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Abstract

We present Samovar, a mosaic single-nucleotide variant (SNV) caller for linked-read whole-
genome shotgun sequencing data. Samovar scores candidate sites using a random forest model
trained using the input dataset that considers read quality, phasing, and linked-read character-
istics. We show Samovar calls mosaic SNVs within a single sample with accuracy comparable
to what previously required trios or matched tumor/normal pairs and outperform single-sample
mosaic variant callers at MAF 5%-50% with at least 30x coverage. Furthermore, we use Samovar
to find somatic variants in whole genome sequencing of both tumor and normal from 13 pediatric
cancer cases that can be corroborated with high recall with whole exome sequencing. Samovar
is available open-source at https://github.com/cdarby/samovar under the MIT license.

1 Background

Genomic mosaicism results from postzygotic de novo mutations, ranging from single-nucleotide
changes to larger structural variants and whole chromosome aneuploidy. Mosaic mutations are
present in some of the cells belonging to the offspring, but in none of either parents’ cells [1, 2].
The distribution and prevalence of cells with a mosaic mutation depend on a combination of the
developmental cell lineage, stage at which the mutation occurred, selection for or against cells with
the mutation [3], and cell migration [4]. Somatic mosaicism refers to genetic heterogeneity among
non-germ cells, which accrue in normally dividing cells throughout the human lifetime [5, 6, 7]
corroborated by monozygotic twin studies [8]. Mosaicism also plays an important role in many
genetic diseases. Pathologically, cancer is characterized by an overall increased mutational load in
tumor cells as well as a high level of intra-tumor genetic heterogeneity [9, 10]. Mosaicism has also
been implicated in autism [11] and is being explored in connection to other neurological disease [12,
13, 14]. Causal mosiac mutations have also been found for Sturge-Weber syndrome [15], McCune-
Albright syndrome [16] and Proteus syndrome [17] among others.

Mosaic variants can be detected by whole-genome or targeted sequencing of affected tissue.
Samovar operates on linked reads, which are sets of sequencing reads deriving from a longer fragment
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such as those from the 10X Genomics Chromium instrument (Pleasanton, CA). While the individual
(“constituent”) reads are typical short Illumina reads, the longer fragments can be tens or hundreds
of kilobases long. The mapping from constituent reads to fragments of origin is established by
molecular barcodes added in the Chromium library preparation step. The average sequencing
coverage per long fragment is usually low: around 0.1-fold [18]. Since constituent reads can be
paired-end, we use the term “long fragment” for the longer fragment from which a linked read is
derived, and “short fragment” for fragments from which paired-end reads are derived.

The properties of linked reads enable many potential improvements in variant detection and
related analyses [19]. For example, a constituent read that would align repetitively by itself might
align uniquely when alignments of other reads from the same long fragment are accounted for [20,
21]. Linked read based algorithms have been developed for de novo assembly [22, 23, 24] de novo
mutation calling [25], assembly error-correction [26] and structural variant calling [27, 28, 29, 30,
31]. Also, linked reads enable more accurate and contiguous assembly of haplotypes [18, 32] since
constituent reads can be phased even when only some overlap heterozygous variants (Figure 1b).

Figure 1: (a) A mosaic mutation occurs on haplo-

type H2. (b) Therefore, in linked read sequencing,

where short reads can be phased when linked reads

overlap phased heterozygous variants, mosaic mu-

tations manifest on reads from only one haplotype,

here H2. Adapted from Figure 3 of [33]

Though downstream tools benefit auto-
matically from some linked-read properties —
e.g. improved alignment accuracy — other ben-
efits require specialized methods to exploit. In
particular, the detection of a somatic mosaic
SNV can benefit from haploytype assembly only
if the model is informed by the mapping be-
tween constituent reads and linked reads. As
an example, in a diploid sample with haplotypes
H1 and H2, suppose a mosaic mutation occurs
on haplotype H2 yielding a collection of reads
(labeled H2’) that have the mosaic allele but
otherwise match H2 (Figure 1a). The mosaic
mutation will likely be tolerated by the haplo-
type assembler and the reads will still be as-
signed to H2 (Figure 1b). The fact that all
the mosaic-carrying reads fall on the same hap-
lotype is a hallmark of post-zygotic mosaicism
[11] and contrasts with sequencing error, which
would tend to distribute the “mosaic” alleles
evenly across haplotypes [34]. Reads with the
mosaic allele are called haplotype-discordant
reads, and these are the most reliable kind of evidence we can gather in support of mosaic variants.

The mosaic variant caller’s task is to distinguish the signature of a mosaic variant from that of
a germline variant after it has been affected by sequencing errors, alignment errors, copy-number
changes and other confounders. Most methods employ statistical tests on the sequencing reads
aligned to a particular site, comparing allele frequency between “tumor” and “normal” (or between
the observed and expected value for a germline variant). See [33] for a review of methods to
detect such mutations in scenarios other than cancer, and [35] for a comparison of several tools in
the cancer context. Samovar is unique in that it is the first to evaluate haplotype-discordant reads
identified through linked read sequencing, thus enabling phasing and moasic variant detection across
essentially the entire genome. It also evaluates the statistical characteristics of the haplotypes, depth
of coverage, and potential confounders such as alignment errors, to robustly identify mosaic variants
from a single sample.
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2 Results

2.1 Samovar pipeline

Figure 2: Samovar workflow.

We present Samovar, a single sample mosaic
SNV caller designed for 10x Genomics linked-
read whole-genome sequencing (WGS) data.
Samovar takes as input phased variants in VCF
format and linked-read alignments in BAM for-
mat. These are both output by 10x Genomics’
Long Ranger pipeline, which preprocesses reads,
aligns linked reads, calls variants and assembles
haplotypes.

The Samovar workflow is shown in Figure
2, and proceeds in six major steps. In step
1, Samovar identifies all genomic sites where
there is sufficient data to apply our model. This
is done by filtering based on features such as
depth of coverage, fraction of reads that are
phased, frequency of the candidate mosaic al-
lele, and related data characteristics. In step
2, Samovar modifies the input BAM file to in-
troduce synthetic mosaic variants to be used
as sample-specific training data. Specifically,
these variants are used as positive examples
for training our model, whereas real homozy-
gous/heterozygous variants, as called by Long Ranger, are used as negative examples. In step
3, Samovar trains a random forest model containing an ensemble of 100 individual decision trees
that scores sites according to their resemblance to the synthetic-mosaic sites. In step 4, Samovar
scores all sites that passed the initial filter using this model. In step 5, complex repeat regions and
non-diploid copy-number regions are optionally filtered out. In step 6, a final filter removes false
positives resulting from alignment errors to produce scored mosaic variant calls.

