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Abstract 
Many large-scale functional connectivity studies have emphasized the importance of 
communication through increased inter-region correlations during task states. In contrast, local 
circuit studies have demonstrated that task states primarily reduce correlations among pairs of 
neurons, likely enhancing their information coding by suppressing shared spontaneous activity. 
Here we sought to adjudicate between these conflicting perspectives, assessing whether 
co-active brain regions during task states tend to increase or decrease their correlations. We 
found that variability and correlations primarily decrease across a variety of cortical regions in 
two highly distinct data sets: non-human primate spiking data and human functional magnetic 
resonance imaging data. Moreover, this observed variability and correlation reduction was 
accompanied by an overall increase in dimensionality (reflecting less information redundancy) 
during task states, suggesting that decreased correlations increased information coding 
capacity. We further found in both spiking and neural mass computational models that 
task-evoked activity increased the stability around a stable attractor, globally quenching neural 
variability and correlations. Together, our results provide an integrative mechanistic account that 
encompasses measures of large-scale neural activity, variability, and correlations during resting 
and task states. 
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Introduction 
 

Measures of neural correlations and variability are widely used in neuroscience to 
characterize neural processes. During task states, neural variability has consistently been 
shown to be reduced during tasks across human functional magnetic resonance imaging (fMRI) 
[1,2], local neural populations [3–5], and both spiking [4,6] and mean-field rate models [7,8]. 
Despite this convergence in the neural variability literature, there are disparities in the use and 
interpretation of neural correlations. In the human fMRI literature, neural correlations are often 
estimated by measuring the correlation of blood oxygenated level-dependent (BOLD) signals 
and is commonly referred to as functional connectivity (FC) [9]. In the animal spiking literature, 
neural correlations have been measured by computing the correlation between the spike rate of 
two or more neurons and is commonly referred to as the spike count correlation (or noise 
correlation) [10]. Yet despite the use of different terms, the target statistical inference behind 
these two techniques is consistent: to characterize the interaction among neural units. 

In the human fMRI literature, studies have identified large-scale functional brain 
networks through clustering sets of correlated brain regions using resting-state activity [11–13]. 
During task states, the FC structure has been demonstrated to dynamically reconfigure [14–16]. 
Though it has been suggested that correlation increases and decreases respectively facilitate 
and inhibit inter-region communication [16,17], the mechanistic bases of these FC changes 
remain unclear. 

Studies in the local circuit literature using electrophysiological recordings in animals have 
characterized the correlation structure between neuron spikes across a range of task demands. 
These studies have found that the spike count correlation between neuron spikes generally 
decrease during task states, particularly for neurons that are responsive to the task [18–21]. 
Though the reduction in spike count correlations during task states has been linked to better 
information coding by the local neuronal population by suppressing shared spontaneous activity 
and reducing neural noise [10,22], the mechanism underlying these reduced correlations 
remains unclear.  

These differing perspectives of the role of neural correlations in (large-scale) human 
imaging and (local circuit) animal neurophysiology studies appear to be incompatible. Moreover, 
it is unclear whether observations at the local circuit level would be consistent with observations 
made across large cortical areas. To further complicate this issue, we recently found that task 
activations can inflate task functional connectivity estimates in human fMRI data [23], 
suggesting some previous neuroimaging studies may have erroneously reported correlation 
increases due to inaccurate removal of the mean-evoked response. Importantly, the removal of 
the mean task-evoked response is a standard procedure in the spiking literature, a critical step 
designed to dissociate signal correlations (task-to-neural associations) from noise correlations 
(neural-to-neural associations) [10,22,24]. (In the fMRI literature, signal correlations and noise 
correlations are both statistically and conceptually analogous to task co-activations and 
functional connectivity, respectively.) Thus, to accurately bridge the FC literature with the spike 
count correlation literature, it was necessary to analyze the data in a statistically consistent way. 
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This enabled us to adjudicate the differing perspectives in the neural correlation literature while 
simultaneously confirming and extending previous findings on task-state neural variability 
reduction.  

