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Abstract: In solutions of myofibrillar protein extracted from giant squid (Dosidicus 23 

gigas), the size-coarsening process of protein nanofiber is complex. At high 24 

temperature (25
o
C), nanofiber keeps growth but with two distinguishable patterns, 25 

slow rate at the initial stage with t
0.2

 and the fast one at the late stage with t
2.3

. The 26 

intersection of these two slopes is around 300 min. Meanwhile, protein concentration 27 

in solution enhances as well. These behaviors contradict to the prediction of Ostwald 28 

ripening. Thus, we call this process as abnormal. These abnormal behaviors come 29 

from the conformation change of some types of constitution protein molecules with 30 

chemical potential reduction when they dissolve from nanofiber to solution. On the 31 

other hand, low temperature (10
o
C) depresses this size growth. This observation 32 

suggests that temperature regulates protein molecule conformation change in 33 

nanofiber. The consequence of this abnormal Ostwald ripening process is that all 34 

protein molecules in nanofiber are redistributed. Protein molecules with the absence 35 

of conformation change in dissolution accumulate in nanofiber to cause it growing, 36 

while the rest concentrates in solution.   37 

Keywords: Abnormal Ostwald ripening, myofibrillar protein, molecular conformation 38 

change, nanofiber 39 
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In 1896 Wilhelm Ostwald descried the phenomenon of large particle growth in 50 

the cost of small one as Ostwald ripening due to the surface tension which is 51 

proportional to the particles curvature(1-3). As a result, the solute concentration keeps 52 

reduction throughout size-coarsening process. Meanwhile, an essential prerequisite, 53 

no molecular conformation change when a molecule transfers from one phase to 54 

another, exists but is always ignored. This condition is satisfied in inorganic and 55 

organic compounds. However, in protein solutions containing particles with various 56 

sizes, it should be cautious to apply Ostwald ripening theory in the size-coarsening 57 

process because protein molecules are sensitive to the ambient conditions. Even salt 58 

concentration variation could induce protein molecule conformation change(4). Thus, 59 

it is worth to verify Ostwald ripening theory in protein solutions.    60 

The existence of nanofiber in solutions of myofibrillar protein extracted from 61 

giant squid (Dosidicus gigas) is verified(5). In order to investigate its size-coarsening 62 

process in this solution, 2.73 mg mL
-1 

myofibrillar protein was diluted 10 times by the 63 

buffer solution, and was assessed by the dynamic light scattering (DLS) technique and 64 

the fluorescence spectroscopy (FS) technique immediately.   65 

In Fig. 1a, the pattern of light intensity on time depends on the temperature. High 66 

temperature (25
o
C) allows the light intensity monotonically growing, while low 67 

temperature (10
o
C) depresses this growth with almost constant light intensity 68 

throughout the experiment. Due to high activity of enzymolysis in myofibrillar protein 69 

at 25
o
C(6), it is necessary to estimate its influence in this study. In Fig, 1b, the 70 

apparent concentrations of myofibrillar protein in three cases were determined via 71 
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Bradford protein assay. It displaces two issues: 1) the apparent protein concentration 72 

remarkable increase overnight no matter whether ethylenediaminetetra acetic acid 73 

(EDTA) is present or absent; 2) the existence of EDTA has minor effect on the 74 

apparent concentration determinations. Since EDTA is a efficient agent to depress 75 

enzymolysis(7), it could be concluded that the effect of enzymolysis could be ignored 76 

in this study.  77 

Another issue of interest in Fig. 1b is the apparent concentration rising with time. 78 

Ref. 5 illustrates that the apparent concentration increase via Bradford protein assay 79 

hints the more surface of protein molecule exploring to the solvent. In other words, 80 

nanofiber dissolves into several pieces with small size. However, the last stage of light 81 

intensity observation with fast increase at 25
o
C in Fig. 1a is against this prediction 82 

because the light intensity is proportional to the particle number density and is 83 

six-power of the size of particle(8). The light intensity increment due to the number 84 

density increase is much smaller than its reduction due to the size shrinking during the 85 

dissolution process. In order to clarify this puzzle, the size of corresponding nanofiber 86 

was evaluated via DLS technique. Fig. 1c reveals that the decay of the autocorrelation 87 

function g2(τ)-1 becomes slow throughout the experiment. With the aid of Laplace 88 

transform, the corresponding decay time distribution was obtained (Fig. S1). The 89 

decay time of the slow mode τ was assessed to construct Fig. S2. In contrast to the 90 

case in 10
o
C in which τ is almost constant throughout experiment (data do not 91 

present), the dependency of τ on the observation time has two patterns, t
0.2

 and t
2.3

, 92 

with the intersection of these two slopes around 300 min (Fig. S2). In the initial stage 93 
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of size-coarsening process, 0.2 is close to the value in phase-separation process, 94 

