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Abstract

Various diffusion MRI measures have been proposed for characterising tissue microstructure over the last 15 years.

Despite the growing number of experiments using different diffusion measures in assessments of white matter, there

has been limited work on: 1) examining their covariance along specific pathways; and on 2) combining these different

measures to study tissue microstructure. In this work, we first demonstrate redundancies in the amount of information

captured by 10 diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) measures.

Using a data-reduction approach, we identified two biologically-interpretable components that capture 80% of the

variance in commonly-used DTI and HARDI measures profiled along 22 brain pathways extracted from typically

developing children aged 8 - 18 years (n = 36). The first derived component captures properties related to hindrance

and restriction in tissue microstructure, while the second component reflects characteristics related to tissue complexity

and orientational dispersion. We demonstrate that the components generated by this approach preserve the biological

relevance of the original measurements by showing age-related effects across developmentally sensitive pathways. Our

results also suggest that HARDI measures are more sensitive at detecting age-related changes in tissue microstructure

than DTI measures.
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1. Introduction

The human brain is composed of multiple white matter fibres connecting grey matter areas dedicated to pro-

cesses such as memory, cognition, language, or consciousness. Diffusion MRI (dMRI) (Basser et al., 1994, 2000;

Basser and Jones, 2002; LeBihan et al., 2001) has become the prefered tool to probe the brain’s tissue microstructure

non-invasively. Measures derived from diffusion tensor imaging (DTI) (Basser et al., 1994) can be obtained at each5

imaging voxel, including fractional anisotropy (FA) which reflects the degree of diffusion anisotropy (Pierpaoli and

Basser, 1996), and mean diffusivity (MD), an indicator of the overall magnitude of diffusion. Based on local estimates

of underlying trajectories at every voxel, dMRI is also capable of virtually reconstructing the structural architecture
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of the brain white matter pathways using tractography (Conturo et al., 1999; Mori and Van Zijl, 2002). The conven-

tional approach to merge the quantitative nature of diffusion measures with the qualitative nature of tractography is10

to collapse voxel-based measures into a single scalar value per bundle (e.g., by averaging values over all vertices of

a streamline; Jones et al. (2006); Kanaan et al. (2006); Jones et al. (2005a)). Individual differences in such summary

diffusion-related measures can then be correlated, for example, with individual differences in cognition or behaviour.

However, despite its well documented sensitivity, DTI has its limitations (Tournier et al., 2011; Jeurissen et al., 2013).

For example, FA and MD lack specificity to the various physical properties of white matter, such as crossing fibres15

(Jeurissen et al., 2013), axon density and myelination (Beaulieu, 2002; Jones et al., 2013). Moreover, the average

profile of those measures may vary along a given pathway depending on the underlying fibre architecture (Vos et al.,

2012; Yeatman et al., 2012).

Recent advances in diffusion hardware, acquisition and modelling (Sotiropoulos et al., 2013; Jones et al., 2018;20

Assaf and Basser, 2005; Tournier et al., 2012; Jeurissen et al., 2014) have been introduced to overcome the limitations

of DTI, giving access to previously inaccessible measures. High angular resolution diffusion imaging (HARDI; Tuch

et al. (2002)) was originally developed to not only provide new anisotropy measures (Tournier et al., 2011) but also

to solve the so-called crossing fibre problem, making tractography more robust (Descoteaux, 2015). Multi-shell ac-

quisitions (Wedeen et al., 2005) have also facilitated new ways to link relevant tissue properties to the signal such as25

CHARMED (Assaf and Basser, 2005), AxCaliber (Assaf et al., 2008), ActiveAx (Alexander et al., 2010), multi-tensor

models (Scherrer et al., 2016) and NODDI (Zhang et al., 2012) among others (for review, see Alexander et al. (2017)).

In general, such models aim to extract parameters from intra- and extracellular compartments, and to estimate param-

eters such as axon diameter distributions and other high-order information.

30

Multi-shell acquisitions have also shown to improve the angular resolution of orientation distribution functions

(ODFs) (Descoteaux et al., 2011; Jeurissen et al., 2014; Chamberland et al., 2018). In conjunction, new frameworks

such as fixel-based analysis (Raffelt et al., 2012) have been proposed to map fibre-specific measures by looking at

the apparent fibre density (AFD), a measure proportional to the underlying fibre density, as opposed to having voxel-

specific scalar maps. The combination of frameworks such as along-tract profiling (Jones et al., 2005b; Corouge et al.,35

2006; Yeatman et al., 2012; De Santis et al., 2014; Colby et al., 2012; Cousineau et al., 2017) and tractometry (e.g.,

combining multiple measures (Bells et al., 2011)) allows for a comprehensive assessment of white matter microstruc-

ture. Both frameworks have the advantage of providing higher sensitivity to microstructural features of fibre pathways

by mapping a set of MR-derived measures over white matter bundles. Recently, along-tract profiling has been suc-

cessfully applied to study normal brain development (Geeraert et al., 2018) and to characterise areas of the brain with40

abnormal properties in various brain conditions (Dayan et al., 2016; Cousineau et al., 2017; Groeschel et al., 2014).

However, one problem arises with having access to multiple new measurements at each voxel and at each vertex

forming a streamline: it quickly becomes intractable for existing analysis pipelines to process such high-dimensional
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data (a problem often refered to as the curse of dimensionality; Bellman (1961)), highlighting the need for new ways to45

visualise or analyse such data. Moreover, dMRI measures may share overlapping information which can cause redun-

dancies in data analysis and ultimately decrease statistical power if strictly correcting for Type I errors (Penke et al.,

2010; Metzler-Baddeley et al., 2017; Bourbon-Teles et al., 2017). A solution to this problem resides in dimensionality

reduction, an established technique that has been successsfully applied in the past by the neuroimaging community

(for review, see Mwangi et al. (2014)). Despite the growing number of experiments using different microstructural50

measures in assessments of white matter, there has been limited work on combining these different measures and on

examining their covariance along specific pathways.