We report multiple sources of empirical and theoretical evidence demonstrating that 
task-evoked activity quenches neural correlations and variability across cortical areas. First, we 
characterize task-evoked neural variability and correlations in empirical data using two highly 
distinct data sets: multi-site and multi-unit NHP electrophysiology and whole-brain human fMRI. 
This allowed us to test whether there were consistent large-scale variability and correlation 
changes during task states independent of data acquisition technique. Moreover, this allowed us 
to take advantage of the more direct neural recording with NHP electrophysiology along with the 
more comprehensive coverage of human fMRI (in addition to testing for translation of findings to 
humans). Next, to provide a mechanistic account capable of explaining our empirical findings, 
we used both spiking and neural mass models to parsimoniously explain variability and 
correlation suppression across mean-field cortical areas. This led to theoretical insight using 
dynamical systems analysis, demonstrating that task-evoked activity strengthens the system’s 
attractor dynamics around a stable fixed point in neural mass models, quenching neural 
correlations and variability. The combination of simultaneously recorded multi-unit recordings 
from six cortical sites, whole-brain fMRI obtained from seven different cognitive tasks, and 
dynamical systems modeling and analysis provide a comprehensive account of task-related 
correlation and variability changes spanning species and data acquisition techniques. 

Results 
We first show empirically that task-evoked activity suppresses neural correlations and 

variability across large cortical areas in two highly distinct neural data sets: NHP spiking and 
human fMRI data (Fig 1). This confirmed previous findings showing quenched neural variability 
during task states in both NHPs and humans [1–4], while going beyond those previous studies 
to report globally quenched inter-area task-state neural correlations. In particular, we focused on 
neural variability and correlation changes across large cortical areas in our electrophysiology 
data set (rather than between pairs of neurons) given our focus on large-scale neural 
interactions, and to facilitate a comparison between different correlation approaches (FC in fMRI 
data and spike count correlation in electrophysiology data). Moreover, we limited our inferences 
to neural interactions between large cortical areas to simplify the complexity of analyzing spike 
count correlations between pairs of local neurons with different receptive fields [20,25]. 
Following our empirical results, we provide a mechanistic framework using computational 
simulations and detailed dynamical systems analyses to explain the quenching of neural 
variability and correlations during task-evoked states. 
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Fig 1. Testing the hypothesis that task-evoked neural variability and correlations are quenched 
across cortical areas in NHP spiking and human fMRI data sets. We used two highly distinct data 
sets to test the hypothesis that task-evoked activity globally quenches neural variability and correlations to 
suppress background spontaneous activity/noise. This contrasts with the alternate hypothesis, namely 
that task-evoked activity increases variability and correlation to facilitate inter-region communication. 
Importantly, the two data sets were analyzed in a statistically consistent manner, including the removal of 
the mean task-evoked response to isolate neural-to-neural interactions. a,b) Using multi-unit spiking data 
collected simultaneously from six different cortical areas [26], we compared the spiking variability and 
spike count correlations between task-state (i.e., following task cue onset) and rest-state spiking activity. 
We defined rest state as the inter-trial interval (ITI) directly preceding the trial. This was performed using 
the spike rate averaged within each cortical area, allowing us to target the activity of large neural 
populations. c,d) Using human fMRI data obtained from the Human Connectome Project [27], we 
compared the neural variability and correlations (i.e., FC) of the BOLD signal during task block intervals to 
equivalent resting-state intervals. We used seven highly distinct cognitive tasks. Time series and task 
timings are illustrative, and do not reflect actual data. 
 

Task onset reduces neural variability and correlations across spiking populations in 
NHPs 

We estimated the spiking variability and spike count correlations of cortical populations 
in NHPs following task cue onset (task periods) and during the inter-trial intervals (ITI) (rest 
periods). We found that across trials, global spiking variability and spike count correlations (rsc) 
decreased during task as compared to rest (exploratory subject, variance diff = -0.04, 
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, p<10e-21, rsc diff = -0.04, , p<10e-05; Fig 2C,D; replication subject,− 0.39t308 = 1 − .77t308 = 4  
variance diff = -0.03, , p<10e-15; rsc diff = -0.04; , p<10e-17; S1 Fig).− .24t830 = 8 − .05t830 = 9  
These global reductions were also observed using spike count covariance, rather than 
correlations (Fig 2H). In addition, we demonstrated that variability and correlation decreased 
within trial (across time points within a trial, after removing the mean task-evoked response), 
demonstrating that task state quenching also occurs on a moment-to-moment basis, rather than 
only on a slower trial-to-trial timescale (S2 Fig). We also measured the spiking variability for 
each cortical area separately, finding that 5/6 cortical areas reduced their spiking variability 
during task states in the exploratory subject (all areas except for MT, FDR-corrected )..05p < 0  
In the replication subject, all cortical areas, including MT, reduced their spiking variability 
(FDR-corrected ). Similarly, we found that during task states, the spike count.0001p < 0  
correlation significantly decreased between a majority of cortical areas (FDR-corrected ;.05p < 0  
Fig 2D-G).  

