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Abstract

Connectomics is a sub-field of Neuroscience aimed at determining

connectomes – exact structures of neurons and their synaptic connections in

nervous systems. A number of ongoing initiatives at the present time are

working towards the goal of ascertaining the connectomes or parts thereof of

various organisms. Determining the detailed physiological response

properties of all the neurons in these connectomes is out of reach of current

experimental technology. It is therefore unclear, to what extent knowledge of

the connectome alone will advance a mechanistic understanding of

computation occurring in these neuronal circuits, especially when the

high-level function(s) of the said circuit is unknown.

We are pursuing a research program to build theory in order to investigate

these issues. In previously published work [1], towards this end, we have

developed a theory of connectomic constraints for feedforward networks of

neurons. Specifically, for feedforward networks equipped with neurons that

obey a deterministic spiking neuron model, we asked if just by knowing the

structure of a network, we could rule out spike-timed computations that it

could be doing, no matter what response properties each of its neurons may

have. Our neurons were abstract mathematical objects that satisfied a small

number of axioms that correspond to certain broadly-obeyed properties of

neurons.

Here, we develop additional theoretical tools and notions to address these

questions. The idea is to study the space of all possible spike-train to

spike-train transformations. We are interested in asking how the subset of

transformations spanned by networks of specific architectures can be related

to hierarchical subsets of the space that are characterized by particular

mathematical properties of transformations. In particular, given such a

hierarchy of subsets, what is the “smallest” subset that contains the set of

transformations spanned by networks of a specific class of architectures?

Even if one cannot establish such a subset exactly, proving bounds on it

(according to the hierarchy) might offer insight. After setting up the

mathematical framework to make these notions precise, we construct explicit

classes of hierarchies and prove a number of such lower bounds.

Keywords: Connectomics; Axiomatic Theory; Spiking Neurons

1 Introduction

Progress in experimental techniques, since the turn of the century [2, 3, 4, 5, 6, 7], has led to

a rekindling of interest in determining exact structures of (microscale) neural circuits that

comprise nervous systems [8, 9, 10, 11, 12], which were rechristened as connectomes [13].

The first connectome – that of the nematode Caenorhabditis elegans – was determined in
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1986 [14], after an effort that took over a decade, much of it manual. The only other com-

plete connectome to be determined, to date, is that of the larval tadpole Ciona intestinalis

[15], which has an asymmetric nervous system and in fact has fewer neurons than C. ele-

gans; this was accomplished using modern automated techniques. That said, a significant

percentage of the larval Drosophila connectome has already been reconstructed, although

it is not publicly available at the time of writing [16]. Likewise, the electron microscopy

volume of the entire larval zebrafish [17] and adult Drosophila [18] are publicly available,

although they haven’t been fully reconstructed at the time of writing. Indeed, a number of

studies have already fruitfully used Connectomics to address several questions about neural

circuits and their function [19, 20, 12, 21, 22, 23, 24, 25, 26, 27, 28]. Also, it has been pos-

sible to first perform functional imaging of neural circuit activity in-vivo and then perform

connectomic reconstruction of circuits in the same piece of tissue [19, 20, 28].

Current techniques, however, do not allow determination of detailed physiological re-

sponse properties of all neurons in the connectomes and this is likely to be the case in

the foreseeable future. It is therefore unclear to what extent knowledge of the connectome

will inform us about mechanistic computation occuring in the neural circuits being recon-

structed. Indeed, this has been one criticism of the connectomics efforts [29], in that it is

unclear what exactly we will learn by knowing the connectome. Part of the criticism origi-

nates from a lack of theory. In particular, there is a need for theory that can use connectomic

data to infer constraints on computation in neural circuits and generate hypotheses about

mechanistic computation in the neural circuits. We are pursuing a research program to build

such theory. To this end, in previously published work [1], we have developed a theory of

connectomic constraints on computation in neural circuits. Specifically, for feedforward

networks equipped with neurons that obey a deterministic spiking neuron model, we asked

if just by knowing the structure of a network, we can rule out computations that it could

be doing, no matter what response properties each of its neurons may have. We also stip-

ulated the need to demonstrate a network with a different structure comprising “simple”

neurons that could indeed effect the computation in question. After setting up a mathemat-

ical framework within which these questions could be precisely posed, we showed results

of this form (which we call complexity results) for certain classes of network architectures.

