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ABSTRACT

The conformational space of the ribose–phosphate backbone
is very complex as is defined in terms of six torsional
angles. To help delimit the RNA backbone conformational
preferences 46 rotamers have been defined in terms of the
these torsional angles. In the present work, we use the
ribose experimental and theoretical 13C′ chemical shifts data
and machine learning methods to classify RNA backbone
conformations into rotamers and families of rotamers. We
show to what extent the use of experimental 13C′ chemical
shifts can be used to identify rotamers and discuss some
problem with the theoretical computations of 13C′ chemical
shifts.

INTRODUCTION

Nucleic acids are central macromolecules for the storing,
flow and regulation of genetic and epigenetic information
in cellular organisms. RNA can adopt a wide variety of 3D
structural conformations and this structural variability
explains the multiplicity of roles that RNA performs
on cells (1, 2). The classification of RNA backbone
conformations into rotamers is a very useful way to
delimit the conformational space of RNA structures.
Rotamers are defined in terms of the backbone torsional
angles namely α, β, γ, δ, ε, ζ (as shown in Figure 1).
This classification was proposed by Richardson et al 2008
(3), and has been achieved after the attempts of different
research groups to find a consensus RNA backbone
structural classification. There are 55 backbone rotamers,
from which 46 are rotamers with well defined torsional
angles distributions, and the remaining 9 rotamers were
proposed as wannabe rotamers. The ‘suite’ is the basic
subunit used for rotamer classification. The suite is
defined from sugar-to-sugar (or from the δ torsional angle
of residue i-1 to the δ torsional angle of residue i), and it
is contained within the dinucleotide subunit (see Figure
1).
13C′ chemical shifts have been successfully used by
our and other groups for protein and glycan structural
determination, validation and refinement (4, 5, 6, 7, 8).
In this work, we study how to use 13C′ chemical shifts to
classify RNA backbone into rotamers.

Figure 1. RNA dinucleotide. C, H, O, N and P nuclei are colored
in green, white, red, blue and orange, respectively. Torsional angles
of RNA backbone are named on Greek characters (α, β, γ, δ, ε, ζ).
Suite (from δi−1 to δi), dinucleotide and nucleotide subunits are
indicated.

MATERIALS AND METHODS

A dataset of RNA backbone rotamers with 13C′

chemical shifts values is necessary to train the machine
learning models to classify RNA experimental suites into
rotamers. In the following two section we explain how we
obtained two datasets.

Experimental dataset

Experimental 13C′ chemical shift data for RNA
molecules was retrieved from the BioMagResBank
(BMRB; www.bmrb.wisc.edu)(9), along with their
corresponding structures from the Protein Data Bank
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(PDB; https://www.rcsb.org/) (10). As it is fundamental
to count on reliable experimental 13C′ chemical shifts
values for an accurate structural analysis, data curation
was carried out using 13Check RNA (11) a python
module to correct RNA 13C′ chemical shifts systematic
errors, recently developed in our group. The obtained
dataset (see Supplementary Table S1) contains 26 RNA
structures with 13C′ chemical shifts for the five ribose
carbon nuclei (C1′, C2′, C3′, C4′ and C5′), providing
a total of 391 suite subunits. Given that we needed a
one-to-one correspondence between the sets of chemical
shifts and the rotamer suites, only the first structure
from each NMR ensemble was used, considering that the
first model listed in the PDB files is usually reported as
the structure with the lowest energy scoring. For every
PDB entry, the 3D coordinates of the first model were
extracted in order to compute the backbone torsional
angles (δi−1, εi−1, ζi−1, αi, βi, γi, δi) of the suites.
Then, these torsional angles were used to assign the RNA
suites to their corresponding rotamer names. From the
46 original rotamers, only 38 are represented in the final
experimental dataset.

Theoretical dataset

In order to have a complete dataset with the 46 RNA
backbone rotamers and their corresponding 13C′ chemical
shifts, a theoretical dataset was also constructed. A
template for each of the 16 possible combinations of
dinucleotide (A, C, U and G) sequences was obtained
from RNA structures found in the PDB. A Monte-Carlo
conformational sampling was carried out by rotating
the backbone torsional angles of the corresponding suite
contained in each dinucleotide, given the torsional angle
distributions for each of the 46 RNA backbone rotamer
suites (3) (the 9 wannabe rotamers were excluded from
this analysis) while keeping the bond-lengths and bond-
angles fixed (rigid geometry approximation). As a result,
10,340,852 conformations were generated. Quantum-
theory level computation of chemical shifts is very
time-consuming. Therefore, to reduce the number of
calculations, a smaller number of conformations was
selected. Aiming to keep most of the variability of the
originally generated conformations, we computed the
Shannon entropy (S) (see Equation 1) of the distribution
of torsional angles. The entropy was computed for
different subsets of conformations and sample sizes (from
5 to 100) (see Figure 2). We decided to use the 80% of the
maximum entropy as a cutoff, which implies around 40
conformations per rotamer. As we also considered the 16
combinations of dinucleotide sequences, the total number
of conformations computed at the DFT level of theory
was 30,530.