In this work, we explore the covariance of commonly-derived dMRI measures (De Santis et al., 2014). We propose

a data reduction framework that takes advantage of those redundancies and aims to provide a better insight into patterns55

of associations between DTI and HARDI measures. Specifically, we identified common components that explain the

maximal variance in measures profiled along multiple fibre bundles. We demonstrate the utility of our framework by

showing enhanced sensitivity to the detection of age-related differences in tissue microstructure across developmen-

tally sensitive pathways compared with the individual dMRI measures. Finally, we provide recommendations as to

which set of measures are best suited for studies with limited capabilities in terms of data acquisition and processing.60

2. Methods

2.1. Participants

This study reports on a sample of typically developing children aged 8 - 18 years (mean = 12.2± 2.8) participating

in the Cardiff University Brain Research Imaging Centre (CUBRIC, School of Psychology) Kids study. The study

was performed with ethics approval from the internal ethics review board and informed consent was provided from65

the primary caregiver of children enrolled in the study. Exclusion criteria included previous history of a neurological

condition or epilepsy.

2.2. Data acquisition

Data from thirty-six (n = 36, 13 male) children were acquired using a multi-shell HARDI protocol on a Siemens

3T Connectom system with maximum gradient amplitude = 300 mT/m. The acquisition protocol consisted of 14 b070

images, 30 diffusion directions at b = 500, 1200 s/mm2 and 60 diffusion directions at b = 2400, 4000, 6000 s/mm2

with 2 × 2 × 2 mm3 voxels (TE/TR: 59/3000 ms, δ/∆: 7.0/23.3 ms).

2.3. Data pre-processing

Data quality assurance was performed on the raw diffusion volumes using slicewise outlier detection (SOLID;

Sairanen et al. (2018)). Each dataset was then denoised in MRtrix (Veraart et al., 2016) and corrected for signal75

drift (Vos et al., 2017), subject motion (Andersson and Sotiropoulos, 2016), field distortion (Andersson et al., 2003),

gradient non-linearities (Glasser et al., 2013; Suryanarayana et al., 2018) and Gibbs ringing artefacts (Kellner et al.,

2016).
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2.4. Local representation

Multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD; Jeurissen et al. (2014)) was applied to80

the pre-processed images to obtain voxel-wise estimates of fibre ODFs (fODFs; Tournier et al. (2004, 2007); Seunarine

and Alexander (2009); Descoteaux et al. (2009)) with maximal spherical harmonics order lmax = 8. The fODFs

were generated using a set of 3-tissue group-averaged response functions following image intensity normalisation in

MRtrix (Tournier et al., 2012; Dhollander et al., 2016), enabling the direct comparison of fODF amplitudes across

subjects. Diffusion tensors were also generated using linearly weighted least squares estimation (for b < 1200 s/mm2
85

data) providing the following quantitative scalar measures: FA, axial diffusivity (AD), radial diffusivity (RD), MD,

geodesic anisotropy (GA; Fletcher et al. (2004)) and tensor mode representing the shape of the tensor (Kindlmann

et al., 2007). In addition, HARDI measures were extracted from the fODFs of each subject. Those measures include

fibre-specific AFD (Raffelt et al., 2012) for the bundles described in the next section, AFDtot (spherical harmonics l =

0) and the Number of Fibre Orientations (NuFO) based on the number of local fODF peaks (Dell’Acqua et al., 2013).90

Finally, restricted signal fraction maps (FR, adapted from CHARMED to remove potential isotropic partial volume

contamination; Assaf and Basser (2005)) were also computed using the fODFs peaks to initialise and regularise model-

fitting. To summarise, ten dMRI measures related to tissue microstructure (m = 10) were generated for each subject.

2.5. Tractography and Tractometry

Whole-brain streamline tractography was perfomed using FiberNavigator (Chamberland et al., 2014) using 895

seeds/voxel evenly distributed across the whole brain (approximating 1.8M seeds), a minimum fODF amplitude of

0.1, a 1 mm step size (i.e. 0.5×voxel size), a 45◦ maximum curvature angle and streamlines whose lengths were

outside a range of 20 mm to 300 mm were discarded. Twenty-two bundles of interest (t = 22) were then interactively

dissected in the native space of each subject using a combination of include and exclude regions of interests (ROIs).

Anatomical definitions and ROIs used to delineate each pathway are listed in the Supplementary Materials. The virtual100

dissection plan included:

Commissural bundles: anterior commissure (AC), body of the corpus callossum (CC), forceps minor (Genu),

forceps major (Splenium).

Association bundles (bilateral): arcuate fasciculus (AF), cingulum (Cg), inferior fronto-occipital fasciculus (iFOF),105

inferior longitudinal fasciculus (ILF), optic radiations (OR), superior longitudinal fasciculus (SLF), uncinate fascicu-

lus (UF).

Projection bundles (bilateral): corticospinal tract (CST), frontal aslant tract (FAT).

At this stage, we examined the covariance of the averaged diffusion measures for all bundles using Spearman’s110

correlation (r). Next, along-tract profiling was performed for each bundle using the Python toolbox developed by

Cousineau et al. (2017), combined with DIPY functions (Garyfallidis et al., 2014). Bundles were first pruned to

remove outliers as in (Cousineau et al., 2017; Garyfallidis et al., 2018). If necessary, the order in which the vertex-

wise measures were stored was reversed, to ensure consistency across the subjects profiles (i.e., from left-to-right for

4
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commissural bundles, from inferior-to-superior for projection bundles and from posterior-to-anterior for association115

bundles). A representative core streamline was generated for each bundle (i.e., mean streamline of the pathway) and

was subsequently resampled to s = 20 equidistant segments. Then, every vertex of every streamline forming the

pathway was assigned to its closest segment along the core. The measure values of each vertex were then projected

and averaged along each segment of the pathway, weighted by their geodesic distance from the core (Cousineau et al.,

2017). An along-tract profile was finally generated for every combination of measure and pathway.120