We also proved, mathematically, that for certain other classes of network architectures,

given our limited assumptions on the individual neurons[1], there are fundamental limits to

constraints imposed by network structure alone. Our neurons were abstract mathematical

objects that satisfied a small number of axioms that correspond to certain broadly obeyed

properties of neurons. Complexity results, thus, were in the form of mathematical proofs

that use these axioms and the structure of the network in question to establish explicit spike-

train to spike-train transformations that could not be effected by any network of the said

structure, which could in turn be effected by a network of a different structure. Indeed, the

broad program in this line of research is to start from first principles, as we have done in [1]

and prove such results for networks of axiomatic neurons with progressively larger number

of axioms and also generalize the theory to treat the case of recurrent networks. The idea

is to eventually use this type of theory as a starting point to rule out specific computations

in neural circuits for which connectomic data is available. This might then be used to for-

mulate hypotheses about mechanistic computation in such circuits, which could be tested

experimentally. In addition to this goal, the theory would also allow us to understand which

[1]The assumptions manifest as axioms in our abstract model.
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Space of transformations

of the form T : Fm → S.

Complexity class of Σ

Hierarchy class of Σ

Figure 1 A schematic Venn Diagram illustrating the basic notions of a transformation hierarchy,
complexity class and hierarchy class. Informally, a transformation hierarchy is a sequence of nested
subsets in the space of transformations. The complexity class of a set of networks is the subset of
that space spanned by transformation induced by networks in the said set. The hierarchy class of a
set of network is the “smallest” set in the hierarchy that contains the complexity class as a subset.

aspects of network structure are crucial to the manifestation of what kinds of spike-timed

computation. This could, in principle, aid in understanding why some types of network

motifs might be conserved across individuals or species, especially in the emerging field of

Comparative Connectomics.

Here, we develop additional theoretical tools and notions to address these questions. The

idea is to study the space of all possible spike-train to spike-train transformations. In par-

ticular, we are interested in asking how the subset of transformations spanned by networks

of specific architectures can be related to subsets of the space that are characterized by

particular mathematical properties of transformations. While the former types of subsets

are related to networks of neurons, the latter type are related to transformations alone and

mathematical properties thereof. More concretely, using mathematical properties of trans-

formations (i.e. without any reference to neurons or networks), the idea is to identify a

sequence of subsets of this space, with each subset contained in the subsequent one in the

sequence. We call this sequence of subsets a Transformation Hierarchy. This allows us

to relate sets in a transformation hierarchy to sets of transformations spanned by specific

network architectures, which we call the Complexity Classes of those architectures. We
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do this by finding the “smallest” set in the hierarchy that contains the complexity class in

question as a subset. This set is called the Hierarchy Class of the architecture with respect

to the said transformation hierarchy. Figure 1 provides a Venn Diagram illustrating these

notions. Even if we cannot establish the hierarchy class of a given architecture with respect

to a hierarchy, proving bounds[2] on them might offer insight. As an application of these

notions, we have constructed explicit classes of transformation hierarchies. For every set

(starting from a certain set) in each such hierarchy, we demonstrate network architectures,

for which the set in question is a lower bound on the hierarchy class of the said network

architecture.

The reader familiar with Theoretical Computer Science will observe that the approach

taken here is somewhat reminiscent of that in Computational Complexity Theory, although

the settings, details and questions are very different.

2 Definitions and Preliminaries

The treatment here is largely self-contained. In order to make this so, in this section, we

reproduce verbatim from [1], definitions that constitute the basic mathematical formalism

used to describe spike trains and operations on them.

An action potential or spike is a stereotypical event characterized by the time in-

stant at which it is initiated in the neuron, which is referred to as its spike time. Spike

times are represented relative to the present by real numbers, with positive values de-

noting past spike times and negative values denoting future spike times. A spike-train

~x = 〈x1, x2, . . . , xk, . . .〉 is a strictly increasing sequence of spike times, with every pair of

spike times being at least α apart, where α > 0 is the absolute refractory period[3] and xi is

the spike time of spike i. An empty spike-train, denoted by ~φ, is one which has no spikes. A

time-bounded spike-train (with bound (a, b)) is one where all spike times lie in the bounded

interval (a, b), for some a, b ∈ R. We use S to denote the set of all spike trains and S̄(a,b)

to denote the set of all time-bounded spike-trains with bound (a, b). A spike-train is said to

have a gap in the interval (c, d), if it has no spikes in that time interval. Furthermore, this

gap is said to be of length d− c.