S=−
∑
i

PilnPi (1)

Details of the quantum-chemical calculations of the 13C′

shieldings

To perform the DFT calculations, the obtained
dinucleotide conformations were split in their
corresponding mononucleotide subunits. A test
showed that when mononucleotides were used
instead of dinucleotides, the result was exactly the
same within 10−2ppm and the total computation
time was approximately half the total time for
computing the complete dinucleotides. Nucleotide
subunits were treated as terminally-blocked
mononucleotides with methyl groups (Me) in both
termini (Me−O3′i−1−X−O5′i+1−Me). Phosphate
groups of the backbone were treated as neutral, because
we assume that all backbone charges are shielded during
the quantum-chemical calculations. This approach was
adopted because under physiological conditions, the
phosphate groups are completely ionized and neutralized
by positive charges (13). A 6–311+G(2d,p) locally dense
basis set (14) was used for calculation of backbone 13C′

chemical shifts and their nearest neighbour nuclei, at the
DFT level of approximation (see Figure 3 for details).
The remaining nuclei were treated with a 3-21G basis
set. The OB98 density functional was used because good
results were previously observed for proteins and glycans
in our group (15, 16). All DFT computations were done
using the Gaussian package (12).

Figure 2. Percentage of entropy of the sample against sample size for
a given dinucleotide sequence and rotamer, UU and 1a, respectively,
in this case.
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Figure 3. Example of a methyl blocked mononucleotide used for
DFT calculations. The locally-dense basis-set approach is indicated
by the different colors: the nuclei in red were treated with the
extended 6-311+G(2d,p) basis set and the nuclei in green were
treated with the smaller 3-21G basis set.

Families of rotamers

The original 46 RNA backbone rotamers were grouped in
families based on their δi−1, δi, α and γ torsional angles
values. Only these 4 (out of 7) backbone torsional angles
in the suite subunit were chosen to group the rotamers
because their distributions of observed values are bimodal
(δi−1 and δi) and trimodal (γ and α), with clearly
separated peaks (see Figure 4), which allowed us to group
rotamers based on the torsional angle values within the
different peaks. As summarized in Table 1, 4 families were
found when both δi−1 and δi torsional angles in the suite
were used, 7 families for the αγ combination, 10 families
for δi−1δiα, and δi−1δiγ, and 22 families for δi−1δiαγ.
In order to evaluate the classification performance of the
RNA A–form helix conformations, the rotamers were also
grouped as: (i) A noA families, where the 46 rotamers
were separated in A–form helix (1a) vs. no A–form
helix rotamers, and (ii) A* noA* families, where the 46
rotamers were separated in rotamers related to A–form
helix (1a, 3d, 3b, 5d, 0a, 6b and 4b rotamers) vs. the
remaining rotamers.

Classification

A series of machine learning methods were used to
classify RNA suites as rotamers (or families of rotamers)
based on their ribose 13C′ chemical shifts values. The
following classification methods from the scikit-learn
Python library (17) were trained: K-Nearest Neighbors
(NN), Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM) and a class of neural network
called Multi-Layer Perceptron (MLP). Different model
parameters were tried out (see Supplementary Table S3).

A random sampling algorithm was also used as a control,
where suites were classified randomly. The sequence of
the suite was considered for classification, because we
found that the performance increased compared to a
sequence–independent classification (see Supplementary
Figure S1).

The classification performance was assessed with two
measures: weighted accuracy and F1 score (21). The
weighted accuracy was used in order to recalibrate
the contribution of the different rotamers, because the
observed frequency of the rotamers is highly uneven (e.g.
the A–form helix rotamer 1a has an observed frequency
of ∼0.75).The weights used in the weighted accuracy
were obtained from a substitution matrix (ROSUM, for
ROtamers SUbstitution Matrix). The definition of the
ROSUM matrix was inspired by the BLOSUM matrix
used for protein sequence alignment (18). The matrix
is used to weight the match or no match, between the
true rotamer and the predicted rotamer, as a function
of the euclidean distance between rotamers (in the
seven-dimensional space of the suite backbone torsional
angles) and the observed frequency of each rotamer. The
torsional angles values and the observed frequencies are
extracted from the rotamers table (3). A ROSUM matrix
was obtained for each of the rotamer families described
in the previous section (see Supplementary Data Section
2). The f1–score was also used as a performance measure
because it is the harmonic mean of precision and recall
(https://en.wikipedia.org/wiki/F1 score3) and as such,
it gives ”a more realistic measure of the classifier’s
performance” (https://www.quora.com/Whats-the-
advantage-of-using-the-F1-score-when-evaluating-
classification-performance).