2.2 Simulation experiment

To benchmark Samovar, we used bamsurgeon [36] to insert synthetic mosaic variants into the
NA24385 10x Genomics Chromium BAM file from the Genome in a Bottle project [37]. Train-
ing and testing occurred using sites on the autosomal chromosomes only since NA24385 is male.
The mean inferred linked read length is 16,176 bp with standard deviation 54,387 bp. To evaluate
performance at lower coverage and in other tools’ paired mode, the original BAM file (mean cover-
age 61.8; median 60 at bamsurgeon-modified sites, excluding reads marked duplicate) was split in
half based on read group tag and we subsequently modified only one half with bamsurgeon (mean
coverage 30.6, median 29 at bamsurgeon-modified sites). Splitting by read group tag ensures that
an entire linked read will be placed into the derivative BAM file. Experiments with the original
BAM file are referred to as “60X coverage” and those with the subsample as “30X coverage.”

Samovar model comparison To measure the specific advantage conferred by linked reads, we also
implemented two reduced Samovar models that incorporate less of the variant phasing information.
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Figure 3: Precision calculated for Samovar, MuTect2, and MosaicHunter variant calls stratified by

mosaic allele fraction (MAF) in the whole genome sequencing data (WGS). (a) 30X coverage (b) 60X

coverage

The “short-only” model redefines the fragment-level model features so that they use information
summarized over the shorter, paired-end-level fragments rather than the longer linked-read-level
fragments. In this model, a paired-end read is assigned to a haplotype only if one of the ends
overlaps a heterozygous variant phased by Long Ranger. Past work showed that even the phasing
information from short fragments can improve mosaic variant calling accuracy [34]. We find while
the precision is comparable to the Samovar full model, the number of variant calls is much lower,
resulting in a genome-wide recall of 2.0% at 30X and 60X, because there are few sites for which
adequate phasing information can be compiled from short reads alone (Figure S4, Table S4).

We also created a “no-phasing” Samovar model that used no fragment phasing information at all.
This was accomplished simply by omitting the fragment-level features from the model. Precision in
every MAF bin is near zero, although genome-wide recall is 68.3%, underscoring the importance of
phasing features to our approach (Figure S4, Table S4).

MosaicHunter and MuTect2 comparison We compared Samovar to MosaicHunter v. 1.1. [38].
We ran MosaicHunter in “tumor-only mode” analyzing only the bamsurgeon-mutated BAM file from
NA24385, as well as in “trio mode” where the unaltered GIAB 10x Genomics Chromium BAM files
from the mother (NA24143) and father (NA24149) were also provided. The parental BAM files
were similarly produced by Long Ranger but not modified by bamsurgeon. While Samovar does
not use trio information, we hypothesized that its modeling of linked-reads would allow it to have
competitive accuracy. The modified and unmodified halves of the BAM file split by read group were
provided when MosaicHunter was run in “paired-mode” as tumor and normal, respectively.

We also compared Samovar to MuTect2 from GATK v. 4.0.12.0. [39]. We ran MuTect2 in
“tumor-only mode” and “paired-mode” on the same data described above. Tumor-only mode calls
mosaic and germline mutations simultaneously but does not differentiate between the categories;
hence the number of calls is much higher.

Figure 3 shows each tool’s precision, stratified by MAF in the tumor WGS. Precision is cal-
culated as the fraction of variant calls made that were bamsurgeon synthetic mutations. Samovar
achieves consistently higher precision than the tumor-only modes of MuTect2 and MosaicHunter.
Importantly, Samovar’s precision is also comparable to those tools in their trio and paired modes,
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Samovar MuTect2 MosaicHunter
Tumor-Only Paired Tumor-Only Paired Trio

30X Coverage Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5

Autosomes 84.0 30.1 61.9 3.0 82.3 3.7 60.8 91.4 65.1 31.5 5.1 15.5 79.2 20.7 50.5 70.4 20.7 47.5
Exons 84.0 28.3 60.3 3.6 85.5 4.5 60.1 92.0 64.6 35.0 7.1 19.6 82.1 30.8 61.6 73.7 30.8 57.6
Genes 84.9 30.1 62.2 3.2 83.5 4.0 63.0 92.0 67.3 32.6 5.7 16.7 79.9 22.7 53.2 71.2 22.7 49.9
Enhancer 88.5 31.0 64.6 3.9 84.6 4.9 72.9 92.3 76.1 37.8 5.9 18.1 85.5 29.5 62.0 80.2 29.5 59.7
Promoter 83.3 26.1 57.9 3.0 81.5 3.8 59.4 90.9 63.9 35.3 6.1 18.0 80.5 25.1 55.9 73.7 25.1 53.1
Alu 82.0 28.6 59.7 2.3 77.0 2.9 54.5 88.4 59.0 8.6 0.0 0.2 56.5 0.3 1.4 53.1 0.3 1.4
RepeatMasker 84.2 29.6 61.6 2.8 80.6 3.4 58.9 90.1 63.2 20.2 0.3 1.4 72.3 1.4 6.4 61.3 1.4 6.4
Seg. Dup. 25.6 10.4 19.8 1.3 55.7 1.6 18.4 62.8 21.4 6.6 0.5 1.8 39.3 1.7 7.1 29.1 1.7 6.8
60X Coverage Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5 Prec Rec F0.5

Autosomes 84.6 43.0 70.9 3.6 76.0 4.5 32.4 15.5 26.6 46.8 27.2 40.9
Exons 84.3 41.8 70.1 4.7 79.6 5.8 38.5 25.3 34.9 54.0 45.5 52.1
Genes 85.6 43.4 71.7 3.9 77.2 4.9 33.1 17.0 27.8 47.7 30.0 42.6
Enhancer 90.8 47.8 77.0 4.8 77.9 5.9 36.9 22.7 32.8 51.6 40.0 48.8
Promoter 85.4 40.7 70.0 4.0 76.8 4.9 38.5 21.1 33.0 56.4 40.5 52.3
Alu 81.1 42.9 68.8 3.0 68.0 3.6 16.5 0.2 1.1 31.7 0.5 2.3
RepeatMasker 84.2 42.2 70.2 3.4 74.1 4.1 24.7 1.0 4.3 38.3 1.8 7.4
Seg. Dup. 28.0 13.1 22.8 1.6 48.5 2.0 9.8 1.5 4.7 18.5 2.7 8.6

Table 1: Precision (Prec), recall (Rec), and F0.5 score (F measure with � = 0.5) of each tool for the

synthetic mosaic variants inserted by bamsurgeon.

with MosaicHunter’s paired and trio modes achieving slightly higher precision at MAFs � 0.2 and
MuTect2’s paired mode achieving higher precision at MAFs � 0.3.