 

 
Fig 2. Neural variability and correlations decrease during task states relative to rest in spiking 
data. Results for the replication subject are reported in S1 Fig. a) We obtained multi-unit spike recordings 
from six different cortical areas during a motion-color categorization task. b) We calculated the average 
spike rate across all recordings during the rest period (ITI) and task period (task cue), across trials. c) We 
calculated the cross-trial spiking variance for each region during task and rest states, and then averaged 
across all regions. d) We calculated the average cross-trial neural correlation for task and rest states 
between all pairs of recorded brain regions. (Spike rates were averaged within each cortical area.) e-g) 
For each pair of brain regions, we visualize the correlation matrices between each recording site for the 
averaged rest period, task period, and the differences between task versus rest state spike count 
correlations. h) We also observed no increases in covariance (non-normalized correlation) [28–30]. For 
panels e-h, plots were thresholded and tested for multiple comparisons using an FDR-corrected p<0.05 
threshold. Boxplots indicate the interquartile range of the distribution, dotted black line indicates the 
mean, grey line indicates the median, and the distribution is visualized using a swarm plot. 
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Though we observed some task-state correlation increases in the replication subject (S1 
Fig), we were unable to identify any spike count correlation increases in the exploratory subject 
(Fig 2G). Importantly, when calculating the spike count covariance (rather than correlation), we 
did not find significant covariance increases for either subject (Fig 2H, S1 Fig). This suggested 
that the observed correlation increases in the replication subject were not due to increases in 
shared variance, but were rather primarily driven by decreases in unshared variance (i.e., 
private neural noise) [28–30]. These results were consistent with the results observed in the 
fMRI data (reported below), demonstrating that the variability and correlations across cortical 
areas largely decreased during task states.  

To ensure that correlation and variability decreases were associated with increases in 
the mean activity (rather than just the task period), we estimated the mean spike rate across all 
regions during the task cue interval and the preceding ITI. Indeed, we found that the mean spike 
rate during task states was significantly greater than the mean spike rate during rest 
(exploratory subject, task vs rest firing rate difference  Hz,  p<10e-60,.11= 0 0.83,t308 = 2  
replication subject, rate difference Hz, , p<10e-138). These findings suggest.06= 0 0.69t830 = 3  
that task states increase neural activity while quenching spiking variability and spike count 
correlations across large cortical areas. 

Importantly, to accurately dissociate first order statistical effects (mean) from second 
order effects (variance and covariance/correlation), we removed the cross-trial, mean-evoked 
response for each task condition. This essential step, which removes the main effect of task, is 
standard procedure in the spike count (noise) correlation literature [24]. This procedure isolated 
the underlying spontaneous/background neural activity during task states, which was 
subsequently used to infer neural interaction through spike count correlation analysis [10]. To 
ensure consistency between our spiking and fMRI analysis, it was critical that we also carefully 
removed the mean-evoked response associated with task blocks in our fMRI data (i.e., the main 
effect of task; see Methods) [23]. To maintain additional consistency between task and rest 
states in both data sets, we applied the same statistical procedure to our rest data (for both 
spiking and fMRI data) to control for the possibility that our findings were associated with 
artifacts related to this procedure (see Methods). (However, we note that the “mean task effects” 
removed as a result from this step during rest periods were negligible.) 
 

Task-state variability is globally quenched across a wide battery of tasks in human fMRI 
data 

Consistent with the spiking literature, previous work in the fMRI literature has 
demonstrated that increased activity associated with task-evoked states quenches neural 
variability [1–3]. We extended those findings to evaluate variability quenching across seven 
additional cognitive tasks in humans using data from the Human Connectome Project (HCP) 
[31]. We calculated the variability (estimated using time series variance) during task blocks, 
averaged across tasks and across regions. Consistent with previous reports, we found that the 
global variability during task blocks was significantly lower than the variability during equivalent 
periods of resting-state activity (exploratory cohort variance difference = -0.019, ,− 3.89t175 = 2  
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p<10e-56; replication cohort variance difference = -0.019, , p<10e-48; Fig 3A).− 0.72t175 = 2  
These findings suggest that task states are associated with task-evoked variability reductions. 

