifier. 

Then, if the modified identifier is present in MetaNetX and if there is a synonym for that 

identifier in the BIGG database, we checked if some of the BIGG synonyms concatenated 

with the before removed compartment char match a metabolite in the manually curated 
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model. If so, we considered that the metabolite is present in the manually curated model. 

Otherwise, we considered that the metabolite is not present.   

Comparison of reaction sets 

Each metabolic network contains a set of reactions. Reactions sets were compared using 

two complementary methodologies. First, by using reaction identifier MetaNetX mapping 

and second, by using reaction equation comparison.  

In the first approach, as a pre-processing step, we removed duplicated reactions (those 

reactions with the same MetaNetX identifier even if the reaction equation is different). For 

those networks generated with reconstruction tools using the BIGG database (AuReMe, 

CarveMe and MetaDraft) reactions identifiers were compared by direct case sensitive string 

comparison. For other reconstruction tools, MetaNetX was used to map reaction identifiers, 

which also were compared by string comparison. 

In the second case, as a pre-processing step, we first removed duplicated reactions (those 

with the same equation even if they had different identifiers) and empty reactions (those with 

an identifier but with no reactants and products). Then, reaction equations were compared 

by comparing each metabolite and its stoichiometry individually. For those networks 

generated with reconstruction tools using the BIGG database (AuReMe, CarveMe and 

MetaDraft) we directly compared reaction equations. For those networks generated with 

reconstruction tools using a database different from BIGG (Merlin, ModelSEED, Pathway 

Tools and RAVEN), we first converted metabolite identifiers to BIGG by using MetaNetX 

version 3.0 and our own dictionary (S13 Table). Then, reaction equations were compared.  

All the comparison was done in MATLAB and model handling was performed using functions 

from Cobra Toolbox v.3.0 [14] 

Calculation of Jaccard Distance 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558411doi: bioRxiv preprint 

https://doi.org/10.1101/558411
http://creativecommons.org/licenses/by/4.0/


The Jaccard distance (𝐽𝐷) was calculated to compare reconstructions in terms of genes, 

reactions and metabolites. For two any sets of elements, 𝑆𝑖 and 𝑆𝑗, the 𝐽𝐷 is calculated as 

𝐽𝐷 =  1 − |𝑆𝑖  ∩  𝑆𝑗|/|𝑆𝑖  ∪  𝑆𝑗|. We called 𝐽𝐷𝑔, 𝐽𝐷𝑟 and  𝐽𝐷𝑚 to the 𝐽𝐷 calculated in terms of 

genes, reactions and metabolites, respectively. Thus, 𝐽𝐷𝑔, 𝐽𝐷𝑟 and  𝐽𝐷𝑚 were calculated as:  

 𝐽𝐷𝑔  =  1 − |𝐺𝑖  ∩  𝐺𝑟𝑒𝑓|/|𝐺𝑖  ∪  𝐺𝑟𝑒𝑓|, 𝐺𝑖 being the genes set of the generated draft network 

𝑖 and 𝐺𝑟𝑒𝑓 being the genes set of the reference network (manually-curated model). 

𝐽𝐷𝑟  =  1 − |𝑅𝑖  ∩  𝑅𝑟𝑒𝑓|/|𝑅𝑖  ∪  𝑅𝑟𝑒𝑓|, 𝑅𝑖 being the reactions set of the generated draft 

network 𝑖 and 𝑅𝑟𝑒𝑓 being the reactions set of the reference network (manually-curated 

model). 

𝐽𝐷𝑚  =  1 − |𝑀𝑖  ∩  𝑀𝑟𝑒𝑓|/|𝑀𝑖  ∪  𝑀𝑟𝑒𝑓|, 𝑀𝑖 being the metabolites set of the generated draft 

network 𝑖 and 𝑀𝑟𝑒𝑓 being the metabolites set of the reference network (manually-curated 

model). 

Calculation of Ratio 

The ratio (𝑅) between the coverage and the percentage of additional elements was 

calculated to assess how similar a particular draft network was to the manually curated 

reconstruction. We called 𝑅𝑔, 𝑅𝑟 and 𝑅𝑚 to the 𝑅 calculated in terms of genes, reactions and 

metabolites, respectively. Thus, 𝑅𝑔, 𝑅𝑟 and 𝑅𝑚 were calculated as: 

𝑅𝑔  =  |𝐺𝑖  ∩  𝐺𝑟𝑒𝑓|/|𝐺𝑖 − 𝐺𝑟𝑒𝑓|, 𝐺𝑖 being the genes set of the generated draft network 𝑖 and 

𝐺𝑟𝑒𝑓 being the genes set of the reference network (manually-curated model). 