Note that in all cases, the original 10x Genomics BAM file was used. This means that all three
Samovar models (as well as MuTect2 and MosaicHunter) benefited from the improved alignment
accuracy of the linked-read-aware Lariat aligner, giving the short-only and no-phasing models and
the other two methods a somewhat artificial advantage.

In addition to performance genome-wide we evaluated precision and recall (i.e. TPR) across
different annotated genomic regions: genes, exons, all repeats, Alu repeats, segmental duplications,
enhancers and promoters listed in the UCSC Genome Browser and Ensembl, shown in Table 1.
Recall is calculated as the fraction of bamsurgeon synthetic mutations with at least four mosaic allele
reads that were in the variant call set since both Samovar and MosaicHunter require at least four
reads to support a variant call. In practice, many tools including Samovar and MosaicHunter apply
filters that exclude portions of the genome that lack sufficient evidence or that are inherently difficult
to analyze, such as highly repetitive portions, which particularly contributes to MosaicHunter’s
poor performance in these genomic regions. (See Note S4.) Furthermore, 66% of the Samovar
false negative sites over which recall was evaluated in the 30X coverage experiment and 38% of
false negatives in the 60X experiment had fewer than four haplotype-discordant reads, which is
the default requirement for Samovar. Relaxing this parameter can boost recall, although may also
impact precision.

2.3 Pediatric cancer

We next studied a collection of 13 pediatric cancer cases that we sequenced — both tumor and
normal – using 10x Genomics Chromium Whole-Genome Sequencing (WGS) and Whole-Exome
Sequencing (WES). One of these cases was studied previously [40], and the other twelve are novel to
this work. We ran Samovar, MosaicHunter (in both paired and tumor-only modes), and MuTect2
(in both paired and tumor-only modes) on each of the 13 tumor WGS datasets. When running
MosaicHunter or MuTect2 in paired mode, we also provided the paired normal WGS.

To estimate accuracy of the different approaches, we used the WES sequencing as a validation
dataset as it provides independent and deeper coverage over candidate variants within the exome.
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We first identified the calls from each tool within the exome capture region. The number and
precision of the exome-coincident calls made by each tool are shown in Table 2.

Samovar MuTect2 MosaicHunter
Case Full Model Tumor-Only Paired Tumor-Only Paired

Calls Prec Calls Prec Calls Prec Calls Prec Calls Prec
1 22 0.71 23,216 0.03 406 0.45 202 0.63 144 0.62
2 23 0.75 23,960 0.02 341 0.20 258 0.25 124 0.27
3 42 0.74 23,866 0.02 359 0.34 177 0.45 68 0.66
4 37 0.72 24,317 0.02 285 0.28 159 0.46 81 0.59
5 21 0.91 24,036 0.01 321 0.33 170 0.45 69 0.70
6 50 0.95 23,978 0.01 265 0.36 234 0.41 108 0.56
7 23 0.80 23,905 0.02 245 0.29 88 0.63 58 0.78
8 28 0.74 23,949 0.02 322 0.24 187 0.44 86 0.47
9 25 0.62 24,893 0.02 276 0.31 185 0.46 78 0.56
10 29 0.53 25,290 0.01 313 0.28 344 0.33 144 0.49
11 22 0.70 24,043 0.02 284 0.41 105 0.75 83 0.80

12 21 0.58 23,875 0.02 278 0.48 178 0.58 72 0.81

13 15 0.71 23,663 0.02 268 0.35 112 0.76 66 0.80

Total 358 312,991 3,963 2,399 1,181

Table 2: Number of variant calls in the exome cap-

ture regions and precision (Prec) based on support-

ing reads found in WES. Samovar has the highest

validation rate in 10 out of the 13 cases.

We then examined the corresponding WES
tumor data for evidence of the mosaic call made
in the WGS data. We considered a mosaic vari-
ant call to be “validated” if (a) the correspond-
ing WES tumor sample had at least 50 aligned
reads at the locus with at least 4 reads support-
ing the mosaic allele, and (b) the mosaic variant
was not found to be germline by Long Ranger
in both the tumor and normal WGS data from
that patient. Figure 4 stratifies the validation
rate by MAF in the WGS data and Table 2
shows each tool’s overall precision for the calls in
the exome capture region. The bar graph shows
the number of variants in each MAF bin. Mo-
saicHunter paired called 3 times as many vari-
ants as Samovar, and MuTect2 paired called 11

times as many variants. This is because Samovar requires phasing-based evidence to make a call.
However, Samovar’s validation rate is comparable to the paired callers across a range of MAF, indi-
cated by the comparable precision of Samovar in Figure 4e compared to other tools’ paired modes in
a and c. Against tumor-only modes of other tools, Samovar has superior precision especially at MAF
� 0.15: MuTect2 tumor-only mode is not designed to differentiate heterozygous from high-MAF
mosaic variants, and MosaicHunter makes few calls with a low validation rate.

As Samovar demonstrated high single sample precision in simulation, comparable to the other
tools’ paired analysis, we are also able to run it on the normal control available for each of these
cases. Sensitivity was measured in the same fashion using WES of the normal sample; across all 13
samples, 732 variants were in the exome capture region and the validation rate was 65% (see Table
S9 for per-sample statistics). Interestingly, using ANNOVAR [41], we determined 11 of these mosaic
mutations across 7 cases were nonsynonymous (amino-acid-changing) in one of the 299 cancer driver
genes listed in [42]. The extent of mosaicism in normal tissue and how this may relate to pediatric
cancer are interesting avenues of future study now possible with Samovar.

3 Methods

3.1 Samovar pipeline

Samovar is implemented in Python 3 and operates on the alignment (BAM) and variant (VCF) files
produced by 10x Genomics’ Long Ranger pipeline. See Note S1 for software dependency and input
file requirements.

(1) preFilter Samovar first scans the genome calculating the features listed in Figure S8 at each
site. Each feature has a numerical threshold, and if all filters are passed the site is considered in step
4 (classify) as a candidate variant site. These filters examine measurements such as depth, number
of haplotype-discordant reads, quality of the alignments and credibility of the read phasing.