 

 
Fig 3. Neural variability and correlations decrease during task states in human fMRI data. Figures 
for the replication cohort are in S4 Fig. Figures for each task separately are shown in S8-9 Fig. a) We first 
compared the global variability during task and rest states, which is averaged across all brain regions, 
and then b) computed the task- versus rest-state variability for each brain region. c) The percentage of 
brain regions with significant increases/decreases of neural variability during task. d) We next compared 
the correlation matrices for resting state blocks with (e) task state blocks, and (f) computed the task- 
versus rest-state correlation matrix difference. g) We found that the average FC between all pairs of brain 
regions is significantly reduced during task state. h) We found that the average correlation for each brain 
region, decreased for each brain region during task state. i) We calculated the percentage of correlation 
increases/decreases for all pairs of brain regions. For panels b-f, h, and i, plots were tested for multiple 
comparisons using an FDR-corrected p<0.05 threshold. Boxplots indicate the interquartile range of the 
distribution, dotted black line indicates the mean, grey line indicates the median, and the distribution is 
visualized using a swarm plot. 
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To better understand how global this phenomenon was, we plotted the change in 
variability from rest to task for each brain region separately. We found that almost all brain 
regions significantly reduced their variability from rest to task, suggesting that variability 
reduction occurs across most brain regions (cortical maps are thresholded using an 
FDR-corrected threshold of ; Fig 3). This finding extends the work of a previous study in.05p < 0  
human fMRI data during a finger tapping task [1,7], suggesting that task-induced variability 
reduction is a general phenomenon consistent across most cortical regions, and across a wide 
variety of cognitive tasks. 

Lastly, we evaluated whether variability quenching occurred during task blocks relative to 
inter-block intervals (rather than comparing task runs to resting-state runs). Since we 
z-normalized each task run with unit variance, we could evaluate the degree to which variability 
was quenched during task blocks relative to inter-block intervals by computing the average 
variance during task blocks relative to 1. (Note that z-normalization of the task time series was 
performed after removing the mean task-evoked response via a task GLM, such that reduced 
variability was not an artifact of preprocessing/z-normalizing the time series.) Indeed, we found 
that the variance during task blocks was reduced relative to the inter-block intervals (exploratory 
cohort variance - 1 = -0.019, , p<10e-83; replication cohort variance difference =− 6.58t175 = 3  
-0.018, , p<10e-76). Our findings demonstrate that task-evoked periods quench− 3.01t175 = 3  
neural variability relative to both resting-state activity and inter-block intervals. 
  

Task-state FC is globally quenched across a wide battery of tasks in human fMRI data 
Despite multiple studies describing task-evoked FC changes [14–16], the precise 

mechanisms of how FC can change remain unclear. Our current findings illustrate that 
mean-field spike count correlations decrease during task-evoked states, consistent with 
previous literature that focused on local circuits [3,10]. Consistent with the spiking literature’s 
perspective on spike count correlations, and the theoretical evidence suggesting that the 
correlation of ongoing spontaneous activity should be suppressed during task to facilitate 
information coding [22], we hypothesized that FC would also be globally reduced during task 
states. To ensure consistency in the statistical analysis across spiking and fMRI data, we 
removed the mean task-evoked response using a finite impulse response (FIR) model. This 
approach is statistically equivalent to removing the cross-trial mean response of a task 
condition, and is a critical step when calculating noise correlations in the spiking literature [10]. 
This step characterizes the correlation of the background spontaneous neural activity (i.e., 
background connectivity in fMRI), dissociating task-to-neural interactions (main effect of task) 
from neural-to-neural interactions (FC) [32].  
 We first calculated the mean FC across all pairwise correlations across all cortical 
regions for both task and rest states (Fig 3D-F). We found that during task states, the global FC 
was significantly reduced relative to resting-state fMRI (exploratory cohort FC diff = -0.05,