We use the term spike-train ensemble to denote a collection of spike-trains. Thus, for-

mally, a spike-train ensemble χ = 〈~x1, . . . , ~xm〉 is a tuple of spike-trains. The order of a

spike-train ensemble is the number of spike-trains in it. For example, χ = 〈~x1, . . . , ~xm〉 is a

spike-train ensemble of order m. A time-bounded spike-train ensemble (with bound (a, b))

is one in which each of its spike-trains is time-bounded (with bound (a, b)). A spike-train

ensemble χ is said have a gap in the interval (c, d), if each of its spike trains has a gap in

the interval (c, d).

Next, we define some operators to time-shift, segment and assemble/disassemble spike-

trains from spike-train ensembles. Let ~x = 〈x1, x2, . . . , xk, . . .〉 be a spike-train and χ =

〈~x1, . . . , ~xm〉 be a spike-train ensemble. The time-shift operator for spike-trains is used to

time-shift all the spikes in a spike-train. Thus, σt(~x) = 〈x1−t, x2−t, . . . , xk−t, . . .〉. The

time-shift operator for spike-train ensembles is defined as σt(χ) = 〈σt(~x1), . . . , σt(~xm)〉.

[2]Formally, the bounds are with respect to the partial ordering induced by set inclusion.
[3]We assume a single fixed absolute refractory period for all neurons, for convenience,

although our results would be no different if different neurons had different absolute re-

fractory periods.
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The truncation operator for spike-trains is used to “cut out” specific segments of a spike-

train. It is defined as follows: Ξ[a,b](~x) is the time-bounded spike-train with bound [a, b] that

is identical to ~x in the interval [a, b]. Ξ(a,b)(~x), Ξ(a,b](~x) and Ξ[a,b)(~x) are defined likewise.

In the same vein, Ξ[a,∞)(~x) is the spike-train that is identical to ~x in the interval [a,∞)

and has no spikes in the interval (−∞, a). Similarly, Ξ(−∞,b](~x) is the spike-train that is

identical to ~x in the interval (−∞, b] and has no spikes in the interval (b,∞). Ξ(a,∞)(~x)

and Ξ(−∞,b)(~x) are also defined similarly. The truncation operator for spike-train ensem-

bles is defined as Ξ[a,b](χ) = 〈Ξ[a,b](~x1), . . . ,Ξ[a,b](~xm)〉. Ξ(a,b)(χ), Ξ(a,b](χ), Ξ[a,b)(χ),

Ξ[a,∞)(χ), Ξ(−∞,b](χ), Ξ(a,∞)(χ) and Ξ(−∞,b)(χ) are defined likewise. Furthermore,

Ξt(·) is shorthand for Ξ[t,t](·). The projection operator for spike-train ensembles is used to

“pull-out” a specific spike-train from a spike-train ensemble. It is defined as Πi(χ) = ~xi,

where 1 ≤ i ≤ m. Let ~y1, ~y2, . . . , ~yn be spike-trains. The join operator for spike-trains is

used to “bundle-up” a set of spike-trains to obtain a spike-train ensemble. It is defined as

~y1 ⊔ ~y2 ⊔ . . . ⊔ ~yn =
n⊔

i=1

~yi = 〈~y1, ~y2, . . . , ~yn〉.

The neuron model used is a deterministic spiking neuron model. One example would be

the abstract model used in [1], although a more restrictive model with more axioms would

also allow for the notions defined in this paper.

Next, we have the notion of a Flush Criterion that appears as Definition 5 in [1].

Definition (Flush Criterion) A spike-train ensemble χ is said to satisfy a T -Flush Crite-

rion, if all its spikes lie in the interval (0, T ), i.e. it has no spikes upto time instant T and

since time instant 0.

Let the set of spike-train ensembles of order m that satisfy the T-Flush criterion be FT
m. Let

Fm =
⋃

T∈R+ FT
m.

Each feedforward network induces[4] a transformation of the form T : Fm → S , where S

is the space of all spike trains.

Next, we define the relation more complex than. For brevity, the definition below combines

Definition 6 and Lemma 5 in [1] in order to define this relation equivalently in terms of

spike-train ensembles satisfying the Flush Criterion.