2.6. Dimensionality reduction

Each dataset comprisedm = 10 dMRI-derived measures mapped along 440 white matter regions (t = 22 bundles×

s = 20 segments). To explore the possible redundancy and complementarity of each measure, a principal component

analysis (PCA) was performed on the concatenated set of profiles across subjects and bundles (Table 1) using the tidy

data standard (Wickham et al., 2014). PCA reduces data dimensionality by extracting principal components that reflect125

relevant features in the data (Jolliffe, 2002; Abdi and Williams, 2010). The benefit is that a significant proportion of the

variance in the data can be explained by a reduced number of orthogonal components, compared to the total number

of raw input variables. PCA was performed by singular value decomposition of the z-transformed tract profiles via the

prcomp package in R (RStudio Team, 2016). Here, the goal was to end up with the minimum number of components

that summarise the maximum amount of information contained in the original set of diffusion measures. However,130

in order to avoid instability around the component loadings that comprise the principal components (Garg and Tai,

2013), measures showing significant covariance were discarded based on their correlation scores (r > 0.8) and the

PCA was re-computed. Finally, the minimal number of principal components that accounted for the most variability

was selected based on: 1) their interpretability (Metzler-Baddeley et al., 2017); and 2) the inspection of scree plots

(Cattell, 1966) to select ranked components with an eigenvalue > 1.135

Subject Bundle Section FA AD . . . FR

S1 Bundle1 Section1 FA111 AD111 . . . FR111

S2 Bundle1 Section1 FA211 AD211 . . . FR211

...
...

...
...

... . . .
...

S1 Bundle1 Section2 FA112 AD112 . . . FR112

...
...

...
...

...
. . .

...

Sn Bundleb Sections FAnbs ADnbs . . . FRnbs

Table 1: Data structure input for PCA. Individual subjects (n = 36), bundles (t = 22) and segments (s = 20) are concatenated to form observations

while variables represent the measures (m = 10) derived from dMRI.

2.7. Statistical analysis

PCA results were tested for sampling adequacy using a Kaiser-Meyer-Olkin (KMO; Dziuban and Shirkey (1974))

test followed by Bartlett’s test of sphericity to test whether the covariance matrix is significantly different from identity.
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We then ran an exploratory linear regression analysis to see whether profiles extracted from the PCA can provide140

increased sensitivity in the detection of age-related differences in tissue microstructure (as opposed to using the full

set of m = 10 measures). It is important to recall that PCA results are always orthogonal, and therefore are statistically

independent of one another. To address the multiple comparisons problem, a strict Bonferroni correction was applied

to all linear models whereby statistical significance was defined as: p < 0.05 / (m measures× t bundles× s segments)

resulting in p < 1.14e-5 for the ten raw measures, and p < 5.68e-5 for the first two principal components. All statistical145

analyses were carried out using RStudio v1.1.456 (RStudio Team, 2016).

3. Results

3.1. Measures covariance and profiling

The entire set of bundles and measures was successfully reconstructed in all subjects. Figure 1 shows the rela-

tionship between the various input measures averaged on different white matter pathways using a cross-correlation150

(Pearsons’s r) matrix representation. Matrices are re-organised using hierarchical clustering (Murtagh and Legendre,

2014), placing higher correlations closer to the diagonal in order to regroup measures that have similar correlations

together, and push apart those that have the most dissimilar correlations. In general, the measures form two clusters

across all bundles. The first cluster of positive correlations (r > 0.5) is observed between AD, FA, GA, AFD, AFDtot

and FR measures. The second cluster of positive correlations is formed of MD, RD and NuFO. The group-averaged155

diffusion measures of each bundle are reported in Suppl. Table 1.

Important details about the spatial heterogeneity of the various input measures of interest appear when profiled

along pathways. For example, FA, AFD and FR values all get progressively smaller along the CST as they approach

the cortex (Figures 2, 3). Furthermore, the high number of fibre crossings near the centrum semiovale is reflected by160

a high NuFO index and is also marked by a low FA (Figure 3, black circles). As might be expected, HARDI-derived

measures such as FR and AFDtot seem to be less affected by the intra-voxel orientational heterogeneity of crossing

regions than the tensor-based measures like FA, AD and RD. The correlation matrix in Figure 3 also highlights the

similarity between the various microstructural profiles, indicating potential redundancies in the amount of information

conveyed by those measures.165
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Figure 1: Correlation matrices of the ten diffusion measures, group-averaged for each extracted bundles. The middle image represents the average

of all white matter bundles. Matrices are re-organised using hierarchical clustering, grouping measures that have similar correlations together. A

first cluster of positive correlations (r > 0.5) is observed between most of the bundles for measures like AD, FA, GA, AFD, AFDtot, Mode and FR.

A second set of positively correlated measures (NuFO, MD, RD) forms the second cluster. Note that for bilateral pathways, the left and right values

were combined prior performing the correlation.

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/559351doi: bioRxiv preprint 

https://doi.org/10.1101/559351
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Overview of the ten input measures overlaid on the CST of a representative subject. Whole-brain tractograms (top-left) were manually

dissected into t = 22 bundles (bottom-left) and measures were subsequently mapped along each pathway, providing information about their spatial

heterogeneity.
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Figure 3: Group-average profiling of the ten input diffusion measures along the left CST for s = 20 segments, spanning from the brainstem (s =

1) to the cortex (s = 20). Heterogeneity in the profiles along the tract highlights the need for a vertex-wise assessment of the measures. Similarity

between profiles also shows shared covariance between the measures, indicated by the two clusters (1 and 2) on the correlation matrix (sorting:

hierarchical clustering). Shaded profile area: ±1 standard deviation.
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3.2. Principal component analysis

The loading vector plots in Figure 4 show association patterns between the various input measures. The left panel

shows PCA results performed on the entire set of measures. If two vectors subtend a small angle to each other, the two

variables they represent are strongly correlated. When such vectors were found to be close, the one showing higher170

correlations with any other measures was removed. In line with the aforementioned results, shared covariance is ob-

served between AD and tensor mode (r = 0.8), as well as between FA and GA (r= 0.95). After pruning up measures

for multicollinearity (Figure 4, right panel), PCA results show that 80% of the variability in the data is accounted by

the first two principal components (KMO: 0.64, sphericity: p < 2.2e-16). As shown in Figure 5, the PC that explains

the largest proportion of the variance (PC1, 48%, λ = 3.4) is composed of hindrance-sensitive measures with AFD, FR175

and AFDtot contributing positively (24%, 21% and 16%, respectively) and AD contributing negatively (25%). The

second PC (PC2) represents 32% of the variance in the data (λ = 2.2) and is mostly driven by orientational dispersion

and complexity-sensitive measurements, with its largest positive contribution from NuFO (34%), and negative contri-

butions from AD (26%) and MD (25%) (Figure 5, PC2).