(2) simulate Simulated mosaic training examples are generated at regular intervals across the
genome at a range of mosaic allele frequency (MAF) from 0.025 to 0.475 at increments of 0.025.
Such sites are called “simulation sites.” Sites harboring germline variant calls can be excluded by
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specifying them in a VCF. For each phased alignment having the reference allele at the simulation
site, the reference allele is randomly changed to the mosaic base with probability equal to the
target MAF. For an unphased alignment having the reference allele, the reference allele is randomly
changed to the mosaic base with probability MAF

2 , on the principle that unphased reads are equally
likely to originate from either haplotype. The features listed in Figure S5 are computed for the
simulation sites to obtain true-mosaic training examples. The same features are computed for
FILTER=PASS phased heterozygous (GT=0|1 or GT=1|0) and homozygous (GT=1|1 or GT= 0|0)
variant sites from the VCF to get true-non-mosaic examples.

Figure 4: Fraction of variant calls in exome cap-

ture region supported by WES data (black line, left

axis ticks) and number of variant calls (gray bars,

right axis ticks) stratified by mosaic allele fraction

(MAF), combined for the 13 pediatric cancer cases

studied. (a) MuTect2 paired (b) MuTect2 tumor-

only (c) MosaicHunter paired (d) MosaicHunter

tumor-only (e) Samovar

(3) train A random forest model is trained
with an equal number of simulation sites and
non-mosaic sites. Non-mosaic sites are se-
lected to have equal amounts of heterozygous
and homozygous calls in the VCF. We use the
RandomForestClassifier module from the scikit-
learn library [43] with max_leaf_nodes 50 and
n_estimators 100, though Samovar allows the
user to customize these hyperparameters. The
random forest features described in Table S5
take into account the abundance and consis-
tency of evidence for a mosaic variant, includ-
ing the number of haplotype discordant reads,
mosaic allele fraction, base quality, alignment
score, amount of soft clipping, presence of in-
dels, etc.

After cross-validation at a variety of se-
quencing depths (Table S1), we found that
using 20,000 mosaic, 10,000 heterozygous and
10,000 homozygous training examples achieved
a balance of computational efficiency and accu-
racy. We subsampled the NA24385 BAM file
used for the simulation experiment and ran the
Samovar simulate and train steps. For each
number of training examples, average perfor-
mance statistics are reported for ten indepen-
dent train/validation splits; 0.5 and 0.9 refer to the random forest probability that the example is
in the mosaic class.

(4) classify Genomic sites passing the preFilter are classified by the trained random forest model,
yielding the predicted probability that the site is mosaic. Sites with probability above a cutoff are
reported in BED format. Based on cross-validation at a variety of sequencing depths, we found that
a probability cutoff of 0.5 balances false positive rate and true positive rate (Table S1), though this
can be adjusted to trade between sensitivity and precision.

(5) region-based filter As Illumina sequencing is known to have high error rates within mi-
crosatellites and simple repeat sequences [44], we exclude candidate mosaic variants idenfied in
these regions. Specifically, we exclude variants within +/- 2bp from 1,2,3,4-bp repeats at least
4bp long with at least 3 copies of the unit. Within hg19, 72.0% of autosomes and 71.4% of auto-
somes+X+Y will remain after this region filter, and within GRCh38 73.8% of autosomes and 73.1%
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of autosomes+X+Y remain. We also exclude any CNV regions +/- 5bp identified by CNVNA-
TOR [45] because polymorphism among the copies of a repeated region would be misconstrued as
mosaicism.

(6) postFilter Our expectation is that mosaic variants are isolated events. Samovar applies a final
test to distinguish an isolated, likely mosaic variant from the situation where there are many nearby
variants co-occuring on the same reads. The latter pattern is usually caused by alignment errors
in the presence of repetitive DNA and copy number variation. Specifically, we examine each base
within a fixed distance of the mutative mosaic locus. At each base we conduct a Fisher’s exact test,
testing if the alleles observed at the query base associate with the haplotype-discordant reads. If the
most significant p-value among all the statistical tests is less than the threshold, the site is filtered
out. Based on simulations, we find that the p-value threshold can be set to 0.005 (default) or lower
based on the desired balance between precision and recall. There is an option to avoid particular
sites when calculating the minimum p-value among all nearby sites and it is recommended to use
the germline VCF of variant calls here.

The final mosaic variant calls are reported in VCF format. VCF INFO tags are used to convey
information such as the number of haplotype-discordant reads, the model-predicted probability, and
the minimal p-value obtained by the postFilter.

3.2 Simulation experiment

Input data We downloaded the 10x Genomics Chromium datasets for the A/J trio processed
with Long Ranger version 2.1 and GRCh38 from the GIAB project: FTP Link We use the BAM
file from sequencing the son’s genome (NA24385) as the basis for this simulation experiment, but
MosaicHunter uses the BAM files for the mother (NA24143) and father (NA24149) in trio mode.

We use a custom fork of bamsurgeon [36] to edit the reads in the BAM file. Given a target MAF,
a 2 ⇥ MAF fraction of reads with tag HP=1, and a MAF fraction of reads with no HP tag are
selected to mutate. The alternate allele is chosen randomly among the three non-reference bases.

Simulated mosaic mutations were introduced at evenly spaced intervals every 20,000 bp on the
autosomes with target MAF between 0.025 and 0.475 in increments of 0.025. Reads were realigned
with BWA-MEM after mutations were introduced. To compute precision, the denominator is sites
with at least 4 alt-allele reads and 16 total reads (not marked duplicate or QC fail). This is because
the parameters we chose for Samovar and MosaicHunter require at least 4 reads to call a mosaic
variant, and Samovar’s depth filter threshold is 16 (MosaicHunter’s minimum depth is 25, which we
keep, so technically fewer sites are visible to MosaicHunter).

Samovar We use 20,000 simulated mosaic, 10,000 heterozygous and 10,000 homozygous training
examples to train each random forest model described. Table S3 has the feature importances of the
Samovar model, with abbreviation and number as in Figure S5.

Samovar Short-read phasing model Samovar is designed to take advantage of the long-range
phasing information given by linked reads. Previous methods similarly took advantage of the
shorter-range phasing information given by paired-end sequencing. We can simulate the paired-
end strategy in Samovar, allowing us to compare to the linked-read strategy while holding the rest
of the pipeline constant. We begin by creating a “short-read phasing” Samovar model that breaks
down the linked reads into their constituent paired-end reads and considers only these shorter frag-
ments when compiling linked-read-related features such as haplotype-discordant reads.

