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Abstract

Electroencephalographic (EEG) source imaging depends upon sophisticated signal processing
algorithms for data cleaning, source separation, and localization. Typically, these problems
are addressed by independent heuristics, limiting the use of EEG images on a variety of
applications. Here, we propose a unifying parametric empirical Bayes framework in which
these dissimilar problems can be solved using a single algorithm (PEB+). We use sparsity
constraints to adaptively segregate brain sources into maximally independent components with
known anatomical support, while minimally overlapping artifactual activity. Of theoretical
relevance, we demonstrate the connections between Infomax ICA and our framework. On real
data, we show that PEB+ outperforms Infomax for source separation on short time-scales
and, unlike the popular ASR algorithm, it can reduce artifacts without significantly distorting
clean epochs. Finally, we analyze mobile brain/body imaging data to characterize the brain
dynamics supporting heading computation during full-body rotations, replicating the main
findings of previous experimental literature.
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Introduction

The electroencephalogram (EEG) is a noninvasive
functional brain imaging modality that allows the
study of brain electrical activity with excellent tempo-
ral resolution. Compared to other noninvasive imaging
modalities such as fMRI, PET, SPECT, and MEG,
EEG acquisition can be mobile and more affordable
[Mcdowell et al., 2013, Mehta and Parasuraman, 2013],
allowing the widespread study of human cognition and
behavior under more ecologically valid experimental
conditions [Makeig et al., 2009]. Imaging cognitive
processes while participants engage naturally with
their environment (natural cognition in action [Gra-
mann et al., 2014]) has potential for developing a new
generation of applications in brain-computer inter-
faces (BCI), mental health, rehabilitation, and neu-
roergonomics [Mishra and Gazzaley, 2014, Jungnickel
and Gramann, 2016, Wagner et al., 2016]. However,
despite impressive methodological advances in the es-
timation of the electrical activity of the cortex from
EEG voltages recorded on the scalp, a number of
practical and theoretical issues remain unsolved.
Imaging EEG source activity (also known as electro-
magnetic source imaging or ESI) is challenging for
several reasons. First, since many configurations of
currents in the brain can elicit the same EEG scalp
topography [Michel and Murray, 2012], it entails solv-
ing an ill-posed inverse problem [Lopes da Silva, 2013].
Second, the EEG signal is often contaminated by ar-
tifacts of non-brain origin such as electrooculographic
(EOG) and electromyographic (EMG) activity that
need to be identified and removed. Third, there is
evidence that large-scale brain responses measured
by EEG are generated by underlying cortical dynam-
ics that evolve over time and can exhibit nonlinear
features [Breakspear, 2017, Khambhati et al., 2018],
thereby rendering the simplifying assumptions of lin-
earity and stationarity used by most inverse methods
hard to justify. These problems are usually addressed
separately using a variety of heuristics, making it
difficult to systematize a methodology for obtaining
biologically plausible EEG source estimates in the
presence of artifacts and nonlinear and nonstationary
dynamics. The objective of this paper is to develop
a unifying Bayesian framework in which these, ap-
parently dissimilar, problems can be understood and
solved in a principled manner using a single algorithm.
To cope with the ill-posed nature of the inverse prob-
lem and ensure functional images with biological
relevance, several inverse algorithms have been pro-
posed that seek to estimate EEG sources subject to
neurophysiologically reasonable spatial [Haufe et al.,
2011, Friston et al., 2008, Trujillo-Barreto et al., 2004,
Pascual-Marqui et al., 2002, Baillet et al., 2001], spa-
tiotemporal [Martínez-Vargas et al., 2015, Valdés-
Sosa et al., 2009, Trujillo-Barreto et al., 2008], and
frequency-domain [Gramfort et al., 2013] constraints,

just to mention a few examples. These approaches
can work relatively well when the EEG samples are
corrupted by Gaussian noise and the signal to noise
ratio (SNR) is high. In practice, however, raw EEG
data are affected by many other types of noise such
as interference from the 50/60 Hz AC line, pseudo-
random muscle activity, and mechanically induced
artifacts, among others. Thus, before source estima-
tion, non-Gaussian artifacts need to be removed from
the data.
There is a plethora of methods for dealing with ar-
tifacts corrupting the EEG signal [Mannan et al.,
2018, Islam et al., 2016]. Popular approaches used
in real-time BCI applications are based on adaptive
noise cancellation [Kilicarslan et al., 2016] or Arti-
fact Subspace Removal (ASR) [Mullen et al., 2015]
algorithms. The former has the inconvenience that
an additional channel recording purely artifactual ac-
tivity (i.e., EOG or EMG activity not admixed with
EEG) needs to be provided, while the latter rests on
the assumption that the statistics of data and artifacts
stay the same after an initial calibration phase. In
studies where the data can be analyzed offline, ar-
tifactual components can be largely removed using
Independent Component Analysis (ICA) [Jung et al.,
2000]. ICA-based cleaning, however, has the drawback
that non-brain components need to be identified for
removal, which is usually done manually based on the
practitioner’s experience.
ICA is a special case of blind source separation (BSS)
method [Cichocki and Amari, 2002] that can be used
to linearly decompose EEG data into components that
are maximally statistically independent. ICA has been
used to analyze event-related potentials (ERP) under
the assumptions that during the task 1) the decompo-
sition is stationary and 2) that brain components can
be modeled as a predefined number of dipolar point
processes with fixed spatial location and orientation
[Makeig and Onton, 2011]. The stationarity assump-
tion can be relaxed using a mixture of ICA models
[Palmer et al., 2011] while the selection of brain scalp
projections is typically done either manually or auto-
matically based on the residual variance afforded by
a dipole fitting algorithm. The practical use of ICA
has been limited by its computational cost and the
need for user intervention. Only recently, a real-time
recursive ICA algorithm has been proposed [Hsu et al.,
2016], as well as a number of automatic methods for
minimizing the subjectivity of manual component se-
lection [Tamburro et al., 2018, Pion-Tonachini et al.,
2017, Radüntz et al., 2017]. Despite these advances,
turning ICA into a brain imaging modality requires
that after source separation, we solve the inverse prob-
lem of localizing the set of identified brain components
into the cortical space.
One way of estimating EEG sources subject to multi-
ple assumptions (constraints) in a principled manner
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is to use the framework of parametric empirical Bayes
(PEB) [Morris, 1983, Casella, 1985]. In this frame-
work, constraints are used to furnish prior probability
density functions (pdfs). Empirical Bayes methods
use data to infer the parameters controlling the pri-
ors (hyperparameters), such that those assumptions
that are not supported by the data can be automat-
ically discarded without user intervention. Here we
use priors to “encourage" source images to belong to
a functional space with biological relevance, but the
exact form of those priors is determined by the data
(empirically). In the context of sparsity-inducing pri-
ors, PEB is sometimes referred to as Sparse Bayesian
Learning (SBL) [Tipping, 2001]. The PEB framework
has been applied extensively to brain imaging for in-
verting hierarchical models of fMRI and PET [Friston
et al., 2002] as well as EEG responses [Henson et al.,
2011, Friston et al., 2008].
In this paper, within the PEB framework, we propose
a probabilistic generative model (PGM) of how the
raw EEG time series arises from the superposition
of the brain and non-brain (artifact) source activity.
We use an anatomical brain atlas to parameterize
the source prior such that we induce sparsity in the
number of cortical regions active at any given time
(this is known in the SBL literature as block-sparsity
[Zhang and Rao, 2013]). Then, our model can be in-
verted using an efficient block SBL algorithm recently
proposed by Ojeda et al. [2018]. Henceforth, we refer
to this new approach as PEB+ (PEB with the addi-
tion of artifact modeling). Our main contribution is
that, by explicitly modeling non-brain sources within
the PEB framework, we can unify three of the most
common problems in EEG analysis: data cleaning,
source separation, and source imaging. In addition,
we show that the PEB+ algorithm has online adap-
tation, thereby allowing it to capture transient brain
dynamics. On the theoretical side, we point out the
connections between distributed source imaging and
ICA, two popular approaches that are often perceived
to be at odds with one another.
The rest of the paper is organized into two main sec-
tions concerned with methods and results respectively.
Methods: In Section 2.1 we propose the augmented
PGM of the EEG taking into account the contribu-
tion of artifact sources and motivate all our modeling
assumptions. In Section 2.2 we outline the model in-
version algorithm. In Sections 2.3-2.3.1 we point out
the connections between PEB+ and ICA. Results:
In Section 3.1 we explain how to construct an empiri-
cal dictionary of artifact scalp projections. In Sections
3.2, 3.3, and 3.4 we investigate the respective source
imaging, separation, and data cleaning capabilities of
the PEB+ algorithm.
Throughout this paper we use lowercase and uppercase
bold characters and symbols to denote column-vectors