180

Figure 4: PCA results before (left) and after (right) multicollinearity analysis. To improve stability around PC1, AFD was kept over GA and FA due

to its fibre specificity properties. Tensor mode was also discarded based on its collinearity with AD. On the right PCA, one can observe separation

between the various measures, generating a hindrance-related component (PC1) that loads on AFD, AFDtot, RD and FR and a complexity-related

component (PC2) that loads on NuFO, AD and MD. Here, the squared cosine notation (cos2) shows the importance of a measure for a given PC. A

high cos2 indicates a good representation of the measure for a given principal component.
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Figure 5: Visual overview of PC1 and PC2 with the contribution of each measure to that component. The first PC captures most of the hindrance- and

restriction-related measures (AFD, RD, FR, AFDtot). The second PC mostly represents tissue complexity and orientational dispersion properties

associated with NuFO, AD and MD. The first two components accounted for 80% of the variance in the diffusion measures.
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3.3. Detecting differences in tissue microstructure

3.3.1. Bundle averages

Here, we first report developmental changes in white matter tissue microstructure using bundle-averaged measures

(m = 10, s = 1) and PCA components (m = 2, s = 1). Significance thresholds were Bonferroni-corrected to account

for multiple comparisons (p < 2.27e-4 for the ten raw measures, and p < 1.14e-3 for the two principal components).185

Figure 6 shows a significant increase in PC1 as a function of age for the left iFOF and CST, whereas no correlation

with age was observed between individual hindrance-related measures. Significant positive correlations were found

between PC1 (restriction-related component) and age in the following language-related pathways: AF (left: R2: 0.34,

p = 1.06e-4), iFOF (left: R2: 0.31, p = 2.51e-4), FAT (left: R2: 0.43, p = 9.06e-6, right: R2: 0.43, p = 7.77e-6), UF

(right: R2: 0.26, p = 9.76e-4) and motor pathways: CST (left: R2: 0.40, p = 1.92e-5, right: R2: 0.40, p = 2.0e-5), CC190

(R2: 0.29, p = 4.51e-4). One significant positive correlation between PC2 (dispersion-related component) and age was

found in the SLF (right: R2: 0.27, p = 6.82e-4).

No significant age relationships were found between any of the bundles and FA, GA, Mode, AFD, AFDtot, FR and

NuFO. Significant negative correlations with age were found in RD for the AF (left: R2: 0.37, p = 5.40e-5, right: R2:195

0.34, p = 1.02e-4), Cg (left: R2: 0.33, p = 1.45e-4 , right: R2: 0.47, p = 2.22e-6), CST (left: R2: 0.35, p = 7.36e-5,

right: R2: 0.33, p = 1.28e-4), FAT (left: R2: 0.37, p = 4.65e-5, right: R2: 0.28, p = 4.67e-4). Significant negative

correlations with age were found in MD for the FAT (left: R2: 0.33, p = 1.22e-4, right: R2: 0.31, p = 2.18e-4), AF

(left: R2: 0.39, p = 2.48e-5, right: R2: 0.36, p = 6.28e-5), CST (left: R2: 0.40, p = 2.06e-5, right: R2: 0.42, p =

1.12e-5), SLF (right: R2: 0.38, p = 3.21e-5) and Cg (right: R2: 0.37, p = 4.06e-5). One significant negative correlation200

was found between AD and age in the SLF (right: R2: 0.41, p = 1.80e-5).

3.3.2. Along-tract profiling

Here, we report on developmental changes in tissue microstructure seen with along-tract profiling. Table 2 reports

the measures and tract segment mapped along different pathways where significant correlation with age was observed.205

Significant positive correlations were found between PC1 (restricted component) and age near the motor cortex area

for the CST20 (right: R2: 0.37, p = 4.91e-5) and CC3 (R2: 0.37, p = 4.62e-5). Significant age-related positive corre-

lations with PC2 were observed for motor-related pathways: CC2 (R2: 0.37, p = 5.63e-5), CST20 (right: R2: 0.49, p

= 1.41e-6), CST19 (left: R2: 0.43, p = 8.59e-6) and language-related pathways: FAT19 (right: R2: 0.38, p = 4.08e-5),

iFOF19 (right: R2: 0.39, p = 2.89e-5), ILF1 (right: R2: 0.35, p = 9.26e-5), UF3,4 (right: R2: 0.43 & 0.39, p = 7.71e-6210

& 3.0e-5) and SLF1,2 (R2: 0.46 & 0.42, p = 3.41e-6 & 1.14e-5).

No significant age relationships were found in any bundles for FA, GA, Mode, AD and AFD. Significant negative

correlations were observed for RD in the FAT8 (right: R2: 0.42, p = 1.08e-5) and for MD in the AF16 (right: R2: 0.44,

p = 5.62e-6) and Cg7 (left: R2: 0.43, p = 6.5e-6). Significant positive correlations were also found for AFDtot in the215
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Figure 6: Developmental changes in iFOF and CST bundles. PC1 show significant positive correlation with age, whereas no correlation was

observed between the individual hindrance-sensitive measures.