Definition (Transformational Complexity) Let Σ1 and Σ2 be two sets of feedforward

networks, each network being of order m, with Σ1 ⊆ Σ2. The set Σ2 is said to be more

complex than Σ1, if there exists an N ′ ∈ Σ2 such that for all N ∈ Σ1, TN ′ 6= TN .

Each result of the above form is called a complexity result.

It is important to emphasize that we have skipped a great deal of other notation, notions,

lemmas and theorems in [1] that are not central to the treatment here.

[4]In fact, each feedforward network induces a transformation even in the case when input

to it is a stream of spikes from a biologically-relevant spiking regime (not preceded by

quiescence). The theory towards this is developed in [1]. It turns out (as exposited in [1]

that one can work with Fm without loss of generality in so far as establishing complexity

results is concerned.
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Fm

CΣ1CΣ2

Figure 2 A schematic Venn Diagram showing complexity classes when one set of networks is
more complex than another. If Σ2 is more complex than Σ1 , it is equivalent to say that CΣ1

is a
proper subset of CΣ2

.

3 Complexity Classes, Transformation Hierarchies and
Hierarchy Classes

Let Fm be the space of all possible transformations of the form T : Fm → S that map spike

spike-train ensembles of order m which satisfy the Flush criterion to output spike trains.

Each acyclic network of order m induces one such transformation. A set of networks of

order m therefore induces a class of such transformations, which we call the complexity

class of that set.

Definition 1 (Complexity Class) Let Σ be a set of acyclic networks of order m. The

complexity class of Σ, CΣ, is defined to be the set
⋃

N∈Σ TN .

As is clear from Lemma 6 in [1], no complexity class spans the entire space Fm. Lemma

5 from [1] implies that questions of relative complexity of sets of networks can be posed in

terms of questions about containment of their complexity classes. Figure 2 illustrates the

situation and the next proposition formalizes it.

Lemma 1 Let Σ1 and Σ2 be two sets of acyclic networks, each network being of order

m, with Σ1 ⊆ Σ2. Further, let CΣ1
and CΣ2

be the corresponding complexity classes. Then,

Σ2 is more complex than Σ1 if and only if CΣ1
⊂ CΣ2

.
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Proof First, suppose Σ2 is more complex than Σ1. That CΣ1
⊆ CΣ2

follows immediately

from the fact that Σ1 ⊆ Σ2. Lemma 5 from [1] implies that ∃N ′ ∈ Σ2 such that ∀N ∈

Σ1, TN ′ 6= TN . That is, TN ′ ∈ CΣ2
and TN ′ /∈ CΣ1

. Since CΣ1
⊆ CΣ2

, it follows that

CΣ1
⊂ CΣ2

.

To prove the other direction, assume CΣ1
⊂ CΣ2

. Therefore, ∃ T : Fm → S such that

T ∈ CΣ2
and T /∈ CΣ1

. By definition of CΣ2
, ∃N ∈ Σ2, so that TN = T . Since T /∈ CΣ1

,

the definition of CΣ1
implies that ∀N ′ ∈ Σ1, TN ′ 6= T . Therefore, Σ2 is more complex

than Σ1.

Next, we make precise the notion of a Transformation Hierarchy. Informally, a Transfor-

mation Hierarchy is a sequence of subsets of this space, with each subset contained in the

subsequent one in the sequence.

Definition 2 (Transformation Hierarchy) A Transformation Hierarchy H in Fm is a

sequence of subsets 〈H1, H2, . . . , Hi, . . . ,Fm〉 of Fm with Hi ⊂ Hi+1, ∀i = 1, 2, . . ..

Note that the above definition exists independent of the existence of networks. That is,

a hierarchy is defined only in terms of properties of transformations in its constituent sets.

Figure 3 provides an illustration. The next definition provides a connection between sets

of acyclic networks and hierarchies. Each set of acyclic networks Σ is associated with a

specific set in the hierarchy called its hierarchy class, so that the hierarchy class is the

smallest set in the hierarchy that contains the complexity class of Σ.

Definition 3 (Hierarchy Class) Let Σ be a set of acyclic networks, each of order m, and

let H = 〈H1, H2, . . . , Hi, . . . ,Fm〉 be a transformation hierarchy in Fm. The Hierarchy

Class HΣ of Σ in H is the set Hi with CΣ ⊆ Hi and CΣ 6⊆ Hi−1, if such an Hi exists and

Fm otherwise.