0.212(9, 10). But in the second stage, to the best of our knowledge, 2.3 is larger than 95 

any reported value(11, 12) .  96 

Now there is a problem. On the one hand, nanofiber keeps growth. On the other 97 

hand, protein concentration in solution increases as well, which contradicts to the 98 

prediction of Ostwald ripening. How does this phenomenon occur? Hinted by the fact 99 

of tropmysin (Fig. S3) dissolution from F-actin with the expense of partial 100 

degradation of helical structure(13), we hypothesized this abnormal Ostwald ripening 101 

due to some types of protein molecule conformation change when these molecules 102 

dissolve from nanofiber to solution with chemical potential reduction. As a result, 103 

these types of protein molecules concentrate in solutions. In order to verify the 104 

hypothesis of protein molecule conformation change, FS technique was carried out 105 

immediately after 2.15 mg mL
-1

 myofibrillar protein solution was diluted 10 times. 106 

The reason to pick up FS is the high sensitivity of tryptophan to the local environment 107 

in intrinsic protein florescence. As a result, change in the emission spectrum of 108 

tryptophan is utilized to probe protein conformation change(14, 15). Especially for 109 

minor change without secondary structure modification, such as the case of this study, 110 

the traditional techniques, such as circular dichroism (CD), are infeasible. The 111 

florescent spectra of the corresponding solution at various intervals were displayed in 112 

Fig. 1d, in which the fluorescent light intensity keeps reduction with maximum of 113 

fluorescent spectra shifting from 309 nm to 307 nm. This observation indicates the 114 

occurrence of conformation change of protein molecules. In addition, the interval of 115 
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remarkable fluorescent light intensity reduction, around 5 h, coincides with the 116 

intersection of the two slopes in Fig. S2.  117 

Thus, at 25
o
C the slow growth rate of nanofiber at the initial stage (Fig. S1) may 118 

come from the fact of high activation energy for protein molecule conformation 119 

change, for instance, 430-490 kJ mol
-1 

for ovalbumin at pH 7
(16)

. 120 

But what factors do dominate protein molecule conformation change? Fig. 1a hints 121 

that it is temperature rather than protein molecule concentration. When temperature is 122 

low as 10
o
C, nanofiber is stable, which is partially verified by the fact of animal 123 

muscles with less muscle shortening and drip loss around 10～15
o
C(17, 18). Only is 124 

temperature high, such as 25
o
C, some types of protein molecules commencing 125 

molecular conformation change when they redistribute from nanofiber to solution in 126 

myofibrillar protein. Indeed, it is found that the tropomyosin dissociation from F-actin 127 

has a minimum temperature of 35-40
o
C(19).  128 

The aforementioned discussions lead to a prediction that in size-coarsening process 129 

protein molecules with the absence of conformation change when dissolving from 130 

nanofiber to solution accumulate to nanofiber while the rest types are condensed in 131 

the solution. In other words, the compositions of solution and nanofiber respectively 132 

become purer after this size-coarsening process, which was tested by the differential 133 

scanning calorimetry (DSC) assessment (Fig. 2 and Table 2), in which solutions with 134 

2.71 mg mL
-1

 and 0.26 mg mL
-1

 respectively were assessed. The dilution operation 135 

induces the size-coarsening process in myofibrillar protein solutions. Compared with 136 

the high concentration solution, the peak is sharp in the thermogram with the low 137 
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denatured temperature and less denatured enthalpy in low concentration solution. The 138 

sharp peak indicates the purer composition in nanofiber(20). In addition, the dilution 139 

operation causes nanofiber loose, corroborated by fractal dimension df  assessment 140 

with monotonic reduction (Fig S4 and Table S1). This may be the reason for low 141 

denatured temperature and less denatured enthalpy in the low concentration solution.  142 

From the aforementioned discussion, a crucial conclusion is made that protein 143 

molecule conformation change is an essential prerequisite for muscle protein 144 

dissolution from the solid state to solution. In addition, this conformation change 145 

process is regulated by temperature rather than protein molecule concentration. Just 146 

because many food additives have strong interactions with muscle protein molecules, 147 

they can significantly affect muscle protein molecules dissolution and thereby can 148 

influence the properties of final products made by muscle (21, 22). This observation 149 

also sheds light on clinical practices, for instance, the mechanism study of 150 

rhabdomyolysis, a complex process associated with morbidity and mortality(23).   151 

 152 

SUPPORTING MATERIAL  153 
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 247 

Figure 1 (a) Time evolutions of light intensity at various temperatures. Empty circle 248 

stands for 25
o
C with 0.27 mg mL

-1
 myofibrillar protein while solid square does for 249 

10
o
C at the same protein concentration. (b) The influence of enzyme on protein 250 

concentration assessment in myofibrillar protein solutions. The control is 0.27 mg 251 

mL
-1

 myofibrillar protein solution. While the middle one is the solution same as 252 

control but has stayed in a heat bath at 25
o
C overnight; and the right one is a sample 253 

same as the middle one but added EDTA to depress enzyme activity. The Bradford 254 

method was applied for absorbance determination. (C)The autocorrelation functions 255 

of DLS at 25 
O
C in Fig.1a at some intervals. (d) The fluorescence emission spectrums 256 

at various intervals, which displace light intensity reduction and maximum of 257 

fluorescent spectra shifting from 309 nm to 307 nm.  258 

 259 

 260 
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 261 

Figure 2. DSC determinations of myofibrillar protein solutions at two concentrations 262 

2.71 mg mL
-1

 (black line) and 0.26 mg mL
-1

 (red line).  263 

 264 

Table 1 The thermal stability of particles under various dilution ratios 265 

Dilution ratio  Tmax（℃） △H（J/s） 

1 63.9
a
 0.529

a
 

10 58.6
b
 0.362

b
 

Tmax, the denaturation temperature; ∆H, the endotherm enthalpy. Different letters (a-b) indicate 266 

significant (P < 0.05) difference within the same row. 267 

 268 
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