CST20 (left: R2: 0.50, p = 9.02e-7, right: R2: 0.53, p = 2.73e-7) and CST1 (left: R2: 0.46, p = 2.88e-6). For NuFO,

significant age-related differences in tissue complexity were observed in the CST20 (right: R2: 0.54, p = 1.56e-7) and

CC3 (R2: 0.43, p = 7.09e-6). Finally, one significant positive correlation in FR was found for the FAT6 (right: R2:

0.57, p = 4.9e-8).
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Individual diffusion measures PCA

RD MD AFDtot NuFO FR PC1 PC2

↘ r-FAT8 ↘r-AF16 ↗l-CST1,20 ↗CC1 ↗r-FAT6 ↗CC3 ↗CC2

↘l-Cg7 ↗r-CST20 ↗r-CST20 ↗r-CST20 ↗r-CST20

↗ l-CST19

↗r-FAT19

↗r-iFOF19

↗r-ILF1

↗ r-UF3,4

↗ r-SLF1,2

Table 2: Segments of white matter bundles where a significant correlation between diffusion measures and age were observed. Subscript ordering

for along-tract positions: left (s = 1) to right (s = 20) for commissural bundles, inferior (s = 1) to superior (s = 20) for projections bundles and

posterior (s = 1) to anterior (s = 20) for associations bundles. Positive / negative correlations are indicated by an increasing /decreasing arrow,

respectively. Significance thresholds for the measures and components were set as p < 1.13e-5 and p < 5.68e-5, respectively (adjusted R2 > 0.3)

.

Figure 7: Age relationships captured by PC1 and PC2 over the left CST. Highlighted section of an axial slice overlaid with fODFs reconstruction

of a representative participant (top left). Contoured area shows where streamlines terminated to form segment 20. At the group level, significant

positive correlations with age were found with PC1 and PC2 (top right). Significant positive correlations were also found for HARDI measures

AFDtot and NuFO (middle right). No significant correlations were observed for any of the DTI measures (bottom right). Profile plots indicate

where significant differences in tissue microstructure were located along the CST (-log(p) scale).
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4. Discussion220

4.1. Extraction of interpretable components

The aim of this study was to systematically examine any potential covariance between various diffusion measures

mapped along white matter fibre bundles extracted from a cohort of typically-developing children and adolescents. We

first examined the covariance of the measures averaged over different bundles, which revealed two clusters of inter-

dependent measures. The first cluster revealed that measures sensitive to restricted diffusion shared high correlations225

with each other. Similarly, measures which are known to be sensitive to local complexity or orientational dispersion

co-varied. When profiled along pathways, measures showed heterogeneity across the trajectory of diverse pathways,

but their interdependency remained marked by a two-cluster formation. This provided motivation for the next step

of our analysis, where we performed a PCA to collapse the inter-dependent measures into the principal modes of

variance. This was done by profiling multiple brain fibre systems based on their dMRI features, and then deriving a230

set of principal components that best represent those individual measures. We then showed the sensitivity of these

new components to the detection of differences in tissue microstructure of white matter pathways by exploring their

relationship with the age of participants.

A common problem with PCA is that the interpretation of the resulting components can be challenging. Here, the235

principal components loaded onto variables that shared similarities in their sensitivity to different tissue properties,

making the interpretation of the resulting components more meaningful. Measures accounting for the largest per-

centage of variance in the data (forming PC1) are those known to be most sensitive to hindrance or restriction in the

signal, including RD, AFD and FR. In contrast, PC2 features measures that could reflect complexity or orientational

dispersion in the signal, such as NuFO, AD and MD.240

The raw tract-averaged diffusion measures showed significant negative correlations in MD and RD with age across

a range of developmentally sensitive tracts, which is in line with previous studies that also report a decrease in MD

and RD with age, whereas FA shows slower increases with age in late childhood (Lebel et al., 2008). Additionally,

we observed significant age relationships for PC1 and PC2 in developmental-sensitive tracts related to language (i.e.,245

AF, SLF, FAT, iFOF, ILF) and motor functions (i.e., CST and CC), which is also in line with previous reports in the

literature (Genc et al., 2017, 2018; Lebel et al., 2017; Geeraert et al., 2018; Genc et al., 2018). We note that sex

differences were not accounted for due to our relatively small sample size but may play a role in some of the differ-

ences we observed across pathways (Seunarine et al., 2016). Our results highlight the sensitivity of PC1 and PC2 as

a composite measure by 1) showing significant correlation with age in regions where other measures did not, and 2)250

reflecting effects captured by the other measures. Examining the tract-averaged values for PC2, only one significant

correlation with age was found for the right SLF. However, additional significant correlation between age and PC2

were observed when performing along-tract profiling. A potential explanation for this findings resides in the nature of

PC2, with most of its contributions coming from AD, MD and NuFO. Indeed, since PC2 reflects the local complexity

at each voxel, measures like NuFO will vary depending on the underlying structural architecture and therefore taking255
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the average value across the bundle may lead to a summary statistic that is hard to interpret. In contrast, the values of

PC1 (or AFD) remain relatively constant over bundles and thus are less impacted by calculating the bundle average.

This may also explain why the first principal component derived from bundle-averages was found to show significant

correlations with age in white matter bundles, whereas the original DTI measures did not.

260

Restricted (or hindered) diffusion is primarily caused by dense packing of axons and their cell membranes (Beaulieu,

2002). Other tissue properties such as myelination and local complexity can also affect the degree of hindrance or

restrictance measured at each voxel (Vos et al., 2012). In the current study, an increase in PC1 may indicate higher co-

herence of the underlying white matter bundles for our older subjects, in comparison with the younger ones. Previous

studies have demonstrated that dMRI measures can be sensitive to age-related differences, and those are often asso-265

ciated with an increased microstructural organisation (for review, see Lebel et al. (2017)). Given the well-established

role of the CST in supporting motor performance, our finding of increased hindrance with age in typically developing

children is in line with previous research that showed that brain maturation varies across different pathways, with

commissural and projection tracts reaching maturation by early adolescence while association pathways develop over

a longer time period (Geeraert et al., 2018). Interestingly, PC2 also captured an increase in orientational dispersion for270

that same region (which was either marked by an increase in NuFO or decrease in MD, Figure 4). The fact that those

changes appear near the cortex, a region usually contaminated by partial volume effects, highlights the role of MSMT-

CSD in achieving adequate fODFs representation at the boundary between gray matter and white matter (Jeurissen

et al., 2014).