and matrices respectively, â is an estimate of the
parameter vector a, and IN is a N×N identity matrix.

Methods

It has been shown that popular source estimation
algorithms used in ESI such as weighted minimum
l2-norm [Baillet et al., 2001], FOCUSS [Cotter et al.,
2005, Gorodnitsky and Rao, 1997], minimum current
estimation [Huang et al., 2006], sLORETA [Pascual-
Marqui et al., 2002], beamforming [Van Veen et al.,
1997], variational Bayes [Friston et al., 2008], and
others can be expressed in a unifying Bayesian frame-
work [Wipf and Nagarajan, 2009]. We extend this
framework by explicitly modeling non-brain artifact
sources.

2.1 Augmented probabilistic generative
model

In source imaging, the neural activity is often referred
to as the primary current density (PCD) [Baillet et al.,
2001] and it is defined on a grid of known cortical
locations (the source space). Typically, a vector of Ny
EEG measurements at sample k, yk ∈ RNy , relates
to Ng PCD values, gk ∈ RNg , through the following
linear equation [Dale and Sereno, 1993],

yk = Lgk + ek, k = 1, . . . , N (1)
where ek ∈ RNy represents the measurement noise vec-
tor. The PCD is projected to the sensor space through
the lead field matrix L = [l1, . . . , lNg ] ∈ RNy×Ng
(Ny � Ng) where each column li denotes the scalp
projection of the ith unitary current dipole with fixed
orientation within the source space. When dipole ori-
entations are considered, then L ∈ RNy×3Ng and we
determine a source vector gk ∈ R3Ng . The lead field
matrix is usually precomputed for a given electrical
model of the head derived from a subject-specific MRI
[Hallez et al., 2007]. Alternatively, if an individual
MRI is not available, an approximated lead field ma-
trix obtained from a high-resolution template can be
used [Huang et al., 2016]. Then, the inverse problem
of the EEG can be stated as the estimation of a source
configuration ĝk that is likely to produce the scalp
topography yk.
In the generative model presented above, the noise
term ek is assumed to be Gaussian and spatially un-
correlated with variance λ. This simplification is
acceptable as long as EEG topographies are not af-
fected by non-Gaussian pseudo-random artifacts gen-
erated by eye blinks, lateral eye movements, facial
and neck muscle activity, body movement, among oth-
ers. Therefore, before source estimation, EEG data
are usually heavily preprocessed and cleaned [Bigdely-
Shamlo et al., 2015]. Since artifacts contribute linearly
to the sensors, ideally, one would like to characterize
their scalp projections to describe more accurately
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Figure 1: Proposed augmented generative model of the EEG. The model postulates that the EEG scalp
topography yk arises from the linear superposition of brain gi,k and artifact νj,k components weighted by
their respective scalp projections li and aj, corrupted by spatially uncorrelated Gaussian noise ek.

the signal acquisition. To this end, we propose the
following generalization of Eq (1),

yk = Lgk + Aνννk + ek (2)

where ννν ∈ RNν is a vector of Nν artifact sources
and A = [a1, . . . ,aNν ] ∈ RNy×Nν is a dictionary of
artifact scalp projections (see Fig 1).
Although the entries of A that correspond to muscle
activity may be obtained based on a detailed elec-
tromechanical model of the body [Böl et al., 2011], in
most studies this approach may not be feasible due
to computational and budgetary constraints. Janani
et al. [2017] modelled A by expanding the lead field
matrix to account for the contribution of putative
scalp sources, which were assumed to be the gen-
erators of EMG activity. They used sLORETA to
estimate brain and scalp sources simultaneously. Al-
though this approach was shown to be as effective as
ICA-based artifact removal, it was suggested by the au-
thors that the use of the non-sparse solver sLORETA
may lead to unrealistic configurations of brain and
non-brain sources. Similarly, Fujiwara et al. [2009]
augmented the magnetic lead field matrix to model
the scalp contribution of two current dipoles located
behind the eyes and used a Bayesian approach, that
has similarities with ours, to estimate brain and eye
source activity from MEG data. Although success-
ful for removing EOG activity, in their formulation,
Fujiwara et al. [2009] ignored other types of artifacts
that are harder to model such as those produced by
muscular activity.
In this paper, we take an empirical view inspired by
the success of ICA-based artifact removal approaches.
We propose constructing the dictionary A using a
set of stereotypical artifact scalp projections such as
those obtained from applying ICA to a database of
EEG recordings [Bigdely-Shamlo et al., 2013a]. We
then rewrite Eq (2) in a compact manner as follows,

yk = Hxk + ek (3)

where the gain matrix is now H , [L,A] and xk ,
[gTk , νννTk ]T is the augmented vector of hidden (latent)
brain and artifact sources (see Fig 1).
Note that, structurally, the standard generative model
in Eq (1) and the augmented one in Eq (3) are iden-
tical. They differ however in that in Eq (3) we are
explicitly modeling the instantaneous spatial contri-
bution of non-brain sources to the scalp topography
yk. Therefore, we may be able to dispense with com-
putationally expensive preprocessing data cleaning
procedures. The assumption of Gaussian measure-
ment noise yields the following likelihood function,

p(yk|xk, λ) = N(yk|Hxk, λINy ) (4)

Since Eq (3) does not have a unique solution, to
obtain approximated source maps with biological in-
terpretation we introduce constraints. One way of
incorporating constraints in a principled manner is
to express them in the form of the prior pdf of the
sources p(xk). Since the neural generators of the EEG
are assumed to be the electrical currents produced
by distributed neural masses that become locally syn-
chronized in space and time [Nunez and Srinivasan,
2006], here we chose a parameterized prior p(xk) that
induces source maps to be globally sparse (seeking to
explain the observed scalp topography by a few spots
of cortical activity) and locally correlated (so that
we obtain spatially smooth maps as opposed to maps
formed by scattered isolated sources). Artifactual
sources, on the other hand, can be assumed to be un-
correlated from one another. We use a Gaussian prior
to express these modeling assumptions as follows,

p(xk|γγγ) = N(xk|0,Σx) (5)

where the covariance matrix Σx has a block diagonal
structure [Zhang and Rao, 2013] defined as

Σx =
[
Σg

ΣΣΣν

]
(6)
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In Eq (6), the brain source prior covariance is defined
as

Σg =

γ1C1
. . .