Note that the Hierarchy class of a set of networks is well-defined. This is because CΣ ⊂

Fm, so there is atleast one set in the hierarchy that contains every complexity class. Also,

the sets in the hierarchy are well-ordered[5]due to which every collection of sets from the

hierarchy (which contain CΣ) has a smallest set.

The above definitions allow us to create a variety of hierarchies based on specific proper-

ties of transformations. If we can then say something about the hierarchy classes of specific

architectures in each hierarchy, it enables us to get a better understanding of various aspects

of the transformations effected by networks with this architecture.

Even if we cannot identify the hierarchy class of a given architecture in a hierarchy,

proving bounds[6] on them might give us some insight. Also, as alluded to before, these

bounds can be used to establish that one set of networks is more complex than another.

A set in a hierarchy is an upper bound on a hierarchy class if it contains the hierarchy

class as a subset. Likewise, a set in a hierarchy is a lower bound on a hierarchy class if the

hierarchy class contains the set as a subset.

[5]The ordering is by set inclusion.
[6]Again, formally, the bounds are with respect to the partial ordering induced by set inclu-

sion.
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Fm

H1

H2

H3

H4

H5

Figure 3 A schematic Venn Diagram illustrating a transformation hierarchy, which is a nested
sequence of subsets of the space of transformations.

Bounds on hierarchy classes of specific sets of networks can be used to establish com-

plexity results. If there are two sets of networks, the first contained in the second and if

an upper bound on the hierarchy class of the first set is “smaller” than a lower bound on

the hierarchy class of the second (with respect to the same hierarchy), then the second set

is more complex than the first. Figure 4 gives a picture. Note that this is just a sufficient

condition, not a necessary one, for one set to be more complex than the other[7]. The next

lemma formalizes the above observations.

Lemma 2 Let Σ1 and Σ2 be two sets of acyclic networks, each comprising networks of

order m, with Σ1 ⊆ Σ2. Furthermore, let HΣ1
and HΣ2

be the corresponding hierarchy

classes in a transformation hierarchy H = 〈H1, H2, . . . , Hi, . . . ,Fm〉 in Fm. Moreover, let

Hu be an upper bound on HΣ1
and Hl be a lower bound on HΣ2

. If Hu ⊂ Hl, then Σ2 is

more complex than Σ1.

Proof Let CΣ1
and CΣ2

be the complexity classes of Σ1 and Σ2 respectively. By hypothesis,

CΣ1
⊆ Hu and Hl ⊆ CΣ2

. Since, Hu ⊂ Hl, we have CΣ1
⊂ CΣ2

. From Lemma 1, it now

follows that Σ2 is more complex than Σ1.

[7]That is, depending on the hierarchy in question, it is possible that both sets have the same

hierarchy class, yet one is more complex than the other.
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Fm

H1

H2

H3

H4

H5

CΣ2

CΣ1

H3 is a lower bound on HΣ2

H2 is an upper bound on HΣ1

Figure 4 A schematic Venn Diagram demonstrating how upper bounds and lower bounds on
hierarchy classes in a transformation hierarchy can be used to establish complexity results. In this
case, the fact that an upper bound on HΣ1

is a proper subset of a lower bound on HΣ2

immediately implies that Σ2 is more complex than Σ1, as is proved in Lemma 2.

Indeed, this suggests an economical way to prove complexity results, since the upper

bounds and lower bounds could apply to several sets of networks.

In the next section, we apply these notions to explicitly construct a transformation hier-

archy and prove some lower bounds for some architectures according to the hierarchy.

4 Lower Bounds on the Hierarchy Classes of some
Architectures in a certain Transformation Hierarchy

In this section, we construct specific sequences of subsets of Fm and show that they con-

stitute a transformation hierarchy. Next, we establish some lower bounds on the hierarchy

classes of some architectures in this hierarchy. To prove that a certain set in a hierarchy is a

lower bound on a hierarchy class, it suffices to show a transformation that is not in the set,

yet is in the complexity class in question.

We start off by defining a class of transformations parameterized by a positive integer.

For the sake of exposition, we will start by defining a First-order Transformation which

we will then generalize to a kth-order Transformation. We will then show that for all j ≥ i

every ith order transformation is also a jth order transformation.