4.2. Choice of measures275

A growing interest in utilising advanced dMRI measures to study the human brain motivated us to investigate the

shared relationship between DTI and HARDI measures (De Santis et al., 2014). Being a relatively fast-developing

field, dMRI offers a multitude of mathematical models to represent the underlying tissue microstructure (Alexander

et al., 2017). Here, we focused on DTI and HARDI measures (Descoteaux, 2015). dMRI measures are generally

sensitive to differences in tissue microstructure that can potentially be linked to fibre properties such as myelination280

and axon density (Scholz et al., 2014). Despite the fact that the specific interpretation of these measures remains

controversial (Jones et al., 2013), DTI and HARDI measures are routinely used by neuroscientists and clinicians to

gain insights into white matter properties. The findings reported here are in line with existing evidence suggesting that

HARDI measures may be more specific than DTI for the detection of differences in tissue microstructure (Tournier

et al., 2011; Jeurissen et al., 2013; Cousineau et al., 2017). Our results suggest that combining the sensitivity of DTI285

and the specificity of HARDI has the potential for compromise between the two techniques. Other macrostructural

measures (e.g., bundle volume or mean length; Lebel et al. (2012, 2008, 2017); Geeraert et al. (2018); Girard et al.

(2014)) have been used to study brain development and may also provide complementary features that could be ap-

plied in the proposed framework. Other measures such as rotationally invariant spherical harmonic features (RISH;

Mirzaalian et al. (2015)) could also be introduced in the current framework, with the main advantage of representing290
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more directly the diffusion signals rather than relying on various microstructural models.

Ultimately, the key challenge resides in knowing what measure (or combination of; De Santis et al. (2014)) pro-

vides the best value in terms of scanning and processing time. In other words, one may ask: which set of microstruc-

tural measures provides the most variance per unit of scan time? Indeed, optimising scan time by knowing in advance295

which measures will provide better sensitivity to the current study is challenging, since this information cannot be

determined a priori. One approach (although not practical) would be to acquire all possible data and fit all existing

models using a brute force approach, followed by extensive exploratory analyses. A better suited alternative resides

in the careful design of dMRI studies. To help with the planning of future studies and based on our observations, we

present some recommendations for data analysis.300

DTI vs HARDI: DTI measures can nowadays be easily be derived from a conventional 30 directions protocol ac-

quired at b = 1000 s/mm2 in approximatively five minutes. That being said, instead of relying on DTI-based measures

(e.g., FA and MD), a hindrance-sensitive measure such as AFD (Raffelt et al., 2012; Dell’Acqua et al., 2013) and

a complexity-sensitive one such as NuFO (Dell’Acqua et al., 2013) are both adequate and accessible alternatives.

Indeed, CSD can usually be performed on data with a minimum of 45-60 directions acquired at b = 1000 s/mm2
305

(Dell’Acqua and Tournier, 2018; Alexander and Barker, 2005). Moreover, going beyond single b-value acquisitions

will provide a better estimation of partial volume effects and better characterisation of various tissue types that will

subsequently improve HARDI reconstructions in those areas (Jeurissen et al., 2014; Chamberland et al., 2018).

Tract-average vs along-tract profiling: In the context of along-tract profiling, age-related effects might be more

pronounced when performing group-wise comparisons (e.g., young vs old, patients vs controls; Yeatman et al. (2014))310

rather than directly looking at a single cross-sectional change in tissue microstructure. Indeed, theses changes might

be too subtle to detect, especially considering that the age range of our participants falls on the inflection point of

the developmental curve (Lebel and Beaulieu, 2011). Moreover, one may consider first looking at the profile along

each tract of interest and ask the following: are there any benefits in sub-segmenting the profile into finer portions?

Admittedly, if the measure of interest remains stable along the pathways, a conventional tract average is probably better315

suited than looking at a constant profile at multiple points. Concomitantly and depending on the research hypothesis,

the use of a more permissive approach such as false discovery rate (FDR) correction should be considered to assess

differences along multiple adjacent bundle segments.

4.3. Future perspectives

Over the last few years, a wide range of supervised and unsupervised learning applications based on feature extrac-320

tion has emerged, ranging from individual classifiers for specific brain disorders (Wang et al., 2010; Chu et al., 2012)

to data predictors of brain function (Chen et al., 2009; Franke et al., 2012; Casanova et al., 2011; Kucukboyaci et al.,

2014). In the field of functional MRI, independent component analysis (ICA) is a successful example of unsuper-

vised dimensionality reduction that allows the extraction of temporally segregated resting-state networks (Beckmann

et al., 2009). In all cases, data reduction approaches facilitate a stream to analyse and interpret the increasingly large325

multi-dimensional data generated by new methodological models. Admittedly, despite PCA being one of the most
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commonly-used tool for data reduction, it can also over-fit data (Kramer, 1991) and potentially require multiple post-

processing regression steps to explore the link between the resulting components and the observations. Similar to

PCA, a canonical correlation analysis (Hotelling, 1936) may help in finding the link between the correlated measures

and observations by extracting their joint information. Other non-linear dimensionality reduction techniques based330

on manifold learning such as isometric feature mapping (Tenenbaum, 1998) or locally linear embedding (Roweis and

Saul, 2000) may also better disentangle the measurement space. However, one has to be cautious when applying

advanced models of dimensionality reduction to medical imaging as it is often a trade-off between model accuracy

and interpretability. Indeed, although these techniques may result in better disentangling of the manifold space, this

often comes at the expense of generating complex and less interpretable features that cannot be related to brain tissue335

microstructure.