γNROICNROI

 (7)

and ΣΣΣν = diag(γNROI+1, . . . , γNROI+Nν ) is the covari-
ance of artifact sources. The matrices Ci ∈ RNi×Ni
encode the intra-group brain source covariances and
are precomputed based on source distance respecting
the local folding of the cortex as described in [Ojeda
et al., 2018]. γγγ ∈ RNROI+Nν denotes a nonnegative
scale vector that encodes the sparsity profile of the
group of sources. Here we define NROI = 148 groups
based on anatomical regions of interest (ROI) ob-
tained from the Destrieux cortical atlas [Destrieux
et al., 2010]. We note that although other atlases
could be used within the framework outlined in this
section (e.g. the popular Desikan-Killiany 68-ROI
cortical atlas [Desikan et al., 2006]), the discussion of
issues pertaining to the selection of an optimal cortical
parcellation is beyond the scope of this paper.
Next, let model M = {λ,γγγ} be the set of hyperpa-
rameters that encode the generative model proposed
above. We use the Bayes theorem to express the pos-
terior pdf of the sources given the data and model as,

p(xk|yk,M) = p(yk|xk,M)p(xk|M)
p(yk|M) (8)

Note that p(yk|xk,M) , p(yk|xk, λ) and p(xk|M) ,
p(xk|γ) because the likelihood and priors are indepen-
dent of γγγ and λ respectively. The density function
p(yk|M) is known as the model evidence [MacKay,
2008a] and, as we will show latter, its optimization
allows us to reshape our modeling assumptions in a
data-driven manner.
The model evidence is the normalization constant of
the posterior in Eq (8), therefore it can be ignored
while searching for the maximum a posteriori (MAP)
source estimate x̂k = xMAP , which we find as the
mode of the numerator of Eq (8) conditioned onM,

x̂k = arg max
xk

p(yk|xk,M)p(xk|M) (9)

We readily determine the functional form of the pos-
terior as p(xk|yk,M) = N(xk|x̂k,ΣΣΣx|y), with the fol-
lowing conditional mean and covariance [Wipf and
Nagarajan, 2009],

x̂k = ΣxHTΣ−1
y yk

Σx|y = Σx −ΣxHTΣ−1
y HΣx

(10)

where the model data covariance is given by the fol-
lowing expression,

ΣΣΣy = λINy + HΣxHT (11)

In case that we need to obtain the cleaned EEG signal
ȳk, e.g. for visualization or scalp ERP analysis, we

subtract the artifact signal from the data as follows

ȳk = yk −Aν̂ννk = Fyk (12)

where F = I−AΣΣΣνATΣΣΣ−1
y is a spatial filtering opera-

tor and ν̂ννk is obtained (if needed) by selecting the last
Nν elements of the vector x̂k. Likewise, the estimated
PCD vector ĝk can be obtained by selecting the first
Ng elements of x̂k or using the formula

ĝk = ΣgLTΣΣΣ−1
y yk (13)

and the source activity specific to the the ith ROI
can be obtained using the formula

ĝi,k = γiCiLTΣΣΣ−1
y yk (14)

Further analysis of the source time series (e.g. ERP
and connectivity analysis) can be done by averaging
the source activity obtained in Eq (14) within ROIs,

ḡi,k = 1
Ni

∑
j∈ROIi

ĝj,k (15)

where ROIi ⊂ {1, . . . , Ng} is the subset of indices that
belong to the ith ROI.

2.2 Model learning

The source estimates and cleaned data can be ob-
tained analytically by evaluating the formulas given
in Eq (10)-(13). These formulas, however, are model
dependent because they depend on the specific values
of the hyperparameters λ and γγγ. In this section we
outline the algorithm for learning those.
To evaluate Eq (10) conditioned on the optimal model
estimate we maximize the posterior density,

M̂ = arg max
λ,γγγ

p(M|yk) (16)

where p(M|yk) ∝ p(yk|M)p(M) and p(M) is a hy-
perprior. To determine the evidence described in
Eq (8) we need to marginalize out the sources,

p(yk|M) =
∫
p(yk|xk,M)p(xk|M)dxk (17)

which for a linear Gaussian model like ours, is readily
expressed as [Barber, 2012],

p(yk|M) ∝
exp

(
− 1

2yTkΣ−1
y yk

)
|Σy|−1/2 (18)

Next, we need to specify the hyperprior p(M). As-
suming that λ and γi are independent yields the fac-
torization p(M) = p(λ)

∏
i p(γi). Since M contains

only scale hyperparameters, a popular choice is to
assume Gamma hyperpriors on a log-scale of λ−1 and
γ−1
i [Tipping, 2001]. When the scale and shape pa-

rameters of the Gamma tend to zero the hyperpriors
become flat (noninformative), in which case the opti-
mization of the model posterior density depends only
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on the model evidence. This choice of hyperprior has
the effect of assigning a high probability to low values
of γi, which tends to shrink the irrelevant components
of xk to zero, leading to a sparsifying behavior know
as Automatic Relevance Determination (ARD) [Neal,
1996, MacKay, 1992].
To obtain robust hyperparameter estimates in an on-
line fashion, we use a block of consecutive measure-
ments Y = [yk, . . . ,yk+N ] as opposed to a single
data point yk. Here we assume that the parameters
characterizing the generative model vary at a slower
rate compared to the brain and artifact dynamics
producing the measurements. In other words, sources
producing a given data block Y are not expected to
go silent from one sample to the next. This assump-
tion can be further motivated by the fact that the
EEG can be temporally segmented into a sequence
of discrete quasi-stable microstates, each of which
consisting of a scalp configuration lasting for approx-
imately 80 to 120 milliseconds before transitioning
to a different microstate [Khanna et al., 2015, Van
De Ville et al., 2010, Koenig et al., 2002]. With this
in mind, we ignore short-term correlations within a Y
block (iid assumption) and approximate the evidence
of the ensemble as,

p(Y|M) ≈
N∏
k=1

p(yk|M) (19)

where N is set so that we deal with consecutive blocks
of approximately 40 milliseconds in a way that we
don’t miss microstates.
The maximization of the model block evidence is
equivalent to minimizing the so-called type-II Maxi-
mum Likelihood (ML-II) cost function [Barber, 2012],
which is obtained by applying −2 log(·) to Eq (19),

L(M) = log |ΣΣΣy|︸ ︷︷ ︸
Complexity

+ trace
(
CyΣΣΣ−1

y

)︸ ︷︷ ︸
Accuracy

(20)

where Cy = N−1YYT is the empirical data covari-
ance. Note that the data should be zero-mean, which
can be achieved with a high-pass filtering stage during
preprocessing. Eq (20) embodies a tradeoff between
model complexity and accuracy. Geometrically, the
complexity term represents the volume of an ellipsoid
defined by Σy. In particular, as the axes of the ellip-
soid shrink due to the pruning of irrelevant sources,
the volume is reduced. The second term measures
model accuracy; i.e., how similar are the empirical and
analytic covariances Cy and ΣΣΣy. We update the model
on every block by solving the following optimization
problem

λ̂, γ̂γγ = arg max
λ,γγγ
L(M) (21)

Eq (21) can be optimized very efficiently following a
two-stage approach proposed by Ojeda et al. [2018].
In the first stage we learn a coarse-grained non-sparse

model by solving the constrained optimization prob-
lem:
λ̂, γ̂F = arg max

λ,γF
L(M)

subject to γi = γF > 0, ∀i = 1, . . . , Nγ
(22)

In the second stage we fix λ to the value λ̂ and, starting
from the value γi = γ̂F , we learn the sparse model by
solving the optimization problem:

γ̂γγ = arg max
γγγ
L(λ̂, γγγ), subject to γγγ � 0 (23)

An intuitive explanation for why the optimization
of the ML-II cost function in Eq (20) yields sparse
sources can be found in [Tipping and Faul, 2003].
We point the reader interested in the details of the
two-stage algorithm outlined in this section to [Ojeda
et al., 2018] while the MATLAB code and examples
can be freely downloaded from the Distributed Source
Imaging (DSI) toolbox repository2.