𝑅𝑟  =  |𝑅𝑖  ∩  𝑅𝑟𝑒𝑓|/|𝑅𝑖 −  𝑅𝑟𝑒𝑓|, 𝑅𝑖 being the reactions set of the generated draft network 𝑖 

and 𝑅𝑗 being the reactions set of the reference network (manually-curated model). 
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𝑅𝑚  = |𝑀𝑖  ∩  𝑀𝑟𝑒𝑓|/|𝑀𝑖 −  𝑀𝑟𝑒𝑓|, 𝑀𝑖 being the metabolites set of the generated draft network 

𝑖 and 𝑀𝑗 being the metabolites set of the reference network (manually-curated model). 

Evaluation of performance 

We created three models of Lactobacillus plantarum with CarveMe version 1.2.1 and 

ModelSEED version 2.4, using different media compositions for the gap-filling procedure 

that is carried out internally in these tools. Since the models were not able to generate 

biomass with the original media composition of CDM, PMM7 and PMM5 [49], we modified 

these mediums to ensure growth. The lack of growth was because of the presence of some 

compounds in the biomass equation which were not provided in the media. The modified 

mediums were called CMM-like, PMM7-like, PMM5-like, respectively (S2 File).  

A set of 34 single-omission experiments [49] were used to evaluate the performance of the 

models. True positive were defined as growth in vivo and in silico; True negatives as no 

growth in vivo and in silico; False positives as no growth in vivo and growth in silico; False 

negatives as growth in vivo but no growth in silico. CDM-like media was used as a basal 

media for the single omission experiments. For both in vivo and in silico experiments, growth 

rates below 10% of the growth rate obtained in CDM-like were considered as no growth.  

Metrics to evaluate the performance were calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                   (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                   (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                               (3) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =
𝑇𝑁

(𝑇𝑁+𝐹𝑁)
               (4) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁 +𝐹𝑁+𝐹𝑃)
                                         (5) 

𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
                                 (6) 

Acknowledgements 

S.N.M. acknowledges the financial support from CONICYT Becas Chile #72180373 and 

Chr. Hansen  

Authors contributions 

Conceptualization: Sebastián N. Mendoza, Brett G. Olivier, Douwe Molenaar, Bas Teusink 

Formal Analysis: Sebastián N. Mendoza 

Funding Adquisition: Sebastián N. Mendoza, Bas Teusink 

Methodology: Sebastián N. Mendoza, Brett Olivier, Douwe Molenaar, Bas Teusink 

Resources: Bas Teusink 

Software: Sebastián N. Mendoza 

Supervision: Bas Teusink 

Writing - original draft: Sebastián N. Mendoza 

Writing - review & editing: Sebastián N. Mendoza, Brett G. Olivier, Douwe Molenaar, Bas 

Teusink 

Conflict of interests 

The authors declare that they have no conflicts of interest.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558411doi: bioRxiv preprint 

https://doi.org/10.1101/558411
http://creativecommons.org/licenses/by/4.0/


Availability 

All the reconstructions used as well as the MATLAB functions to generate the models (when 

possible) and to compared them are available at 

https://github.com/SystemsBioinformatics/pub-data/reconstruction-tools-assessment. 

Abbreviations 

FBA: Flux Balance Analysis 

GSMM: Genome-scale metabolic model 

JD: Jaccard Distance 

LAB: lactic acid bacterium.  

R: Ratio between the coverage and the percentage of additional elements.  

SBML: Systems Biology Markup Language 
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Figure Legends 

Fig 1.  List of important features for genome-scale reconstruction and software 

quality and qualitative assessment of the studied genome-scale metabolic 

reconstruction tools. We evaluated each of the tools (AU: AuReeMe. CA: CarveMe. MD: 

MetaDraft. ME: Merlin. MS: ModelSEED. PT: Pathway Tools. RA: RAVEN) from an 

unsatisfactory (red) to an outstanding performance (dark green).  In some categories such 

as continuous software maintenance and proper support, on the top of the figure, all the 

tools got the maximum score while in others such as automatic refinement using 

experimental data, none of the tools got the maximum. In most of the cases, strengths in 

some tools are weaknesses in others 

Fig 2. Jaccard distance versus the ratio between coverage and percentage of 

additional genes for draft reconstructions of Lactobacillus plantarum (A) and 

Bordetella pertussis (B). We used the Jaccard distance and the ratio to measure the 

similarity between the draft reconstructions and the corresponding manually curated models, 

in this case, when the networks are analyzed in terms of genes. The networks more similar 

to the manually curated models are located on the top left side of the plot. Thus, the draft 

reconstructions more similar to the manually curated models were created by AuReMe, 

MetaDraft and RAVEN. 