Overall, data representation frameworks such as the one presented here can become fundamental in advancing the

application of diffusion models in health and disease. The proposed framework may open new avenues for examining

brain microstructure in general and other related lines of research, especially if complimented with other modalities340

such as measures derived from quantitative magnetisation transfer (Rovaris et al., 2003; Cercignani and Bouyagoub,

2018). Indeed, with the ever-growing acquisition of large cohorts of subjects, feature extraction techniques may be-

come essential tools for processing multi-dimensional brain imaging datasets (e.g., the Human Connectome Project

with >1,000 young adults scans; Van Essen et al. (2013) or the UK Biobank with its 500,000 participants; Miller et al.

(2016)).345

Finally, our study may also open new avenues for fibre clustering by leveraging microstructural properties mapped

over fibre bundles. Suppl. Figure 1 shows how different bundles project and cluster in the new reference frame formed

by PC1 and PC2. One can observe that PC1 is sensitive to various hindrance level in white matter by disentangling

bundles such as the CST (green), genu (blue) and splenium (pink). Conversely, pathways that are known to have many350

crossing regions such as the AF and the SLF are located on the superior portion of the bi-plot, showing properties of

increased orientational dispersion (Suppl. Figure 1 orange and purple, respectively).

5. Conclusions

In summary, our findings demonstrate that there exists redundancies in measures conventionally derived from

dMRI and that those redundancies may be exploited to reduce the risk of Type I errors, arising from multiple statistical355

comparisons. Our results support the use of data reduction to detect along-tract differences in tissue microstructure.

Specifically, the curse of dimensionality and redundancies in statistical analyses were considerably mitigated by ex-

tracting components sensitive to diffusion properties of hindrance and complexity. From an application perspective,

a general increase in white matter hindrance was found to have a significant correlation with age in various develop-

mentally sensitive pathways, a change that would otherwise remain undetected using conventional approaches. Under360

limited acquisition or processing capabilities, our results indicate that one could invest in deriving a hindrance-sensitive
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HARDI measure (e.g., AFD or FR) and a complexity-, or dispersion-sensitive measure (e.g., NuFO or MD) to study

tissue-microstructure.
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Supplementary Data

Supplementary Table 1

Bundle FA AD RD MD GA Mode AFD AFDtot NuFO FR

AC 0.45±0.14 8.1±1.2 5.9±1.3 8.0±0.9 0.82±0.28 0.68±0.43 0.44±0.18 0.21±0.05 1.4±0.5 0.21±0.08

AF (l) 0.47±0.13 7.5±1.4 5.3±0.9 7.3±0.4 0.90±0.28 0.51±0.50 0.46±0.20 0.25±0.05 1.7±0.7 0.29±0.09

AF (r) 0.46±0.14 7.3±1.5 5.2±0.9 7.1±0.4 0.86±0.29 0.49±0.52 0.44±0.20 0.25±0.05 1.8±0.7 0.28±0.09

CC 0.53±0.19 8.7±2.0 5.0±1.6 7.7±1.2 1.06±0.44 0.68±0.44 0.55±0.21 0.25±0.06 1.4±0.6 0.29±0.12

CST (l) 0.54±0.17 7.7±1.5 4.8±1.5 7.4±1.1 1.02±0.37 0.70±0.41 0.59±0.21 0.27±0.05 1.5±0.7 0.30±0.10

CST (r) 0.53±0.17 7.6±1.6 4.8±1.4 7.3±1.0 1.01±0.37 0.69±0.42 0.58±0.20 0.26±0.05 1.6±0.7 0.30±0.10

ILF (l) 0.47±0.13 8.1±1.4 5.6±0.9 7.8±0.6 0.89±0.28 0.57±0.47 0.42±0.18 0.23±0.05 1.5±0.6 0.24±0.09

ILF (r) 0.47±0.13 7.9±1.3 5.5±0.9 7.6±0.6 0.88±0.28 0.54±0.49 0.41±0.18 0.23±0.06 1.5±0.6 0.25±0.09

OR (l) 0.49±0.15 8.4±1.9 5.3±1.1 7.7±0.8 0.92±0.33 0.65±0.47 0.46±0.21 0.23±0.06 1.4±0.6 0.25±0.10

OR (r) 0.49±0.15 8.1±1.7 5.3±1.1 7.6±0.8 0.92±0.33 0.63±0.46 0.45±0.21 0.24±0.06 1.5±0.6 0.26±0.10

SLF (l) 0.42±0.14 7.2±1.3 5.5±0.9 7.2±0.5 0.81±0.28 0.43±0.52 0.38±0.18 0.24±0.07 1.8±0.7 0.26±0.09

SLF (r) 0.44±0.14 7.3±1.4 5.3±0.9 7.2±0.5 0.85±0.29 0.46±0.51 0.40±0.19 0.24±0.06 1.7±0.7 0.27±0.09

UF (l) 0.44±0.12 8.3±1.2 5.9±0.9 8.0±0.5 0.77±0.24 0.67±0.40 0.40±0.18 0.21±0.06 1.3±0.5 0.19±0.07

UF (r) 0.46±0.12 8.2±1.3 5.6±0.9 7.7±0.5 0.79±0.24 0.72±0.37 0.44±0.18 0.22±0.05 1.3±0.6 0.19±0.06

FAT (l) 0.44±0.15 7.6±1.4 5.5±1.0 7.4±0.5 0.82±0.31 0.52±0.48 0.41±0.20 0.23±0.07 1.6±0.7 0.25±0.10

FAT (r) 0.43±0.14 7.5±1.4 5.5±1.0 7.3±0.5 0.81±0.30 0.51±0.49 0.42±0.20 0.24±0.07 1.7±0.7 0.25±0.09

Cg (l) 0.48±0.15 8.3±1.5 5.4±1.0 7.7±0.5 0.91±0.32 0.67±0.44 0.47±0.20 0.22±0.05 1.5±0.6 0.26±0.09