Experimental vs theoretical The classification models
trained with theoretical data were used to classify
the experimental suites. The result of the theoretical
calculations (described in a previous section) are
theoretical NMR isotropic shieldings (σ). The theoretical
shieldings (σcomp) must be subtracted from a reference
shielding value (σref ) to be transformed into theoretical
chemical shifts (δcomp) (see Equation 2) which can
then be compared with the experimental chemical shifts
(δexp). A simple reference value of σref =185.00 ppm
was used, which is very close to the theoretical isotropic
shielding for TMS (σTMS,th) (15), and it is consistent
with the reference value previously defined for proteins
and glycans.

Alternatively, a set of effective references were obtained
as a function of: (i) the nitrogenous base sequence, (ii)
the combinations of ribose puckering states in the four
families of rotamers obtained from δi−1δi torsional angles
distributions, (iii) the five carbon nuclei 13C′ CS mean
values and (iv) a linear regression between theoretical
and experimental ribose 13C′ CS values for a set of suites
(see Supplementary Table S2).

δcomp=σref−σcomp (2)
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Table 1. Families of rotamers

46 22 families 10 families 10 families 7 families 4 families 2 families 2 families
rotamers δi−1δiαγ δi−1δiα δi−1δiγ αγ δi−1δi A noAi A* noA*ii

&a e a a e a b b
#a q c c e c b b
0a q c c e c b a
0b t d d e d b b
0i o g g b c b b
1[ l b b e b b b
1a e a a e a a a
1b l b b e b b b
1c d e e d a b b
1e f e e f a b b
1f d e e d a b b
1g c a a c a b b
1L e a a e a b b
1m e a a e a b b
1o m i i g b b b
1t k f f d b b b
1z j b b c b b b
2[ t d d e d b b
2a q c c e c b b
2h r g g f c b b
2o v j j g d b b
3a e a a e a b b
3b l b b e b b a
3d a a a a a b a
4a q c c e c b b
4b t d d e d b a
4d n c c a c b b
4g p c c c c b b
4n o g g b c b b
4p s d d a d b b
4s u h h f d b b
5d a a a a a b a
5j b e e b a b b
5q h f f b b b b
5z j b b c b b b
6d n c c a c b a
6g p c c c c b b
6j o g g b c b b
6n o g g b c b b
6p s d d a d b b
7a e a a e a b b
7d a a a a a b b
7p g b b a b b b
7r i i i c b b b
8d n c c a c b b
9a e a a e a b b

The 46 RNA backbone rotamers were arranged in 22, 10, 10, 7 and 4 families of rotamers based on the observed

distributions of δi−1δiαγ, δi−1δiα, δi−1δiγ, αγ and δi−1δi torsional angles values, respectively. Additionally, the

46 rotamers were separated in RNA A–form helix vs. no A–form helix rotamers in two ways: (i) RNA A-form

helix rotamer 1a vs. the remaining no A–form helix rotamers (A noA families) and (ii) rotamers related to A–form

helix (i.e. 1a, 3d, 3b, 5d, 0a, 6b, 4b) vs. the remaining rotamers (A* noA* families).

Theoretical vs theoretical The classification models
trained with theoretical data were also used to classify the
theoretical suites. In this case, classification was assessed
through a leave-one-out cross-validation (LOO-CV). In
LOO-CV, the dataset is split into a test set and training
set in a one-folded manner, which means that at every
iteration a unique suite is taken apart from the dataset
and the remaining suites are used for training. This
process continues until every suite from the theoretical
dataset is evaluated.

Experimental vs experimental A LOO-CV was also used
to classify the experimental suites.