Supposing that we have the complete haplotype phasing from Long Ranger, we assign a haplo-
type to a pair of reads if either mate overlaps at least SNP with a phased genotype in the VCF. Out
of 1.91 billion reads, 9.76% of reads could be phased. Only 0.006% of reads overlapped variants but
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had alleles for conflicting haplotypes – these were not phased. Table S6 has the feature importances
of this limited model, with abbreviation and number as in Figure S6.

Samovar No-phasing model While we do not advocate this approach, for the purposes of com-
parison, we remove all phasing-related features from Samovar to create a “no-phasing” model. Table
S7 has the feature importances of this limited no-phasing model, with abbreviation and number as
in Figure S7. Filters use the default parameters described in the preFilter feature list (Figure S8).

MosaicHunter Version 1.1. We used the default recommended parameters when possible, except
we did not use the misaligned_reads_filter because it was extremely slow. In addition, because we
have simulated far more mosaic sites than would be expected in a normal genome, we do not want
to penalize MosaicHunter because it deliberately filters mosaic sites that are close to each other so
we changed the following parameters:

• clustered_filter.inner_distance=2000 [default 20000]
• clustered_filter.outer_distance=2000 [default 20000]

We also adjusted MosaicHunter’s supporting read threshold since Samovar requires at least 4 minor
(mosaic) allele reads using: base_number_filter.min_minor_allele_number=4 [default 3]

We used liftOver to transfer the provided WGS.error_prone.b37.bed and all_repeats.b37.bed

to GRCh38 coordinates, and downloaded dbsnp_human_9606_b150_GRCh38p7 bed files for the
common_site_filter, repetitive_region_filter, mosaic_filter.dbsnp_file respectively.

Note that the homopolymers_filter, common_site and repetitive_region BED files leave
visible only 32.2% of bases in the GRCh38 autosomes (34.4% including X and Y) to call mosaic
variants. For comparison, Samovar considers about 73% of GRCh38 visible.

MuTect2 Version 4.0.12.0. We executed the standard GATK workflow of the Mutect2 program
followed by FilterMutectCalls.

Genomic feature analysis knownGene, knownGene exons, RepeatMasker, RepeatMasker Alu,
Segmental duplications are from UCSC Table Browser (GRCh38, accessed 10/02/18). Ensembl
Enhancer, Ensembl Promoter + flanking are from Release 94. Ensembl FTP Site

3.3 Pediatric cancer

Genomic DNA samples Peripheral blood and paired tumor samples were obtained from pa-
tients enrolled onto the “Nationwide Children’s Neuro-Oncology Tumor and Epilepsy Tissue Bank”
protocol (IRB16-00777) at Nationwide Children’s Hospital. 13 cases with paired blood and tumor
derived DNA were extracted following the manufacturers recommendation using the AllPrep Kit
for tumors (Qiagen) and Gentra Purgene or QIAamp Kit (Qiagen) for blood samples. Genomic
DNA was quantified with the Qubit dsDNA HS Assay Kit (Life Technologies) and diluted to ap-
proximately 1 ng/µL final concentration. DNA source and input mass into sample preparation is
described in Supplementary File 1.

Sample preparation and sequencing Linked-read whole genome sequencing (WGS) and whole
exome sequencing (WES) libraries were generated [23]. Partitioning and barcoding high molecular
weight (HMW) DNA was performed using a Chromium Controller Instrument (10x Genomics, CA),
and Illumina sequencing libraries were prepared following protocols described in the manufacturer’s
user guide (Chromium Genome Reagent Kits v2 - Rev A). For WES, 250 ng of each 10x linked-reads
library was hybridized in pools (see Supplementary File 1) with 3 pmol of the xGEN Exome Research
Panel v1.0 (Integrated DNA Technologies, Coralville, IA) per the manufacturers protocol. Post
WES enrichment used standard Illumina P5 and P7 primers [46], and PCR cycling is highlighted
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in Supplementary File 1. Final libraries were quantified by qPCR (KAPA Biosystems Library
Quantification Kit for Illumina platforms), diluted to 3 nM and sequenced using a paired-end recipe
on the Illumina HiSeq 4000 next-generation sequencing instrument.

Bioinformatic Analysis Cases using reference genome GRCh38 2.1.0 (1, 2, 7, 10, 11) were pro-
cessed with Long Ranger 2.1.6 and GATK HaplotypeCaller 3.8-0. Samples using reference genome
b37 2.1.0 (3, 4, 5, 6, 8, 9, 10, 12) were processed with Long Ranger 2.1.3 and GATK HaplotypeCaller
3.5-0. The sequencing coverage and fraction of the genome identified by the CNVNATOR [45] calls
is recorded in Table S2, and the oncology diagnosis of each case in Table S8.

3.4 Computational efficiency

We report timing results for the 30X GIAB sample. Samovar completed in 7 hours with 48 parallel
threads for the "filter" step and up to 4 parallel threads for other steps. MuTect2 paired mode
completed in 136 hours with 48 parallel threads. MosaicHunter tumor-only and trio modes com-
pleted in 29 hours each and paired mode completed in 7 hours. Note MosaicHunter does not offer
parallelism options. (See Note S3 for details.)

4 Discussion

Genomic mosaicism is an important characteristic of many human diseases and conditions. Accu-
rately identifying mosaic variants has previously relied on paired samples or trio analysis, which
increase study costs and complexity of studies and may not be possible in some situations. By taking
advantage of linked-read properties — particularly the ability to accurately assemble haplotypes —
Samovar is able to call mosaic SNVs for a single sample at a level of precision that is comparable to
paired and trio-based methods. Samovar also achieves substantially higher precision at low MAFs
(< 15%) and higher recall in more difficult-to-analyze portions of the genome such as segmental
duplications and repetitive elements. This opens the door to a wider range of discoveries than are
possible with current methods.

Though Samovar already compares favorably to tools that use matched-normal and trio data, in
the future it will be important to investigate whether Samovar’s recall and precision can be further
improved by incorporating trio and matched-normal data directly into it’s model. Based on the
results collected here, we expect that a key benefit of this would be to improve recall at all MAFs
and to extend the high precision achieved by the existing paired- and trio-based methods into the
low end of the MAF spectrum.
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http://share.schatz-lab.org/samovar/simulation.

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560532doi: bioRxiv preprint 

http://share.schatz-lab.org/samovar/simulation
https://doi.org/10.1101/560532
http://creativecommons.org/licenses/by/4.0/


References

[1] Leslie G. Biesecker and Nancy B. Spinner. “A genomic view of mosaicism and human disease”.
In: Nature Reviews Genetics 14.5 (2013), pp. 307–320. doi: 10.1038/nrg3424.