2.3 Connections between PEB+ and ICA

In the analysis presented above, the matrix H is pre-
specified. In this section, we analyze the generative
model of Eq. (3) from the ICA viewpoint. ICA is
a blind source separation method that seeks to esti-
mate the source time series (often called activations
in the ICA literature) xk from the data time series
yk without knowing the gain (mixing) matrix H. In
ICA, we assume that the latent sources are instanta-
neously independent, which yields the following prior
distribution

p(xk) =
Nx∏
i=1

pi(xi,k) (24)

To simplify the exposition, we assume the same num-
ber of sensors and sources, Ny = Nx, and the in-
terested reader can find the case Ny < Nx in [Le
et al., 2011, Lewicki and Sejnowski, 1998]. From these
premises, the objective of the algorithm is to learn
the unmixing matrix H−1 such that we can estimate
the sources with x̂k = Ĥ−1yk. The unmixing matrix
Ĥ−1 can be learned up to a permutation and rescaling
factor, which has the inconvenience that the order of
the learned components can change depending on the
starting point of the algorithm and data quality. We
can use a data block Y to write the likelihood function

p(Y|H, λ) =
∏
k=1

p(yk|H, λ) (25)

under the assumption of independent data collection.
However, we should point out that in ICA, Y is usu-
ally a data block longer than the one considered in
Section 2.2, thus the iid data assumption is harder to

2https://github.com/aojeda/dsi
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justify. To alleviate this situation the data are usually
whitened during preprocessing. We can obtain each
factor in Eq (25) by integrating out the sources as
follows

p(yk|H, λ) =
∫
p(yk|xk,H, λ)p(xk)dxk (26)

As noted by MacKay [2008b], assuming that the data
are collected in the noiseless limit, λ → 0, trans-
forms the Gaussian likelihood p(yk|xk,H, λ) into a
Dirac delta function, in which case Eq (26) leads to
the Infomax algorithm of Bell and Sejnowski [1995].
The learning algorithm essentially consists in find-
ing the gradient of the log likelihood, log p(Y|H, λ),
with respect to H and updating H on every itera-
tion such that the probability of the data increases.
As pointed out by Comon [1994], the ICA model
is uniquely identifiable only if at most one compo-
nent of xk is Gaussian. Therefore, the prior densi-
ties pi(xi,k) are usually assumed to exhibit heavier
tails than the Gaussian and, in particular, the prior
pi(xi,k) ∝ cosh−1 xi,k yields the popular ICA con-
trast function tanh(H−1yk). Note that this prior is
not motivated by a biological consideration but by a
mathematical necessity.

It is remarkable that ICA can learn columns of Ĥ
that are consistent with bipolar (single or bilaterally
symmetric) cortical current source scalp projections
without using any anatomical or biophysical constraint
whatsoever [Makeig et al., 1997]. Onton et al. [2006]
have shown that other columns may correspond to
different stereotypical artifact scalp projections as well
as a set of residual scalp maps that are difficult to
explain from a biological standpoint. Delorme et al.
[2012] have shown that the best ICA algorithms can
identify approximately 30% of dipolar brain compo-
nents (approximately 21 brain components out of 71
possible in a 71-channel montage). Although ICA
has proven to be a useful technique for the study of
brain dynamics [Makeig and Onton, 2011], we must
wonder if its performance can be improved, perhaps
by making BSS of EEG data less “blind". In other
words, if we know a priori what kind of source activity
we are looking for (dipolar cortical activity, EOG and
EMG artifacts and so on), why limit ourselves to a
purely blind decomposition?
In this paper, we advocate the use of as much infor-
mation as we can to help solve the ill-posed inverse
problem. In that sense, the use of a prespecified lead
field matrix in the generative model of the EEG forces
inverse algorithms to explain the data in terms of
dipolar sources, because the lead field is precisely an
overcomplete dictionary of dipolar projections of every
possible source there is in a discretized model of the
cortex. It has been shown that source estimation can
greatly benefit from the use of geometrically realistic
subject-specific [Cuspineda et al., 2009] or, alterna-
tively, population-based approximated lead fields ma-

trices [Valdés-Hernández et al., 2009]. Furthermore,
augmenting the lead field dictionary with a set of
stereotypical artifact projections, as proposed in Sec-
tion 2.1, furnishes a more realistic generative model of
the EEG in a way that renders blind decomposition
unnecessary or at least suboptimal for brain imaging.

2.3.1 Independent components through
PEB+

Since the source activity measured in the EEG is
mixed by the volume conduction effect, ideally, we
would like the PEB+ framework to exhibit the ICA
property of yielding maximally independent (demixed)
source time series. In this section we show that this is
indeed the case. We start by rewriting the biologically
motivated source prior of Eq (5) as

p(xk|γ) =
Nγ∏
i=1

pi(xi,k|γi) (27)

where each factor is a Gaussian pdf and i indexes
a group of sources or an artifact component. To
write Eq (27) as the ICA prior in Eq (24) we need to
integrate out the hyperparameter γi from each factor
as follows:

p(xk) =
Nγ∏
i=1

∫
pi(xi,k|γi)p(γi)dγi︸ ︷︷ ︸

pi(xi,k) is a Student t-distribution

(28)

which, given our choice of hyperprior on γi, renders
each marginalized prior pi(xi,k) a heavy-tailed Stu-
dent t-distribution [Tipping, 2001]. We note that in
our development we take the route of optimizing the
γi hyperparameters rather than integrating them out
because the former approach yields a simpler algo-
rithm and tends to produce more accurate results in
ill-posed inverse problems [MacKay, 1996]. Moreover,
the optimization of γi allows for automatic removal
of irrelevant brain and artifact components that are
not supported by the data, thereby eliminating the
subjectivity implicit in manual component selection.
Assuming the prior in Eq (27), the ICA data likelihood
of Eq (25) becomes exactly the evidence of Eq (19),
with the difference that in the PEB+ algorithm the
H matrix is known and the evidence is optimized on
small blocks of data, which gives our algorithm the
ability to run in an online manner and to capture
transient brain dynamics.
We summarize the advantages of using the PEB+
framework over ICA for source separation and imaging
of EEG data as follows:

• It deals gracefully with the overcomplete case
(Ny � Nx) by finding the MAP source esti-
mator, which always exist even in the presence
of rank-deficient data, e.g. after removing the
common average reference.
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• It deals with the redundancy in brain re-
sponses by inducing independence over groups
of sources.

• The use of the ARD prior allows for the au-
tomatic selection of components in a data-
driven manner, thereby eliminating the sub-
jectivity of selecting components based on
practitioner’s experience.

• It can adapt to non-stationary dynamics by
updating the model on smaller blocks of data.

• It can be used in online applications by lever-
aging fast evidence optimization algorithms.

• Artifact removal, source separation, and imag-
ing can be obtained simultaneously as a con-
sequence of optimizing the evidence of a bio-
logically informed generative model.

• It facilitates subject-level analysis because we
estimate the same number of cortical source
activations per subject, each of which has
known anatomical support. This eliminates
the complications of clustering ICs and deal-
ing with missing components [Bigdely-Shamlo
et al., 2013b] while allowing the use of more
straightforward and widespread statistical
parametric mapping techniques [Penny et al.,
2007].