Fig 3. Overlap of genes in draft reconstructions for Lactobacillus plantarum with 

those in the manually-curated model, iLP728. In total, 29 networks were reconstructed 

with 7 tools (CarveMe: CA, MetaDraft: MD, AuReMe: AU, Pathway Tools: PT, ModelSEED: 

MS, RAVEN: RA, Merlin: ME). Several reconstructions, which are represented with different 

sub-indices, were generated for each tool using different parameters settings. Numbers 

inside bars represent percentages with respect to the total number of genes in iLP728. The 

coverage (blue bars) ranged from 49.7% to 87.8% while the percentage of additional genes 
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(yellow bars) ranged from 4.3% to 65.0%. Most of the genes that were not recovered (dark 

green bars) are related to very specific metabolic functions that were carefully incorporated 

during the manual curation of iLP728 such as polysaccharide biosynthesis and transport.  

Fig 4. Overlap of genes in draft reconstructions for Bordetella pertussis with those in 

the manually curated model, iBP1870. In total, 27 networks were reconstructed with 7 

tools (CarveMe: CA, MetaDraft: MD, AureME: AU, Pathway Tools: PT, RAVEN: RA, Merlin: 

ME). Several reconstructions, which are represented with different sub-indices, were 

generated for each tool using different parameters settings. Numbers inside bars represent 

percentages with respect to the total number of genes in iBO1870. The coverage (blue bars) 

ranged from 49.4% to 83.0% while the percentage of additional genes (yellow bars) ranged 

from 18.6% to 99.0%. The genes that were not recovered (dark green bars) are related to 

very specific metabolic functions that were carefully incorporated during the manual curation 

of iBP1870 such as transport and ferredoxin/thioredoxin-related reactions. 

Fig 5. Overlap of reactions in draft reconstructions for Lactobacillus plantarum with 

those in the manually-curated model, iLP728. In total, 29 networks were reconstructed 

with 7 tools (CarveMe: CA, MetaDraft: MD, AuReMe: AU, Pathway Tools: PT, ModelSEED: 

MS, RAVEN: RA, Merlin: ME). Several reconstructions, which are represented with different 

sub-indices, were generated for each tool using different parameters settings. Numbers 

inside bars represent percentages with respect to the corrected number of reactions in 

iLP728, which is the total number of reactions in iLP728 minus the biomass-related reactions 

(light green). We observed a wide variation in the coverage (blue bars) and percentage of 

additional reactions (yellow bars). In addition, an important number of reactions in the 

networks build with ModelSEED, RAVEN (KEGG) and Merlin contained different 

stoichiometry for protons than those in iLP728 (dark green bars).  
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Fig 6. Overlap of reactions in draft reconstructions for Bordetella pertussis with those 

in the manually-curated model, iBP1870. In total, 27 networks were reconstructed with 7 

tools (CarveMe: CA, MetaDraft: MD, AuReMe: AU, Pathway Tools: PT, ModelSEED: MS, 

RAVEN: RA, Merlin: ME). Several reconstructions, which are represented with different sub-

indices, were generated for each tool using different parameters settings. Numbers inside 

bars represent percentages with respect to the corrected number of reactions in iBP1870, 

which is the total number of reactions minus the biomass-related reactions (light green). We 

observed a wide variation in the coverage (blue bars) and percentage of additional reactions 

(yellow bars). In addition, an important number of reactions in the networks build with 

MODELSEED, RAVEN (KEGG) and Merlin contained different stoichiometry for protons 

than those in iBP1870 (draft green bars).  

Fig 7. Jaccard distance versus the ratio between coverage and percentage of 

additional reactions for draft reconstructions of Lactobacillus plantarum (A) and 

Bordetella pertussis (B). We used the Jaccard distance and the ratio the measure the 

similarity between the draft reconstructions and the corresponding manually curated model, 

in this case, when the networks are analyzed in terms of reactions. The networks more 

similar to the manually curated models are located on the top left side of the plot. Thus, the 

draft reconstructions more similar, in terms of reactions, to the manually curated models 

were created by AuReMe, MetaDraft and CarveMe 
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Supporting information captions 

S1 Fig. Performance of models made with CarveMe and ModelSEED for Lactobacillus 

plantarum when different media compositions were provided for the internal gap-

filling performed in these tools. Networks gap-filled with CDM-like got an accuracy lower 

but close to the obtained with the manually-curated model. For both tools, when PMM7-like 

or PMM5-like was used, the accuracy score increased due to the decrease in false negative 

results. For both tools, the lines corresponding to PMM7-like are not visible because they 

overlap with the ones of PMM5-like. 

S1 Table. List of genome-scale metabolic reconstruction tools and databases. 

S2 Table. Specification of  scores in each feature evaluated. 

S3 Table. Detailed evaluation of the reconstruction tools 

S4 Table. Calculated Jaccard Distance between genes, metabolites and reactions sets 

in draft networks of L. plantarum and those in iLP728. 

S5 Table. Calculated Jaccard Distance between genes, metabolites and reactions sets 

in draft networks of B. pertussis and those in iBP1870. 