Intuitively, a first-order transformation has the flavor of an SRM0 neuron model [30], in

that each synapse has a “kernel” function such that effects of inputs spikes according to this

kernel are summed over all input spikes across all synapses. The transformation prescribes

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/559260doi: bioRxiv preprint 

https://doi.org/10.1101/559260


Ramaswamy Page 10 of 14

N12

NO

Figure 5 Diagram depicting architecture of networks in Σ2.

an output spike if and only if this sum equals a certain “threshold”, which is a positive

number.

Definition 4 (First-order Transformation) A transformation T : Fm → S is said to be

a First-order Transformation if there exists a τ ∈ R
+ and functions fj : R → R, for

1 ≤ j ≤ m, so that for every χ ∈ Fm and t ∈ R, we have ΞtT (χ) = 〈t〉 if and only if we

have
m

Σ
j=1

lj

Σ
i=1

fj(x
i
j) = τ , where Ξ[0,∞)σt(χ) = 〈~x1, . . . , ~xm〉 with ~xj = 〈x1

j , x
2
j , . . . x

lj
j 〉,

for 1 ≤ j ≤ m.

Informally, a kth-order transformation is a generalization of a first-order transformation

with higher-dimensional kernel functions. Thus, a second-order transformation, for exam-

ple, has functions that take every pair of spikes and add up their “effects”, in addition to

“first-order” effects.

Definition 5 (kth-order Transformation) A transformation T : Fm → S is said to be a

kth-order Transformation if there exists a τ ∈ R
+ and functions fj1 : R → R, fj1j2 :

R
2 → R, . . . , fj1j2...jk : Rk → R, with 1 ≤ jp ≤ m, where 1 ≤ p ≤ k, so that for every

χ ∈ Fm and t ∈ R, we have ΞtT (χ) = 〈t〉 if and only if we have
m

Σ
j1=1

lj

Σ
i1=1

fj1(x
i
j) +

m

Σ
j1=1

m

Σ
j2=1

lj

Σ
i1=1

lj

Σ
i2=1

fj1j2(x
i1
j1
, xi2

j2
)+. . .+

m

Σ
j1=1

. . .
m

Σ
jk=1

lj

Σ
i1=1

. . .
lj

Σ
ik=1

fj1...jk(x
i1
j1
, . . . , xik

jk
) =

τ , where Ξ[0,∞)σt(χ) = 〈~x1, . . . , ~xm〉 with ~xj = 〈x1
j , x

2
j , . . . x

lj
j 〉, for 1 ≤ j ≤ m.

For all j ≥ i, every ith-order transformation is also a jth-order transformation. This

can be seen by setting the value of all the functions whose domain has dimensionality

greater than i to be zero everywhere. Therefore, for all j ≥ i, the set of all ith-order

transformations is a subset of the set of all jth-order transformations. This naturally induces

a transformation hierarchy in Fm

Proposition 1 For k ∈ Z
+, let Ok

m ⊆ Fm be the set of all kth-order transformations of

the form T : Fm → S . Then, Om = 〈O1
m,O2

m, . . . ,Fm〉 is a transformation hierarchy in

Fm.

For certain acyclic network architectures, we now establish some lower bounds on their

hierarchy classes in the above-mentioned transformation hierarchy.
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Theorem 1 Let Σ2 be the set the set of all networks with the architecture of the network

in Figure 5. Then O1
2 is a lower bound on the hierarchy class of Σ2 in O2.

Proof We prove that O1
2 is a lower bound on the hierarchy class of Σ2 in O2 by showing a

transformation that a network in Σ2 can effect, but which lies outside O1
2 .

For the sake of brevity, we describe the salient responses of the neurons from which it is

straightforward to construct an SRM0 model for them. For the sake of contradiction assume

that the transformation effected by the network is a first-order transformation. In Figure 5,

neuron N12 is an inhibitory neuron and the neuron N0 is an excitatory neuron. Both the

input spike trains provide excitatory input to both neurons. We assume, for the sake of

contradiction, that the potential of the output neuron N0 can be written down as a first-

order transformations. The argument is made on two input spikes that occurred t1 and t2

seconds ago in the first and second input spike train respectively.Consider the values of the

functions f1(t1) and f2(t2), where f1(·) and f2(·) are component functions of the putative

first-order function in the transformation. The neuron N0 is set up so that it produces a

spike now, if a spike happens either at t1 alone or t2 alone. Since the transformation is first-