Results

The PEB framework has been validated extensively
on simulated and real data elsewhere [Ojeda et al.,
2018, Zhang and Rao, 2013, Henson et al., 2011, Fris-
ton et al., 2008]. In this section, we study the effects
of modeling artifactual sources in the quality of the
model inversion. We also discuss source separation
through PEB+, as well as its use for data cleaning.
Then in Section 3.5 we show an application of PEB+
to the study of heading computation during full-body
rotations in the context of a mobile brain/body imag-
ing (MoBI) experiment.

3.1 Construction of artifact projection
dictionary A

To characterize artifactual ICs we used data from
two different studies made public under the umbrella
of the BNCI Horizon 2020 project3 [Brunner et al.,
2015]. Since in the next two sections we investigate
different features of the PEB+ algorithm rather than
the biological interpretation of its results, we don’t
dwell into the details of the experimental paradigms
used in each study, and we direct the interested reader
to the respective publications referenced below.

3http://bnci-horizon-2020.eu/database/data-sets

3.1.1 Data set 1: Error related potentials

The first study, 013-2015, provided EEG data from
6 subjects (2 independent sessions per subject and
10 blocks per session) collected by Chavarriaga and
del R. Millán [2010] using an experimental protocol
designed to study error potentials during a BCI task.
EEG samples were acquired at a rate of 512 Hz using a
Biosemi ActiveTwo system and a 64-channels montage
placed according to the extended 10/20 system.

3.1.2 Data set 2: Covert shifts of attention

The second data set, 005-2015, provided EEG and
EOG data from 8 subjects collected by Treder et al.
[2011] using an experimental protocol designed to
study the EEG correlates of shifts in attention. The
EEG was recorded using a Brain Products actiCAP
system, digitized at a sampling rate of 1000 Hz. The
montage employed had 64 channels placed according
to the 10/10 system referenced to the nose. In addi-
tion, an EOG channel (labeled as EOGvu) was placed
below the right eye. To measure vertical and horizon-
tal eye movements, from the total of 64 EEG channels,
two were converted into bipolar EOG channels by ref-
erencing Fp2 against EOGvu, and F10 against F9,
thereby yielding a final montage of 62 EEG channels.

3.1.3 Data preprocessing and IC scalp maps
clustering

After transforming each data file to the .set format,
both studies were processed using the same pipeline
written in MATLAB (R2017b The MathWorks, Inc.,
USA) using the EEGLAB toolbox [Delorme et al.,
2011]. The pipeline consisted of a 0.5 Hz high-pass
forward-backward FIR filter and re-referencing to the
common average, followed by the Infomax ICA de-
composition of the continuous data. We pooled all the
preprocessed data sets and randomly assigned them to
one of two groups: 80 % to the training set and 20 %
to the test set. The training set was used to construct
the artifact dictionary and the test set was used to
evaluate the performance of the PEB+ algorithm.
To construct an artifact dictionary from a hetero-
geneous EEG database, we need to represent each
independent scalp map into a common (co-registered)
channel space. To that end, we used the coordinates
of the common channels between the montages used
in the two studies described above to estimate a lin-
ear transformation from the 62-channel space to the
64-channel one. After co-registration, we pooled both
studies in the training set resulting in a matrix of 64
channels by 6774 independent scalp maps (101 ses-
sions and blocks yielding 64 ICs each plus 5 sessions
yielding 62 ICs each). It is worth emphasizing that we
only warped IC scalp maps and not the actual data
or IC activations.
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Next, we used the matrix of co-registered independent
scalp maps to estimate clusters using the k-means al-
gorithm. Clusters were labeled as Brain, EOG, EMG,
or Unknown (scalp maps of unknown origin) by an
expert. Unknown clusters were not used further in
this paper. Fig 2 shows a visualization of the IC
scalp maps using the t-distributed stochastic neighbor
embedding (t-sne) algorithm [Van Der Maaten and
Hinton, 2008]. The t-sne algorithm allows us to repre-
sent each 64-dimensional IC scalp map as a dot in a 2D
space in a way that similar and dissimilar scalp maps
are modeled by nearby and distant points respectively
with high probability. We ran the k-means algorithm
for several numbers of clusters, and we stopped at 13
after noticing that many small islands scattered at
the periphery of Fig 2 started to be either mislabeled
as Brain or labeled consistently as EOG, EMG or
Unknown. The grey points in the figure denote most
of the scalp maps labeled as non-brain.

Figure 2: t-sne visualization of IC scalp map clusters.
We used the t-sne algorithm to represent each 64-
dimensional scalp map as a dot in a 2D space in a way
that similar and dissimilar scalp maps are modeled
by nearby and distant points respectively with high
probability. The clusters were estimated using the
k-means algorithm. The grey points indicate mostly
non-brain or mislabeled scalp projections.

Using the insights from Fig. 2, we completed the aug-
mented PGM of Eq (3) by building the A dictionary
as follows:

A =
[
aEOGv ,aEOGh ,aEMG1 , . . . ,aEMG11 , INy

]
(29)

where aEOGv and aEOGh are the centroids of the ver-
tical and horizontal EOG clusters respectively, aEMGi

are the centroids of EMG clusters and we modeled
spike artifacts affecting each individual channel with
the columns of the identity matrix INy , with Ny = 64.

3.1.4 Calculation of subject-specific H
matrices

Depending on the montage of each subject, we nonlin-
early warped their 62 or 64-channel montage to the
scalp surface of a four-layer (scalp, outer skull, inner
skull, and cortex) “Collin27" template using the DSI
toolbox. Then we computed the orientation-fixed lead
field matrices L using the boundary element method
solver in the OpenMEEG toolbox [Gramfort et al.,
2010]. Next, we calculated individual A matrices
by linearly warping its columns from the 64-channel
space to the space defined by the head surface of the
template. Finally, we divided each column of the aug-
mented dictionary H by its norm so that their relative
contribution to the scalp EEG could be determined
by the amplitude of the source activation vector xk.

3.2 PEB+ artifact model validation

In this section, we investigate whether the approach
of explicitly modeling artifact scalp projections used
in PEB+ yields significantly better source estimates
than the traditional PEB. To quantify the support in
the data for a given model we used the Bayes factor.
In Bayesian model selection/comparison, the Bayes
factor is used as an alternative to classical hypothesis
testing, replacing the p-value as a measure of eviden-
tial strength while avoiding the abuse to which the
latter is often subjected to these days [Stern, 2016].
The Bayes factor between two generative modelsMi

andMj is denoted as Bi,j and is defined as the ratio
between the evidence of each model:

Bi,j = p(Y|Mi)
p(Y|Mj)

(30)

Interpreting Bi,j is straightforward, for instance
Bi,j > 1 indicates that there is more evidence in favor
of generative modelMi overMj . Likewise, Bi,j ≈ 1
means that there is no conclusive evidence in favor of
any of the models considered. Usually, a Bayes factor
in 2 loge units higher than 2, 6, and 10 is respectively
considered positive, strong and very strong evidence
in favor ofMi [Kass and Raftery, 1995]. Conversely,
note that Eq (30) can be interpreted as evidence in
favor ofMj simply by flipping the ratio.
As we explained earlier, in this paper we characterize
artifacts empirically rather than in a mechanistic prin-
cipled way. Therefore, next we used Bayes factors to
assess the performance of the PEB+ algorithm under
different variants of the artifact dictionary A. In our
analysis we considered the following models:

• M0: ignoring artifacts, A ∈ ∅ (classic PEB)
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Figure 3: Comparison of generative models with different variants of the artifact dictionary with respect to
M0. Left: Bayes factor kernel pdf estimate for each artifact model. Right: B1,0 kernel pdf estimate as a
function of artifact power.