S6 Table. Similarity of draft reconstructions of L. plantarum to iLP728 in terms of 

reactions, metabolites and genes. 

S7 Table. Similarity of draft reconstructions of B. pertussis to iBP1870 in terms of 

reactions, metabolites and genes. 

S8 Table. Metabolic processes associated to the 92 genes of iLP728 which were 

recovered in all the draft networks of Lactobacillus plantarum 

S9 Table. Metabolic processes associated to the 121 genes of iBP1870 which were 

recovered in all the draft networks of Bordetella pertussis 
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S10 Table. Reaction coverage for draft reconstructions of L. plantarum using different 

approaches. 

S11 Table. Reaction coverage for draft reconstructions of B. pertussis using different 

approaches. 

S12 Table. New unique reaction synonyms pairs that were automatically discovered 

for both species with the reaction equation comparison approach. 

S13 Table. Compound synonyms pairs that were semi-automatically discovered. 

S14 Table. Additional reaction synonyms discovered. 

S15 Table. Metabolic processes associated to the 71 reactions of iLP728 which were 

recovered in all the draft networks of Lactobacillus plantarum. 

S16 Table. Metabolic processes associated to the 91 reactions of iBP1870 which were 

recovered in all the draft networks of Bordetella pertussis. 

S167 Table. Classification of reactions in iLP728 which were not recovered by any 

draft network of L. plantarum. 

S18 Table. Classification of reactions in iBP1870 which were not recovered by any 

draft network of B. pertussis. 

S19 Table. Metabolic processes associated to the 208 metabolites of iLP728 which 

were recovered in all the draft networks of Lactobacillus plantarum. 

S20 Table. Metabolic processes associated to the 266 metabolites of iBP1870 which 

were recovered in all the draft networks of Bordetella pertussis. 

S21 Table. Metabolic processes associated to the 9 metabolites which were recovered 

in all the draft networks of L. plantarum and were not in iLP728. 
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S22 Table. Metabolic processes associated to the 13 metabolites which were 

recovered in all the draft networks of Bordetella pertussis and were not in iBP1870. 

S23 Table. Topological analysis for draft recontructions of L. plantarum. 

S24 Table. Topological analysis for draft recontructions of B. pertussis. 

S1 File. Specific input and parameters set to obtain each of the reconstructions 

studied. 

S2 File. Composition of CDM-like, PMM7-like and PMM5-like mediums.  
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Figure 1. 

 

  

Feature Description AU CA MD ME MS PT RA

Continuous software 

maintenance

There is a team of specialists working on improving the tool 

and fixing bugs Unsatisfactory

Proper support to users There is a team of specialists answering user's questions

Poor

Up to date reference 

databases/resources

The tool uses updated databases (BIGG, MetaCyc, 

ModelSEED, KEGG, etc) Satisfactory

Straightforward installation The process of installation is fast and easy. In the case of 

online services, the creation of an account is fast and easy. Good

Software availability The software is easily accessible by any user and if more 

than one version exists, all are free. Outstanding

Able to reconstruct 

eukaryotes

It is possible to generate draft reconstructions not only for 

prokaryotes but also for eukaryotes

Dependencies Dependence on free software and databases

Comprehensive 

documentation

There is an up-to-date user manual that explains all the 

features of the software.

It meets current standards Outputs and inputs (if applied) with the latest SBML 

standards 

User-friendly interface The software has a user-friendly interface which also allows 

non-specialists to use the software

Fast The computational time to get a draft reconstruction is 

short

Open-source The source code is open to all the users

Reproducibility of results 

over time

It is possible to get the same results in the long term. This 

implies to be able to use the same inputs and algorithms 

over time. If so, the same draft should be returned by the 

tool.Completeness of model 

fields. 

The models have all the fields required. Those fields 

contain few cells with no information

Similarity with manually-

curated models, as 

knowledgebases

The draft reconstruction is similar to a manually-curated 

genome-scale metabolic reconstruction

Automatization Fully automatic process and a metabolic network ready for 

FBA

Manual refinement 

assistance

Provide workspace and assistance for manual refinement 

(add user-defined reactions, balance reactions, provide 

thermodynamic information, info from UniProt, etc)

Customizable for a high 

number of genomes

The software allows submitting sequential jobs for 

reconstructing a high number (>20) of networks

Flexibility in parameter 

settings

It is possible to set different values of parameters (alpha 

values, others) and use inputs (databases, templates 

models, fasta sequences) provided by the user

Provides synonyms for 

metabolites and reactions 

It provides identifiers which link metabolites and reactions 

to other databases

Traceability It is possible to keep a register of the changes performed in 

a draft network to get the final network

Automatic refinement using 

experimental data

Able to automatically integrate experimental data for 

curation

FE
A

TU
R

ES

TOOLS
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Figure 2. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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