order, this gives us two equations f1(t1) = τ and f2(t2) = τ . When there is a spike both

at positions t1 and t2, N0 would reach threshold earlier. However, the occurrence of both

these spikes causes N12 to spike. This, in turn, causes an inhibitory effect on the membrane

potential of N0, which compensates for the extra excitation, so that it spikes exactly once,

now. We therefore have the equation f1(t1)+f2(t2) = τ . These three equations (in the two

variables f1(t1) and f2(t2)) form an inconsistent system of linear equations, and therefore

f1(t1) and f2(t2) do not exist, contradicting our hypothesis. Therefore the transformation

induced by the current network is not a first-order transformation. Thus, O1
2 is a lower

bound on the hierarchy class of Σ2 in O2.

Next, we apply a similar strategy to derive a lower bound on the hierarchy class of another

network architecture. It will then be clear how one can generalize the present technique.

Theorem 2 Let Σ3 be the set the set of all networks with the architecture of the network

in Figure 6. Then O2
3 is a lower bound on the hierarchy class of Σ3 in O3.

Proof As before, we prove this by showing a transformation that a network in Σ3 can ef-

fect, but which lies outside O2
3 . The argument is made on three spike positions t1, t2 and t3

in the past, and the values of the functions f1(t1), f2(t2), f3(t3), f12(t1, t2), f23(t2, t3) and

f31(t3, t1), which are component functions of the putative second-order transformation.

Again, N0 is set up so it spikes on each of the three individual spikes occurring alone. This

gives us the equations f1(t1) = τ , f2(t2) = τ and f3(t3) = τ . N12 works exactly as in the

previous example, and so do N23 and N31, so as to make the output neuron spike whenever

every pair of spikes occur. This gives us the equations f1(t1) + f2(t2) + f12(t1, t2) = τ ,

f2(t2) + f3(t3) + f23(t2, t3) = τ and f3(t3) + f1(t1) + f31(t3, t1) = τ . Now, when

spikes occur simultaneously at all three times, the inhibition provided by N12, N23 and

N23 causes the membrane potential of N0 to always stay below threshold. The neuron

N123 now provides enough excitation to N0, in order to make it spike now. This gives

us the equationf1(t1) + f2(t2) + f3(t3) + f12(t1, t2) + f23(t2, t3) + f31(t3, t1) = τ . It

is straightforward to verify that this system of 7 equations in 6 variables is inconsistent.

Therefore, O2
3 is a lower bound on the hierarchy class of Σ3 in O3.
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NO

N12
N13 N123 N23

Figure 6 Diagram depicting architecture of networks in Σ3.

It is straightforward to obtain similar results for higher-order transformations with this

broad technique.

5 Discussion
This work is part of an ongoing research program to build first-principles theory for Con-

nectomics. The idea is to have a theoretical understanding of how structure of neuronal

networks constrains spike-timed computations performed by them. This could be useful in

generating hypotheses about mechanistic computation in networks when one has connec-

tomic information. Indeed, the field of (microscale) Connectomics is scaling up in its abil-

ity to produce increasingly large datasets in diverse organisms and such theory is needed in

the context of such data. More fundamentally, the theory will also enable us to understand

what structural properties of a network are crucial in enabling it to effect particular classes

of spike-timed computations. This has potential application in Comparative Connectomics,

an emerging sub-field, where the goal is to compare connectomes either of different indi-

viduals of the same species or across individuals of different species in order to determine

which structural aspects of connectivity are preserved or altered.

Here, our focus has been on studying the space of spike-train to spike-train transfor-

mations. We define notions that allow us to carve up this space into nested sequences of

subsets and ask if we can encapsulate the subset of transformations spanned by specific

network architectures within sets in this hierarchy. Even if we cannot determine the exact

hierarchy classes, establishing bounds on them would be progress. Indeed, we explicitly

establish a class of such hierarchies and establish lower bounds corresponding to certain

classes of network architectures with respect to said hierarchies.

There are at least two reasons for relating complexity classes to transformation hierar-

chies. First, complexity classes themselves seem to be hard to characterize succinctly in

terms of properties of transformations they contain. Instead, we try to understand complex-

ity classes of network architectures relative to these sets in the hierarchy which are easier

to characterize using mathematical properties of transformations. The second reason for
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this approach is that it provides us another – and a possibly more wholesale – way to prove

complexity results via bounds on the corresponding hierarchy classes.
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