• M1: modeling artifacts with Eq (29),

• M2: modeling EOG and
EMG components only, A =
[aEOGv ,aEOGhaEMG1 , . . . ,aEMG11 ],

• M3: modeling single channel spikes only,
A = INy .

To that end, we estimated the brain and artifact source
time series of all subjects in the testing set under each
model. We collected the log evidence afforded by each
model in blocks of 40 msec of data and computed
Bayes factors with respect toM0.
The left panel of Fig 3 shows the kernel pdf estimate
of each Bayes factor: B1,0, B2,0, B3,0 in blue, orange,
and yellow traces respectively. The area above the dot-
dashed black trace represents the probability space in
which modeling artifacts yielded a better generative
model for the EEG signal. We computed the proba-
bility of having very strong evidence in favor of model
Mi by integrating over Bayes factors higher than 10,
Pi(10 ≤ Bi,0) =

∫
Bi,0≥10 fi(Bi,0), where fi(Bi,0) de-

notes a pdf as a function of model Mi. As shown
in Table 1, modelsM1 andM2 yielded the highest
probability. SinceM1 includesM2 andM3, hence-
forth we use the artifact dictionary given by Eq (29).

M1 M2 M3
0.9704 0.9705 0.4202

Table 1: Artifact model comparison. Probability that
there is very strong support in the data in favor of
generative modelMi overM0, Pi(10 ≤ Bi,0).

To further illustrate the importance of modeling arti-
fact components, the right panel of Fig 3 shows the
kernel pdf estimate of B1,0 as a function of the arti-
fact power. The artifact power was calculated as the
maximum RMS power over the artifact sources for
each 40 msec window. We note that the shape of its
pdf depicted on the left panel seems to be determined
by the higher performance of the PEB+ algorithm un-
der different clusters of artifactual activity expanding
several orders of magnitude.
Fig 4 shows an example of applying PEB+ to an
epoch of data of 4 seconds centered around an eye
blink event. Panel A shows a 32-channel subset of
the raw and reconstructed (cleaned) EEG traces in
black and red respectively. In addition to an eye blink,
we have a lateral eye movement event around the -
1 sec latency. Panel B shows the estimated EOGv

and EOGh artifact source activity in blue and orange
respectively. We note that these artifact sources are
active only at the latencies where the EEG is affected
and mostly zero elsewhere. In panel C, the first and
last two columns represent the raw and cleaned EEG
topographies at the maximum of the lateral eye move-
ment and eye blink events respectively. PanelD shows
different views of the estimated cortical source maps
underlying the raw topographies in C. The cleaned
topographies in C are obtained after the estimated
artifact sources are projected out of the data. Panel
E shows the log evidence for generative modelsM1
andM0 in blue and orange respectively. Note that
both traces differ mostly only when artifacts occur
and higher log evidence in favor of model M1 indi-
cates that source estimation benefits from modeling
artifacts.
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Figure 4: Example of applying PEB+ to an epoch of EEG with lateral eye movement and eye blink artifacts.
A: 32-channel subset of raw and cleaned EEG traces. B: Estimated EOGv and EOGh artifact source activity.
C: Columns 1 and 3 and 2 and 4 represent the raw and cleaned EEG topographies at the maximum of the
lateral eye movement and eye blink events respectively. D: Different views of the estimated cortical source
maps underlying the raw topographies in C. E: Log evidence yielded by PEB+ and PEB algorithms on
consecutive 40 msec blocks of data along this epoch.

It is worth noting that, in the last column of panel D,
some residual eye blink artifact seems to be mistakenly
represented as a small activation in the frontal pole.
We point out that, in practice, it may be extremely
hard to totally remove artifactual activity because: 1)
the use of a lead field matrix derived from a template
head model may misfit the anatomy of the subject
introducing errors in the L dictionary, 2) errors in the
sensor locations can cause the EEG topography to

shift with respect to the expected brain and artifact
source projections, 3) EMG scalp projections are diffi-
cult to characterize due to their variability, as opposed
to EOG projections that are more stereotyped, and 4)
unmodeled muscle projections, such as those towards
the back of the head that were largely ignored in this
study. Despite all these issues, Figures 3 and 4 demon-
strate that PEB+ can yield reasonably robust source
estimates in the presence of artifacts. Furthermore,
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panel E of Fig 4 suggests that we could use dips in the
log evidence to inform subsequent processing stages
of artifactual events that were not successfully dealt
with.

3.3 Source separation performance

In this section, we investigate the source separation
performance of the PEB+ algorithm. To that end,
we used the test set to compare PEB+ and Infomax
ICA regarding 1) volume conduction unmixing perfor-
mance and 2) data size requirements for good source
separation. We assessed the unmixing performance by
calculating the mutual information reduction (MIR)
achieved by each algorithm on data blocks of different
sizes.
The MIR is an information theoretic metric that mea-
sures the total reduction in information shared be-
tween the components of two sets of multivariate time
series. The mutual information (MI) between two
given time series xi,k and xj,k, I(xi, xj), can be de-
fined as the Kullback-Leibler (KL) divergence between
their joint and marginal distributions:

I(xi, xj) = DKL[p(xi, xj) ‖ p(xi), p(xj)] (31)
where I(xi, xj) > 0 indicates that processes xi and xj
share information while I(xi, xj) = 0 indicates that
they are statistically independent such that

p(xi, xj) = p(xi)p(xj)���
��:0

p(xi|xj)
We define the MIR of source separation algorithm A
with respect to B, as the difference in normalized total

pairwise MI (PMI) achieved by each decomposition:

MIRA,B = 2
NA(NA − 1)

NA∑
i=2

i−1∑
j=1

I(xAi , xAj )−

2
NB(NB − 1)

NB∑
i=2

i−1∑
j=1

I(xBi , xBj )

(32)

where xAi and xBi are the set of components yielded
by each method and NA and NB are the number of
components afforded by each decomposition. We note
that to obtain a PMI that is not biased by the number
of components, we normalize each summation by the
number of unique (i, j) pairs. Here we calculated the
MI using the non-parametric kernel pdf estimates of
the quantities in Eq (31) for the the multichannel
EEG data, the ROI-collapsed sources estimated by
PEB+, and the ICs obtained by Infomax.
In Fig 5, the left panel shows a box plot of the MIR of
PEB+ and Infomax calculated with respect to the MI
of channel data. As indicated by the x-axis, we ran
the experiment multiple times varying the data sizes
from 0.5 to 500 seconds (∼ 8 minutes). As expected,
both algorithms reduce source MI, thereby reversing
to some extent the mixing effect of the volume con-
duction. We see also that, on average, when the MIR
is calculated in short blocks of data, PEB+ exhibits
higher unmixing performance while Infomax seems
to do better on longer blocks. This effect is more
clearly represented in the panel on the right, which
shows the box plot of the MIR of PEB+ with respect
to Infomax. In that panel, distributions with entire
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Figure 5: Source separation performance. Left: Box plot of MIR with respect to channel data computed
on blocks of various sizes. Right: Box plot of MIR of PEB+ with respect to Infomax ICA for the same
data blocks shown on the left. On each box, the central mark indicates the median, and the bottom and top
edges indicate the 25th and 75th percentiles respectively. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using the + symbol. On the right, the
distributions with entire positive (orange) or negative (blue) values indicate a significant source crosstalk
reduction in favor of the PEB+ or Infomax algorithms respectively.
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positive (orange) or negative (blue) values indicate
a significant source crosstalk reduction performance
in favor of the PEB+ or Infomax algorithms respec-
tively. We note that PEB+ better captures transient
dynamics for short 0.5-8 sec data blocks.
It is worth noting that with PEB+, it is possible
to update the unmixing matrix (given by the term
ΣxHTΣ−1

y in Eq (10)) on a time-scale of tens of
milliseconds because of the regularization induced by
the multiple constraints. This allows for adaptation
to non-stationary brain and artifact source dynamics.
Infomax (and most ICA algorithms) on the other
hand, requires larger data blocks to learn a global
factorization of mixing matrix and source activations
of reasonable quality. Moreover, Fig 5 suggests that
the estimation of a global ICA model is suitable for
identifying components that remain stationary over
the whole experiment, but otherwise, it is suboptimal
for capturing transient dynamics.