[2] A.S.A. Cohen, S.L. Wilson, J. Trinh, and X.C. Ye. “Detecting somatic mosaicism: considera-
tions and clinical implications”. In: Clinical Genetics 87.6 (2015), pp. 554–562. doi: 10.1111/
cge.12502.

[3] Hagop Youssoufian and Reed E. Pyeritz. “Mechanisms and consequences of somatic mosaicism
in humans”. In: Nature Reviews Genetics 3.10 (2002), pp. 748–758. doi: 10.1038/nrg906.

[4] Donald Freed, Eric L Stevens, and Jonathan Pevsner. “Somatic Mosaicism in the Human
Genome”. In: Genes 5.4 (2014). doi: 10.3390/genes5041064.

[5] Marzena Gajecka. “Unrevealed mosaicism in the next-generation sequencing era.” In: Molec-
ular Genetics and Genomics 291.2 (2016), pp. 513–30. doi: 10.1007/s00438-015-1130-7.

[6] Cathy C Laurie, Cecelia A Laurie, Kenneth Rice, Kimberly F Doheny, Leila R Zelnick, Caitlin
P McHugh, Hua Ling, Kurt N Hetrick, Elizabeth W Pugh, Chris Amos, et al. “Detectable
clonal mosaicism from birth to old age and its relationship to cancer.” In: Nature Genetics
44.6 (2012), pp. 642–50. doi: 10.1038/ng.2271.

[7] Scott R. Kennedy, Lawrence A. Loeb, and Alan J. Herr. “Somatic mutations in aging, cancer
and neurodegeneration”. In: Mechanisms of Ageing and Development 133.4 (2012), pp. 118–
126. doi: 10.1016/j.mad.2011.10.009.

[8] Klaasjan G. Ouwens, Rick Jansen, Bas Tolhuis, P. Eline Slagboom, Brenda W.J.H. Penninx,
and Dorret I. Boomsma. “A characterization of postzygotic mutations identified in monozy-
gotic twins”. In: Human Mutation 39.10 (2018), pp. 1393–1401. doi: 10.1002/humu.23586.

[9] Bert Vogelstein, Nickolas Papadopoulos, Victor E Velculescu, Shibin Zhou, Luis A Diaz, Ken-
neth W Kinzler, and Kenneth W. Kinzler. “Cancer genome landscapes.” In: Science 339.6127
(2013), pp. 1546–58. doi: 10.1126/science.1235122.

[10] Ian R. Watson, Koichi Takahashi, P. Andrew Futreal, and Lynda Chin. “Emerging patterns
of somatic mutations in cancer”. In: Nature Reviews Genetics 14.10 (2013), pp. 703–718. doi:
10.1038/nrg3539.

[11] Donald Freed, Jonathan Pevsner, TS Furey, KM Roskin, and TH Pringle. “The Contribution
of Mosaic Variants to Autism Spectrum Disorder”. In: PLOS Genetics 12.9 (2016). Ed. by
Maja Bucan, e1006245. doi: 10.1371/journal.pgen.1006245.

[12] Annapurna Poduri, Gilad D Evrony, Xuyu Cai, and Christopher A Walsh. “Somatic mutation,
genomic variation, and neurological disease.” In: Science 341.6141 (2013), p. 1237758. doi:
10.1126/science.1237758.

[13] Michael J McConnell, John V Moran, Alexej Abyzov, Schahram Akbarian, Taejeong Bae,
Isidro Cortes-Ciriano, Jennifer A Erwin, Liana Fasching, Diane A Flasch, Donald Freed, et al.
“Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic
Mosaicism Network.” In: Science 356.6336 (2017), eaal1641. doi: 10.1126/science.aal1641.

[14] Alissa M. D’Gama and Christopher A. Walsh. “Somatic mosaicism and neurodevelopmental
disease”. In: Nature Neuroscience 21.11 (2018), pp. 1504–1514. doi: 10.1038/s41593-018-
0257-3.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560532doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nrg3424
http://dx.doi.org/10.1111/cge.12502
http://dx.doi.org/10.1111/cge.12502
http://dx.doi.org/10.1038/nrg906
http://dx.doi.org/10.3390/genes5041064
http://dx.doi.org/10.1007/s00438-015-1130-7
http://dx.doi.org/10.1038/ng.2271
http://dx.doi.org/10.1016/j.mad.2011.10.009
http://dx.doi.org/10.1002/humu.23586
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1038/nrg3539
http://dx.doi.org/10.1371/journal.pgen.1006245
http://dx.doi.org/10.1126/science.1237758
http://dx.doi.org/10.1126/science.aal1641
http://dx.doi.org/10.1038/s41593-018-0257-3
http://dx.doi.org/10.1038/s41593-018-0257-3
https://doi.org/10.1101/560532
http://creativecommons.org/licenses/by/4.0/


[15] Matthew D. Shirley, Hao Tang, Carol J. Gallione, Joseph D. Baugher, Laurence P. Fre-
lin, Bernard Cohen, Paula E. North, Douglas A. Marchuk, Anne M. Comi, and Jonathan
Pevsner. “Sturge–Weber Syndrome and Port-Wine Stains Caused by Somatic Mutation in
GNAQ”. In: New England Journal of Medicine 368.21 (2013), pp. 1971–1979. doi: 10.1056/
NEJMoa1213507.

[16] Lee S. Weinstein, Andrew Shenker, Pablo V. Gejman, Maria J. Merino, Eitan Friedman, and
Allen M. Spiegel. “Activating Mutations of the Stimulatory G Protein in the McCune–Albright
Syndrome”. In: New England Journal of Medicine 325.24 (1991), pp. 1688–1695. doi: 10.1056/
NEJM199112123252403.

[17] Marjorie J. Lindhurst, Julie C. Sapp, Jamie K. Teer, Jennifer J. Johnston, Erin M. Finn,
Kathryn Peters, Joyce Turner, Jennifer L. Cannons, David Bick, Laurel Blakemore, et al.
“A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome”. In: New
England Journal of Medicine 365.7 (2011), pp. 611–619. doi: 10.1056/NEJMoa1104017.

[18] Grace X Y Zheng, Billy T Lau, Michael Schnall-Levin, Mirna Jarosz, John M Bell, Christopher
M Hindson, Sofia Kyriazopoulou-Panagiotopoulou, Donald A Masquelier, Landon Merrill,
Jessica M Terry, et al. “Haplotyping germline and cancer genomes with high-throughput
linked-read sequencing”. In: Nature Biotechnology 34.3 (2016), pp. 303–311. doi: 10.1038/
nbt.3432.