, p<10e-29; replication cohort FC diff = -0.046, , p<10e-29; Fig 3G).− 3.83t175 = 1 − 4.00t175 = 1  
Recent studies have suggested that the use of correlation provides an ambiguous description of 
how shared variability (relative to unshared variability) change between brain areas [28,29]. 
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Thus, to generalize these results, we also calculated FC using covariance rather than 
correlation, finding that covariance also globally decreases (covariance diff = -192.96, 

, p<10e-88 S5 Fig). Task-evoked global FC was also reduced in each of the 7 HCP− 7.30t351 = 2  
tasks separately (all tasks FDR-corrected ; S9 Fig). To identify exactly how global this.0001p < 0  
phenomenon was, we plotted the average task versus rest FC change for each brain region (Fig 
3H,I). We found that nearly all cortical regions significantly reduced their correlation with the rest 
of cortex during task states. To ensure that correlation differences between rest and task states 
were not associated with in-scanner head motion, we calculated the average number of motion 
spikes during rest and task scans using a relative root mean squared displacement threshold of 
0.25mm [33]. For both the exploratory and replication cohorts, we found no significant 
differences in the percentage of motion spikes between rest and task states (exploratory set, 
average task=0.91% of frames, average rest=0.81% of frames, ,  ; replication.08t175 = 1 .28p = 0  
set, average task=0.009% of frames, rest=0.008% of frames,  ,  )..53t175 = 1 .12p = 0  

While we primarily observed global decreases in FC, a small portion of connections 
increased their FC during task states (exploratory cohort, 7.59% of all connections; replication 
cohort, 9.07% of all connections; FDR-corrected p<0.05) (Fig 3I, S4 Fig). However, FC 
increases were typically limited to cross-network correlations between networks with different 
functions, where baseline resting-state FC is already quite low (e.g., cingulo-opercular network 
with the default mode network, or the frontoparietal network with the visual network) (Fig 3D-F).  

Task state variability and correlation is quenched independently of removing the mean 
task-evoked response in fMRI data 

The above fMRI results employ the use of FIR modeling to remove the mean 
task-evoked response to compare task- and rest-state correlations/variability. Here we sought to 
demonstrate that neural variability and correlations are quenched in fMRI data in the absence of 
any task regression (e.g., FIR modeling). We used an approach that has been previously used 
to demonstrate variability quenching following task onset, by measuring the cross-trial variance 
at each time point [2,3]. We employ the same general approach, measuring the variance and 
correlation across blocks for each time point within the block. Moreover, to obtain statistically 
comparable estimates of resting state variability/correlations, we measured the cross-block 
variance/correlation during sham blocks during resting state by applying the identical task block 
structure to resting-state fMRI data. Critically, the removal of the mean task-evoked response 
was excluded from preprocessing for this analysis, and the time series were not z-normalized. 

We found that cross-block variance for time points during task state were significantly 
reduced relative to resting state (var diff = -1009.56, ; p<10e-84; Fig 4A,B). We also− 7.34t175 = 3  
found consistent results for correlations, finding that the cross-block correlation for time points 
during task state were significantly reduced relative to resting state (r diff = -0.04, ,− 0.91t175 = 1  
p<10e-20; Fig 4C,D). These results demonstrate that the quenching of correlations and 
variability during task states are independent of any potential statistical artifacts that result from 
removing the mean task-evoked response using FIR task regression. 
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Fig 4. Task variability/correlations decrease independently of mean task activity removal step in 
fMRI data. Instead of computing variance/correlations across time points within task blocks (and 
removing mean task effects), variance/correlations can be calculated across task blocks (for each time 
point within a block). This approach isolates ongoing neural activity that is not task-locked, and has been 
used in both spiking and fMRI data [2,3]. a) To isolate ongoing spontaneous activity that is not 
time-locked to the task, we estimated the variance at each time point across task blocks. The variance at 
each time point was calculated for each ROI and task condition separately, but then averaged across 
ROIs and task conditions. Note that to obtain an equivalent variance estimate during resting state, we 
applied an identical block structure to rest data to accurately compare rest to task state variability. 
Variability across block time points was averaged across brain regions and task conditions. Error bars 
denote standard deviation across subjects. b) Variance across task block time points was significantly 
reduced during task blocks relative to identical control blocks during resting-state data. c) We performed a 
similar procedure for task functional connectivity estimates, correlating across blocks for all pairs of brain 
regions. Correlations across block time points were averaged for all pairs of brain regions and task 
conditions. d) Correlations during task state blocks were significantly reduced relative to identical control 
blocks during resting state. Boxplots indicate the interquartile range of the distribution, dotted black line 
indicates the mean, grey line indicates the median, and the distribution is visualized using a swarm plot. 
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Task-evoked activity is negatively correlated with neural variability and correlations in 
human fMRI data 