3.4 Data cleaning performance

In this section, we benchmark the data cleaning per-
formance of the PEB+ algorithm against ASR. The
ASR algorithm has gained popularity in recent years
for its ability to remove a variety of high amplitude
artifacts in an unsupervised manner, thereby enabling
automatic artifact rejection for offline as well as real-
time EEG-based BCI applications. Since in real data
we do not have a ground truth for artifactual activity,
we benchmark the methods according to the correla-
tion between raw and cleaned data samples in blocks
with negligible or no artifactual activity, where low
correlation values indicate needless distortion of the
brain activity.
We ran both algorithms for each subject in the test set
and collected the following quantities on subsequent
blocks of 40 msec: 1) the correlation between raw and
cleaned data (computed as the correlation between the
correspondent data blocks vectorized across channels
and time points) and 2) the maximum RMS artifact
power yielded by PEB+ as described in Section 3.2.
ASR’s performance depends on multiple parameters,
but it has been indicated that the most critical one is
the cutoff [Chang et al., 2018]. In the first experiment
we used a cutoff equal to 5, which was the default
value of EEGLAB’s ASR plugin at the time of this
publication.
In Fig 6, the left and right panels show the empirical
kernel pdf estimation of the correlation as a function
of the artifact’s power for the ASR and PEB+ algo-
rithms respectively. We see that in both methods, the
correlation decreases as artifact power increases. This
effect is expected and desired because cleaning algo-
rithms are supposed to modify contaminated raw data.
Towards low power artifact regions, however, ASR ex-
hibits a significant amount of probability mass that
spreads down to low correlation values while PEB+

seems to have most of its probability mass bounded
from below at around 0.8. This result indicates that,
at a cutoff of 5, ASR cleaning is overly aggressive to
the point of significantly modifying the data in the
absence of artifacts. These findings are in agreement
to what was recently reported by Chang et al. [2018].

In Section 3.2 we showed that PEB+ can reduce the
effects of eye-related artifacts. In Fig 7 we show an
example of its performance removing EMG. The data
correspond to an excerpt of EEG extracted from a
subject selected at random from the test set while
he/she was performing the respective cognitive task.
In the left panel, the gray and colored traces represent
contaminated and cleaned EEG signals respectively.
The traces shown correspond to channels located on
each side of the cap. Channels in these areas are often
contaminated by EMG activity due to their proximity
to the temporalis muscle [Fu et al., 2006]. As we can
see, the higher amplitude decorrelated EMG activity
is largely reduced. In the panel on the right, the gray
and colored traces represent the power spectral density
estimates of their respective channels on the left. We
see that a significant amount of broad band power
related to the EMG activity was removed, especially
towards frequencies higher than 18 Hz. We note that
a strong 50 Hz AC line noise remains in the cleaned
data, this is expected because in our approach we
do not model this type of artifacts and they can be
relatively easily removed using a notch filter.
To further illustrate the results of the analysis shown
in Fig 6, in Fig 8 we compare the cleaning performance
of PEB+ against ASR using two cutoff parameters
(5 and 100) and ICA on a typical epoch of EEG con-
taining lateral eye movement, eye blink, and muscle
artifacts. As before, the EEG data were extracted
from a subject selected at random from the test set.
In panel A, the shaded area in blue indicates a seg-
ment of clean data, while green, red, and yellow areas
indicate segments contaminated by lateral eye move-
ment, muscle, and eye blink artifacts respectively. The
correlation achieved by each method (computed by
vectorizing all channels and samples in the blue seg-
ment) is displayed on the top left corner of each panel.
All correlations were significant with p-values lower
than 0.005. Panels A, B, C, and D show the raw
and cleaned EEG traces produced by PEB+, ICA,
ASR (100), and ASR (5) methods respectively. For
the ICA approach we cleaned the data by removing
the contribution of several stereotypical EOG and
EMG components selected manually. PEB+ and ICA
displayed similar performance in the sense that lateral
eye movement and eye blink artifacts were largely
removed, EMG was not totally removed by PEB+,
while the clean data segment was minimally distorted,
as indicated by correlations with the raw samples of
0.8922 and 0.8294 respectively. We note that the dis-
tortion introduced by ICA could be reduced by a more
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Figure 6: Data cleaning performance. Kernel pdf estimation of the correlation between raw and cleaned data
as a function of artifact power. Left: Data cleaned by ASR using cutoff=5 (default). Right: Data cleaned
by PEB+. Note that, as expected, in both algorithms the correlation drops as artifacts increase. Towards
low amplitude artifacts, however, ASR significantly distorts the data while PEB+ does not.
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Figure 7: EMG artifact cleaning. EEG channels contaminated by EMG noise, the gray and colored traces
represent raw and cleaned data respectively. Left: Excerpt of EEG signal. Right: Welch power spectral
density estimation of the data shown on the left.

conservative selection of the artifactual ICs to remove.
ASR (100) did not distort the clean data segment
and removed the higher amplitude eye blink artifact
but failed to remove lateral eye movement and muscle
artifacts. ASR (5) removed all the artifactual activity,
however it also significantly distorted the clean data
segment as indicated by a correlation of 0.2468.

3.5 Heading computation during full-body
rotations

We finalize the paper with an application of the PEB+
algorithm to MoBI data. MoBI experiments are no-

toriously difficult to analyze due to the amount of
motion-induced artifacts as well as the presence of
transient and stationary brain dynamics of variable
duration across trials. Here, we try to replicate the
main findings of a study that looked into the dynamics
of the retrosplenial cortex (RSC) supporting heading
computation during full-body rotations [Gramann
et al., 2018].
Heading computation is key for successful spatial ori-
entation of humans and other animals. The registra-
tion of ongoing changes in the environment, perceived
through an egocentric first-person perspective has
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Figure 8: Example of the data cleaning performance of PEB+, ICA, and ASR on a noisy epoch. Only 16
channels are shown. A: PEB+. B: ICA. C: ASR with cutoff=100. D: ASR with cutoff=5 (current default
value in EEGLAB’s clean_rawdata plugin). In panel A, the segment of data used to compute the correlations
between raw and cleaned EEG is indicated with the blue shaded area (-2000 msec to -1000 msec) while
the areas shaded in green, yellow and red indicate lateral eye movement, eye blink, and muscle artifacts
respectively.

to be integrated with allocentric, viewer-independent
spatial information to allow complex navigation be-
haviors. The RSC provides the neural mechanisms
to integrate egocentric and allocentric spatial infor-
mation by providing an allocentric reference direction
that contains the subject’s current heading relative
to the environment [Byrne et al., 2007]. Single-cell
recordings in freely behaving animals have shown that
the RSC is also implicated in heading computation
[Sharp et al., 2001]. And although there is fMRI evi-
dence that points to the same conclusion in humans
that navigate in a virtual environment [Baumann and
Mattingley, 2010], verifying this hypothesis in more
naturalistic settings has remained elusive.
Recently, Gramann et al. [2018] used EEG synchro-
nized to motion capture recordings combined with
virtual reality (VR) to investigate the role of the RSC
in heading computation of actively moving humans.
Data were recorded from 19 participants using 157
active electrodes sampled at 1000 Hz and band-pass
filtered from 0.016 Hz to 500 Hz using a BrainAmp