[19] F. J. Sedlazeck, H. Lee, C. A. Darby, and M. C. Schatz. “Piercing the dark matter: bioin-
formatics of long-range sequencing and mapping”. In: Nat. Rev. Genet. 19.6 (June 2018),
pp. 329–346.

[20] Alex Bishara, Yuling Liu, Ziming Weng, Dorna Kashef-Haghighi, Daniel E Newburger, Robert
West, Arend Sidow, and Serafim Batzoglou. “Read clouds uncover variation in complex regions
of the human genome.” In: Genome Research 25.10 (2015), pp. 1570–80. doi: 10.1101/gr.
191189.115.

[21] Atiya Shajii, Ibrahim Numanagić, Christopher Whelan, and Bonnie Berger. “Statistical Bin-
ning for Barcoded Reads Improves Downstream Analyses”. In: Cell Systems 7.2 (2018), 219–
226.e5. doi: 10.1016/j.cels.2018.07.005.

[22] Volodymyr Kuleshov, Michael P. Snyder, and Serafim Batzoglou. “Genome assembly from
synthetic long read clouds”. In: Bioinformatics 32.12 (2016), pp. i216–i224. doi: 10.1093/
bioinformatics/btw267.

[23] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B Jaffe. “Direct
determination of diploid genome sequences.” In: Genome Research 27.5 (2017), pp. 757–767.
doi: 10.1101/gr.214874.116.

[24] Yulia Mostovoy, Michal Levy-Sakin, Jessica Lam, Ernest T Lam, Alex R Hastie, Patrick
Marks, Joyce Lee, Catherine Chu, Chin Lin, Željko Džakula, et al. “A hybrid approach for
de novo human genome sequence assembly and phasing”. In: Nature Methods 13.7 (2016),
pp. 587–590. doi: 10.1038/nmeth.3865.

[25] Xin Zhou, Serafim Batzoglou, Arend Sidow, and Lu Zhang. “HAPDeNovo: a haplotype-based
approach for filtering and phasing de novo mutations in linked read sequencing data.” In:
BMC Genomics 19.1 (2018), p. 467. doi: 10.1186/s12864-018-4867-7.

[26] Shaun D. Jackman, Lauren Coombe, Justin Chu, Rene L. Warren, Benjamin P. Vandervalk,
Sarah Yeo, Zhuyi Xue, Hamid Mohamadi, Joerg Bohlmann, Steven J.M. Jones, et al. “Tigmint:
correcting assembly errors using linked reads from large molecules”. In: BMC Bioinformatics
19.1 (2018), p. 393. doi: 10.1186/s12859-018-2425-6.

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560532doi: bioRxiv preprint 

http://dx.doi.org/10.1056/NEJMoa1213507
http://dx.doi.org/10.1056/NEJMoa1213507
http://dx.doi.org/10.1056/NEJM199112123252403
http://dx.doi.org/10.1056/NEJM199112123252403
http://dx.doi.org/10.1056/NEJMoa1104017
http://dx.doi.org/10.1038/nbt.3432
http://dx.doi.org/10.1038/nbt.3432
http://dx.doi.org/10.1101/gr.191189.115
http://dx.doi.org/10.1101/gr.191189.115
http://dx.doi.org/10.1016/j.cels.2018.07.005
http://dx.doi.org/10.1093/bioinformatics/btw267
http://dx.doi.org/10.1093/bioinformatics/btw267
http://dx.doi.org/10.1101/gr.214874.116
http://dx.doi.org/10.1038/nmeth.3865
http://dx.doi.org/10.1186/s12864-018-4867-7
http://dx.doi.org/10.1186/s12859-018-2425-6
https://doi.org/10.1101/560532
http://creativecommons.org/licenses/by/4.0/


[27] Rebecca Elyanow, Hsin-Ta Wu, and Benjamin J Raphael. “Identifying structural variants
using linked-read sequencing data”. In: Bioinformatics 34.2 (2018), pp. 353–360. doi: 10.
1093/bioinformatics/btx712.

[28] Li C Xia, John M Bell, Christina Wood-Bouwens, Jiamin J Chen, Nancy R Zhang, and Hanlee
P Ji. “Identification of large rearrangements in cancer genomes with barcode linked reads”.
In: Nucleic Acids Research 46.4 (2018), e19–e19. doi: 10.1093/nar/gkx1193.

[29] Noah Spies, Ziming Weng, Alex Bishara, Jennifer McDaniel, David Catoe, Justin M Zook,
Marc Salit, Robert B West, Serafim Batzoglou, and Arend Sidow. “Genome-wide reconstruc-
tion of complex structural variants using read clouds”. In: bioRxiv 14.9 (2017), pp. 915–920.
doi: 10.1038/Nmeth.4366.

[30] Marzieh Eslami Rasekh, Giorgia Chiatante, Mattia Miroballo, Joyce Tang, Mario Ventura,
Chris T. Amemiya, Evan E. Eichler, Francesca Antonacci, and Can Alkan. “Discovery of large
genomic inversions using long range information”. In: BMC Genomics 18.1 (2017), p. 65. doi:
10.1186/s12864-016-3444-1.

[31] Li Fang, Charlly Kao, Michael V Gonzalez, Fernanda A Mafra, Renata Pellegrino da Silva,
Mingyao Li, Hakon Hakonarson, and Kai Wang. “LinkedSV: Detection of mosaic structural
variants from linked-read exome and genome sequencing data”. In: bioRxiv (2018), p. 409789.
doi: 10.1101/409789.

[32] Peter Edge, Vineet Bafna, and Vikas Bansal. “HapCUT2: Robust and accurate haplotype
assembly for diverse sequencing technologies”. In: Genome Research 27.5 (2017), pp. 801–812.
doi: 10.1101/gr.213462.116.

[33] Yanmei Dou, Heather D. Gold, Lovelace J. Luquette, and Peter J. Park. “Detecting Somatic
Mutations in Normal Cells”. In: Trends in Genetics 34.7 (2018), pp. 545–557. doi: 10.1016/
j.tig.2018.04.003.

[34] Naoto Usuyama, Yuichi Shiraishi, Yusuke Sato, Haruki Kume, Yukio Homma, Seishi Ogawa,
Satoru Miyano, and Seiya Imoto. “HapMuC: somatic mutation calling using heterozygous
germ line variants near candidate mutations.” In: Bioinformatics 30.23 (2014), pp. 3302–9.
doi: 10.1093/bioinformatics/btu537.