RESULTS AND DISCUSSION

For experimental vs theoretical classification (Figure
5a), the 46 rotamers can be classified by means of
backbone 13C′ chemical shifts with a maximal F1 score
of 0.34 (see Supplementary Table S5). When the 46
rotamers are grouped in families based on their torsional
angles distributions, the highest scores correspond to the
use of δ(i−1) and δ(i) torsional angles, where all the
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Figure 4. RNA backbone torsional angles distributions. Reproduced
with authors permission from Laura Weston Murray (2007) ”RNA
Backbone Rotamers and Chiropraxis” Doctoral Dissertation; Dept.
of Biochemistry; Duke University, 169 pages. Chaper 2, figure 6.

classifiers gave maximal scores above 0.65. This result is
in agreement with the fact that backbone 13C′ chemical
shifts are highly sensitive to ribose puckering states
(19), since the δ torsional angle keeps a direct relation
with the ribose puckering (20). The δi−1δiγ, δi−1δiα,
δi−1δiαγ and αγ families also show improved scores over
the classification of the 46 rotamers. The A* noA* and
A noA families show low classification scores relative to
their random choice classification score, which means
that backbone 13C′ chemical shifts cannot distinguish
between A–form helix and no A–form helix rotamers.
In general the use of more complex classifier models
such as Neural Networks, Support Vector Machine,
Decision Tree and Random Forest does not assure a
better performance for the current task, thus the simpler
Nearest Neighbor model can be chosen for classification
into RNA rotamers. In both the theoretical dataset LOO-
CV and the experimental dataset LOO-CV (see Figure
5b and 5c, respectively), the performance increase for
every group of families, compared to the experimental
vs theoretical classification. In the theoretical dataset
LOO-CV the performance values are very close to 1.0
for δi−1δi families and A–form helix/no A–form helix
rotamers (A noA). In the theoretical dataset LOO-CV,
the performance value ranges are particularly narrow,
except for MLP and SVM classifiers.

The high scores obtained for the theoretical vs
theoretical classification indicates that 13C′ chemical
shifts are in fact very sensitive to changes of the torsional
angles, the only variable we changed for the construction
of the theoretical dataset. At the same time the lower
performance obtained in the experimental vs theoretical
classification, is signalling that the atomistic model
used for the DFT computations is not good enough to
reproduce the experimental observations.

One reason the theoretical vs theoretical classification
gives better results compared to the experimental
vs experimental classification could be that the
experimental database is very sparse and the theoretical
dataset is instead dense, or in other words the coverage

of the theoretical dataset is much more better than
the experimental one. To explore if this is in fact
a reasonable explanation we remove elements from
the theoretical dataset to mimic the sparsity of the
experimental dataset. We found that while the accuracy
decreased (on average 0.09 points) this is not enough
to explain the lower performance of the experimental vs
theoretical or experimental vs experimental classification.
Reinforcing the idea discussed in the previous paragraph,
i.e we need a better model for the theoretical DFT
computations. This experiment also provides indirect
evidence indicating that the accuracy of the experimental
vs experimental classification will be improved as
more RNA conformations are deposited in databases
giving another incentive to determine and deposit RNA
structures and 13C′ chemical shifts data.

CONCLUSION

We explored, the use of RNA backbone 13C′ chemical
shifts to classify backbone conformations into rotamers
and families of rotamers. In general our study led us
to the following conclusions: (1) The classification of
the rotamer families defined by the δ torsional angles,
which are directly related to the ribose puckering states,
gives the best performance; in line with result previously
described by other authors; (2) Classification of A-form
helix and no A-form helix rotamers using 13C′ chemical
shifts is not better than a random classification; (3) The
accuracy achieved using the simple nearest-neighbour
method is on par with more complex classifiers such
as Neural Networks, Support Vector Machine, Decision
Tree and Random Forest; (4) 13C′ chemical shifts values
are able to sense change in torsional angles, but they
are also affected by other factors, thus future DFT
computations of RNA 13C′ chemical shifts should use
more complex models than the one used in this work;
(5) Experimental 13C′ chemical shifts can be useful to
identify RNA rotamers, if the rotamers are re-grouped in
smaller families as the 46 rotamers seems to be too fine
description for accurate discrimination in terms of 13C′

chemical shifts; (6) the usefulness of 13C′ chemical shifts
for rotamers identification should improve as more RNA
structures and experimental 13C′ chemical shifts becomes
available.
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Figure 5. Value ranges of weighted accuracy and F1 score for the classification of rotamers and families of rotamers, using Nearest Neighbour
(NN), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers. A random-
choice (RAND) algorithm was used as a baseline reference. In a), the classification models were generated from theoretical data and were
used to classify the experimental data. The results from theoretical dataset LOO-CV and experimental dataset LOO-CV are shown in b)
and c), respectively. The highest values of weighted accuracy and F1 score, for the classification results shown in a), along with parameters
of the classifiers are provided in Supplementary Tables S4 and S5.
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