Move System (Brain Products, Gilching, Germany).
129 electrodes were placed equidistant on the scalp
and 28 were placed around the neck using a custom
neckband. In that study, data from physically rotat-
ing participants were contrasted with rotations based
on visual flow. In the physical rotation condition,
participants wore a Vive HTC head-mounted display
(HTC Vive; 2× 1080× 1200 resolution, 90 Hz refresh
rate, 110◦ field of view). They were placed in a sparse
VR environment devoid of any landmark information
facing an orienting beacon at the beginning of each
trial. The beacon was then replaced by a sphere that
started rotating around them to the left or the right at
a fixed distance with two different, randomly selected,
velocity profiles on each trial. Participants were in-
structed to rotate on the spot to follow the sphere and
keep it in the center of their visual field. The sphere
movement was completed at an eccentricity randomly
selected between 30◦ and 150◦ relative to the initial
heading. When the sphere stopped, they had to rotate
back and press a controller button to indicate when
they believed to have reached their initial heading
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orientation. After the button press, the beacon would
reappear and participants had to rotate to face the
beacon and to start the next trial. In the joystick ro-
tation condition, participants stood in front of a large
TV screen (1.5 m viewing distance, HD resolution,
60 Hz refresh rate, 40′′ diagonal size) controlling a
gaming joystick to rotate in the same VR environment
with an otherwise identical trial structure.
Using an ICA/dipole fitting approach, the data was
analyzed with a focus on oscillatory activity of ICs
located in or near the RSC. ICs were clustered using
repetitive k-means clustering optimized to the RSC
as the region of interest. Four subjects without an IC
in the RSC were excluded from the analysis (21% of
all participants). Subsequently, the wavelet (Morlet)
time-frequency decomposition was computed for each
IC in the RSC cluster for the rotation periods. The
spectral baseline was defined as the 200 msec period
before stimulus onset and subtracted from each time-
frequency decomposition. To account for different
trial durations, single trial time-frequency maps were
linearly time-warped with respect to the presentation
of the stimulus and rotation onset and offset to cre-
ate time-warped event-related spectral perturbations
(ERSPs). Using this approach, the data from the RSC
cluster in the joystick rotation condition replicated
previous studies using desktop navigation protocols
and comparable data analysis approaches [Gramann
et al., 2010, Chiu et al., 2012, Lin et al., 2015, 2018],
exhibiting 1) a theta burst between stimulus onset
and movement onset and 2) alpha and beta desynchro-
nization during the rotation. The physical rotation,
however, had drastically different properties: no clear
theta burst was present before movement onset, and
only minor desynchronization in higher beta bands,
but synchronization in the alpha and low beta bands
after movement onset and delta and theta bands dur-
ing the rotation (see Fig 9 A-B).
Here, we used the PEB+ algorithm to re-analyze
the data. To this end, we further down-sampled the
data to 250 Hz, removed the neck channels, applied
a 0.5 Hz high-pass forward and backward FIR fil-
ter, and subtracted the common average reference.
We co-registered each subject-specific 129-channels
montage with the head surface of the “Colin27" tem-
plate, computed each lead field matrix, and linearly
warped the A dictionary to the space of the individu-
alized template as explained in Section 3.1.4. Then
we ran the PEB+ algorithm for each condition and
computed the ERSPs of the centroid source activity
(see Eq (15)) within the RSC. The computation of
ERSPs was identical to the previous one, only the IC
activity of the RSC cluster was replaced by PEB+
RSC source activity of all subjects.
Fig 9 C-D shows the PEB+ group ERSP for the joy-
stick and physical rotation conditions as well as their
difference. The top panel shows in red the location of

the RSC in our template brain. Despite the differences
between the two methodologies, our results largely
replicate those in [Gramann et al., 2018] displayed in
panels A-B. A few differences between the two results
are worth mentioning though. We point out that the
differences in ERSP scales exhibited in panels B and
D may be explained by different scales of the sources
obtained by ICA and PEB+. Also, we note that the
low-frequency power increase towards the end of the
head rotation cycle in panel D Joystick condition can
be explained by artifacts improperly removed near
the end of a few trials. It should be emphasized that,
unlike the approach used by Gramann et al. [2018],
ours has the advantage of using data from all subjects
without any cleaning in the time, channel, or trial
domains, except for the inherent cleaning capabilities
of the PEB+ algorithm. To increase the robustness
to residual artifacts, Fig 4 E suggests that a future
research direction could explore the use of the log evi-
dence yield by PEB+ to automatically downplay the
influence of artifactual trials into post hoc statistical
summaries.

Conclusions

In this paper, we have extended the Parametric Em-
pirical Bayes (PEB) framework previously proposed
for electrophysiological source imaging [Henson et al.,
2011, Wipf and Nagarajan, 2009] in two ways. First,
we augmented the standard generative model of the
EEG with a dictionary of artifact scalp projections
obtained empirically. In our model, we captured EOG,
EMG, and single-channel spike artifacts. Second, we
used an anatomical atlas to parametrize a source
prior that encourages sparsity in the number of ac-
tive cortical regions, which has the desired property
of inducing the segregation of the cortical electrical
activity into a few maximally independent compo-
nents with known anatomical support. We used these
elements to develop the PEB+ inversion algorithm.
Under the proposed framework, dissimilar problems
such as data cleaning, source separation, and imaging
can be understood and solved in a principled manner
using a single algorithm. Furthermore, we used our
framework to point out the connections between dis-
tributed source imaging and Independent Component
Analysis (ICA), two of the most popular approaches
for EEG analysis that are often perceived to be at
odds with one another.
We used publicly available data from two independent
studies to develop and test the proposed algorithm.
In particular, we have shown that PEB+: 1) outper-
forms classic PEB for source imaging when artifacts
are present in the data, while on clean data their per-
formance is comparable, 2) outperforms Infomax ICA
for source separation on short blocks of data, thereby
showing potential for tracking non-stationary cortical
dynamics, and 3) unlike the popular Artifact Subspace
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Figure 9: Event-related spectral perturbations (ERSPs) in the RSC. Panels A and B are adapted from
Gramann et al. [2018]. A: Cluster of IC equivalent current dipoles in or near the RSC. B: ICA derived
ERSPs of the joystick and physical rotation conditions and their difference. C: Location of the RSC in the
cortical surface of our template. D: PEB+ derived ERSPs of the joystick and physical rotation conditions
and their difference. The x-axes at the bottom of panels B and D are annotated with the stimulus onset
(Stm), movement onset (Start), percentage of the head rotation cycle, and movement offset (End).

Removal algorithm, it can reduce artifacts without
significantly distorting epochs of clean data. Further-
more, we were able to replicate the main finding of a
study that looked into the dynamics of the retrosple-
nial cortex (RSC) supporting heading computation
during full-body rotations.
The ability to estimate the time series of EEG sources
that correspond to known anatomical locations ac-
counting for the influence of artifacts without user
intervention, as well as its online adaptation, makes
the PEB+ algorithm appealing for established ERP
paradigms as well as MoBI. We believe that the pro-
posed algorithm can help to solve basic research ques-
tions employing EEG as the functional imaging modal-
ity, and at the same time constitute a biologically-

grounded signal processing tool that can be useful to
translational efforts.
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