[35] Qingguo Wang, Peilin Jia, Fei Li, Haiquan Chen, Hongbin Ji, Donald Hucks, Kimberly
Dahlman, William Pao, and Zhongming Zhao. “Detecting somatic point mutations in can-
cer genome sequencing data: a comparison of mutation callers”. In: Genome Medicine 5.10
(2013), p. 91. doi: 10.1186/gm495.

[36] Adam D Ewing, Kathleen E Houlahan, Yin Hu, Kyle Ellrott, Cristian Caloian, Takafumi N
Yamaguchi, J Christopher Bare, Christine P’ng, Daryl Waggott, Veronica Y Sabelnykova, et
al. “Combining tumor genome simulation with crowdsourcing to benchmark somatic single-
nucleotide-variant detection”. In: Nature Methods 12.7 (2015), pp. 623–630. doi: 10.1038/
nmeth.3407.

[37] Justin M. Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow,
Ziming Weng, Yuling Liu, Christopher E. Mason, Noah Alexander, et al. “Extensive sequencing
of seven human genomes to characterize benchmark reference materials”. In: Scientific Data
3 (2016), p. 160025. doi: 10.1038/sdata.2016.25.

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560532doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bioinformatics/btx712
http://dx.doi.org/10.1093/bioinformatics/btx712
http://dx.doi.org/10.1093/nar/gkx1193
http://dx.doi.org/10.1038/Nmeth.4366
http://dx.doi.org/10.1186/s12864-016-3444-1
http://dx.doi.org/10.1101/409789
http://dx.doi.org/10.1101/gr.213462.116
http://dx.doi.org/10.1016/j.tig.2018.04.003
http://dx.doi.org/10.1016/j.tig.2018.04.003
http://dx.doi.org/10.1093/bioinformatics/btu537
http://dx.doi.org/10.1186/gm495
http://dx.doi.org/10.1038/nmeth.3407
http://dx.doi.org/10.1038/nmeth.3407
http://dx.doi.org/10.1038/sdata.2016.25
https://doi.org/10.1101/560532
http://creativecommons.org/licenses/by/4.0/


[38] August Yue Huang, Zheng Zhang, Adam Yongxin Ye, Yanmei Dou, Linlin Yan, Xiaoxu Yang,
Yuehua Zhang, and Liping Wei. “MosaicHunter: Accurate detection of postzygotic single-
nucleotide mosaicism through next-generation sequencing of unpaired, trio, and paired sam-
ples”. In: Nucleic Acids Research 45.10 (2017), pp. 1–10. doi: 10.1093/nar/gkx024. arXiv:
1611.06654.

[39] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey Sivachenko, David Jaffe,
Carrie Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S Lander, and Gad Getz. “Sensitive
detection of somatic point mutations in impure and heterogeneous cancer samples”. In: Nature
Biotechnology 31.3 (2013), pp. 213–219. doi: 10.1038/nbt.2514.

[40] Katherine E. Miller, Benjamin Kelly, James Fitch, Nicole Ross, Matthew R. Avenarius, Eliz-
abeth Varga, Daniel C. Koboldt, Daniel R. Boué, Vincent Magrini, Scott L. Coven, et al.
“Genome sequencing identifies somatic BRAF duplication c.1794_1796dupTAC;p.Thr599dup
in pediatric patient with low-grade ganglioglioma”. In: Molecular Case Studies 4.2 (2018),
a002618. doi: 10.1101/mcs.a002618.

[41] Kai Wang, Mingyao Li, and Hakon Hakonarson. “ANNOVAR: functional annotation of ge-
netic variants from high-throughput sequencing data”. In: Nucleic Acids Research 38.16 (Sept.
2010), e164. doi: 10.1093/NAR/GKQ603.

[42] Matthew H Bailey, Collin Tokheim, Eduard Porta-Pardo, Sohini Sengupta, Denis Bertrand,
Amila Weerasinghe, Antonio Colaprico, Michael C Wendl, Jaegil Kim, Brendan Reardon, et
al. “Comprehensive Characterization of Cancer Driver Genes and Mutations.” In: Cell 173.2
(Apr. 2018), 371–385.e18. doi: 10.1016/j.cell.2018.02.060.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[44] H. Fang, Y. Wu, G. Narzisi, J. A. O’Rawe, L. T. Barron, J. Rosenbaum, M. Ronemus, I.
Iossifov, M. C. Schatz, and G. J. Lyon. “Reducing INDEL calling errors in whole genome and
exome sequencing data”. In: Genome Med 6.10 (2014), p. 89.

[45] Alexej Abyzov, Alexander E Urban, Michael Snyder, and Mark Gerstein. “CNVnator: an
approach to discover, genotype, and characterize typical and atypical CNVs from family and
population genome sequencing.” In: Genome Research 21.6 (2011), pp. 974–84. doi: 10.1101/
gr.114876.110.

[46] Malachi Griffith, Christopher A. Miller, Obi L. Griffith, Kilannin Krysiak, Zachary L. Skid-
more, Avinash Ramu, Jason R. Walker, Ha X. Dang, Lee Trani, David E. Larson, et al.
“Optimizing Cancer Genome Sequencing and Analysis”. In: Cell Systems 1.3 (Sept. 2015),
pp. 210–223. doi: 10.1016/j.cels.2015.08.015.

[47] Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read sequencing.
2012. eprint: arXiv:1207.3907.

[48] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. Philip-
pakis, G. del Angel, M. A. Rivas, M. Hanna, et al. “A framework for variation discovery and
genotyping using next-generation DNA sequencing data”. In: Nat. Genet. 43.5 (May 2011),
pp. 491–498.

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2019. ; https://doi.org/10.1101/560532doi: bioRxiv preprint 

http://dx.doi.org/10.1093/nar/gkx024
http://arxiv.org/abs/1611.06654
http://dx.doi.org/10.1038/nbt.2514
http://dx.doi.org/10.1101/mcs.a002618
http://dx.doi.org/10.1093/NAR/GKQ603
http://dx.doi.org/10.1016/j.cell.2018.02.060
http://dx.doi.org/10.1101/gr.114876.110
http://dx.doi.org/10.1101/gr.114876.110
http://dx.doi.org/10.1016/j.cels.2015.08.015
arXiv:1207.3907
https://doi.org/10.1101/560532
http://creativecommons.org/licenses/by/4.0/