Cg (r) 0.46±0.13 8.1±1.3 5.5±0.9 7.7±0.5 0.85±0.28 0.63±0.46 0.44±0.18 0.21±0.05 1.5±0.6 0.24±0.08

Genu 0.55±0.19 8.5±1.7 4.9±1.6 7.6±0.8 1.03±0.44 0.68±0.46 0.48±0.20 0.23±0.05 1.4±0.6 0.27±0.11

iFOF (l) 0.49±0.14 8.5±1.6 5.4±1.0 7.7±0.6 0.93±0.30 0.67±0.42 0.48±0.19 0.24±0.05 1.5±0.6 0.26±0.09

iFOF (r) 0.50±0.14 8.3±1.5 5.2±1.0 7.6±0.6 0.93±0.31 0.65±0.44 0.48±0.20 0.24±0.05 1.5±0.6 0.26±0.09

Splenium 0.61±0.21 9.6±2.1 4.5±2.0 7.8±1.4 1.25±0.52 0.78±0.39 0.56±0.22 0.25±0.06 1.2±0.5 0.32±0.13

Table 1: Quantitative overview of the group-averaged dMRI measures across all bundles (mean±std). AD, RD and MD are expressed in mm2/s

×10−4.
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Supplementary Figure1

Figure 1: Supplementary Figure 1: Bundle clustering based on PC1 and PC2. The horizontal axis shows increasing restriction or hindrance

perpendicular to the main axis of the bundles. On the right-most part of this axis are located densely-packed bundles such as the CST (green),

genu (blue) and splenium (pink). The vertical axis represents the complexity degree of bundles (based on NuFO). On top of this axis are the

arcuate fasciculus (orange) and superior longitudinal fasciculus (purple), two pathways which are known to have many crossing regions. Each point

represents one subject. Concentration ellipsoids cover 95% confidence around the mean.
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Virtual dissection scheme630

The following details a brief description of the virtual dissection plan of each white matter bundle reported in

the present study. All bundles were interactively extracted separately, in native space, repeating the method for each

subject and hemisphere. Dissection were performed using FiberNavigator (Chamberland et al., 2014) by co-author

KD, under the supervision of tractography specialists MC and DKJ.635

Anterior commissure (AC) The AC is a thin white matter bundle which forms a direct connection between the

temporal lobes (Wakana et al., 2007). It is located inferior to the most anterior part of the fornix and was captured by

placing ROIs on the lateral branches in the ventral temporal lobe (Catani and De Schotten, 2008).

640

Arcuate Fasciculus (AF) To extract the AF, the first ROI was placed laterally to the corona radiata to capture

the frontal-partial fibres. Then, a second ROI was placed posterolateral to the sylvian fissure to capture streamlines

extending into the temporal lobe (Catani and De Schotten, 2008). An exclusion ROI was positioned below the curved

portion of the bundle the remove spurious connections.

645

Mid-body of the Corpus Callosum (CC) Two ROIs were placed ventral to the location of the cingulum and

medial to the lateral ventricles (one in each hemisphere) (Catani and De Schotten, 2008). Exclusion ROIs were used

to exclude the Genu and Splenium (i.e., the anterior and posterior sections of the corpus callosum, respectively).

Corticospinal Tract (CST) A first ROI was placed at the level of the cerebral peduncle in the axial plane. A650

second ROI was placed over the central sulcus and capture fibres extending to the primary motor cortex (Chenot et al.,

2018).

Inferior Longitudinal Fasciculus (ILF) The ILF is an association pathway forming a direct connection between

the occipital and temporal lobe (Wakana et al., 2007). A first ROI was placed laterally, in the anterior temporal pole655

and a second ROI was placed in the posterior temporal lobe (Catani and De Schotten, 2008).

Optic Radiation (OR) To capture this bundle, a ROI was placed in the occipital lobe to encompass V1 and V2. A

second ROI was planced anterolaterally to the geniculate body (Yamamoto et al., 2005; Chamberland et al., 2017).

660

Superior Longitudinal Fasciculus (SLF) For the SLF, a first ROI was placed on the superolateral aspect of the

cingulum. Then a second ROI was placed over the supramarginal gyrus (Kamali et al., 2014).

Uncinate Fasciculus (UF) The UF connects the orbito-frontal cortex to the anterior temporal lobe. A first ROI

was placed in the anterior part of the temporal lobe. A second ROI was positioned in the inferior medial frontal cortex665
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(Catani and De Schotten, 2008).

Frontal Aslant Tract (FAT) To extract this bundle, a selection ROI was placed over the superior frontal gyrus and

a second one was placed middle of the inferior frontal gyrus (Catani et al., 2013).

670

Cingulum (Cg) The cingulum is a medial association fibre that is located over the corpus callosum. To extract

this bundle, a first ROI was placed immediately postero-superior to the Genu. A second ROI was positioned in the

posterior cingulate cortex (Catani and De Schotten, 2008).

Genu The genu is a commissural fibre that is the most anterior section of the corpus callosum. To extract this675

bundle, two ROIs were placed anterolateral to the most rostral portion of the corpus callosum in each hemisphere.

This approach was used to capture the anteriorly arching fibres of the genu (Catani and De Schotten, 2008). An exclu-

sion ROI was used to exclude streamlines extending posteriorly to the Genu, which make up the body of the corpus

callosum.

680

Inferior Fronto-Occipital Fasciculus (iFOF) The iFOF connects the orbito-frontal cortex and the ventral occip-

ital lobe. A first ROI was placed covering the anterior floor of the external capsule, and a second ROI was placed in

the inferior part of the occipital lobe (Catani and De Schotten, 2008).

Splenium The splenium is the most posterior section of the corpus callosum, which joins the temporal and oc-685

cipital lobes of the two hemispheres. Two ROIs were placed posterolateral to the most caudal section on the corpus

callosum in the left and right hemisphere(Catani and De Schotten, 2008). An exclusion ROI was used to remove

streamlines extending anteriorly to the splenium.
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