We hypothesized that decreases in neural variability and correlations are related to 
task-evoked activity. To provide evidence for this hypothesis, we computed the mean 
task-evoked activity (averaging across all regions). We found that the global activity was 
significantly greater than baseline across different task states (exploratory cohort, ,.46t175 = 6  
p<10e-9; replication cohort, , p<10e-25), demonstrating that decreases in neural2.63t175 = 1  
variability and FC were accompanied by global increases in task-evoked activity.  

Previous work has shown that regions that are more active during task tend to have 
greater variability reductions [2]. We sought to replicate this effect in the current data set, while 
extending those results to demonstrate that more task-active regions also tend to reduce their 
FC during task states. We first correlated regional task-evoked activity with task-evoked 
variability reduction (task variance minus rest variance) across regions at the group-level. We 
found that regions with more task-evoked activity (averaged across tasks) exhibited greater 
variability reductions during task states, confirming previous findings in a finger tapping task 
(exploratory cohort rho=-0.32, p<10e-9; replication cohort rho=-0.49, p<10e-22; Supplementary 
Fig 3A,C) [2]. This negative relationship was also observed in 6/7 of the HCP tasks when 
analyzed separately (FDR-corrected p<0.01; S8 Fig). To link regional task activations with FC 
decreases, we tested for a correlation between regional task-evoked activity and the average 
FC change during task states for each region. Consistent with our hypothesis, we found that 
regions with greater task-evoked activity (averaged across tasks) reduced their average FC 
more during task states (exploratory cohort rho=-0.25, p<10e-05; replication cohort rho=-0.20, 
p=0.0002; S3 Fig). When tasks were analyzed separately, this negative correlation was 
observed in 4/7 of the HCP tasks (FDR-corrected p<0.05; S9 Fig). Thus, brain areas with 
increased levels of task-evoked activity tend to reduce both their task-evoked variability and FC. 
 

The information-theoretic relevance of task state reduction of neural correlations 
Results from our empirical data converged across imaging modalities and species, 

illustrating that task states increased mean activity while reducing neural variability and 
correlations. However, the theoretical implication of a decreased correlated task state remains 
unclear. Here we sought to better characterize the information-theoretic implication of a global 
reduction in neural correlations. In particular, we hypothesized that reductions in neural 
correlations increase the collective information across units by suppressing background 
spontaneous activity/noise and reducing information redundancy, supporting robust information 
representations [22]. Consistent with previous large-scale computational models [34,35], this 
predicts that the dimensionality of global neural activity would increase during task-evoked 
states, increasing its collective information. We note that an increase in dimensionality is not 
trivially implied by decreased global correlations. Because we found that regional time series 
variance also decreases during task states, the neural data dimensionality would increase only 
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if inter-region covariance decreases more than local regional variance (i.e., off-diagonal is 
reduced more than the diagonal of the variance-covariance matrix). 

We measured the dimensionality using the ‘participation ratio’ [35,36] of the neural 
activity (for human fMRI and NHP spiking data) during rest and task states (see Methods). 
Consistent with our hypothesis, we found that task states increased their overall dimensionality 
relative to rest states (fMRI task versus rest, exploratory cohort difference = 16.13, ,19.31t175 =   
p<10e-44, replication cohort difference = 15.78, , p<10e-50; NHP task versus rest,21.66t175 =   
exploratory subject difference = 0.12, , p<10e-06, replication subject difference =.25t308 = 5  
0.10, , p<10e-06 ) (Fig 5). We also found that when analyzing each of the 7 HCP.87t830 = 4  
tasks separately, dimensionality increased in all 7 tasks relative to resting state (FDR-corrected 

; S10 Fig). The present results suggest that task states are associated with a.0001p < 0  
decrease in neural variability and correlations, reflecting a suppression of shared and private 
spontaneous activity, which increases the dimensionality of neural activity. 
 

 
 
Fig 5.  Neural dimensionality increases during task periods relative to resting-state activity. a) For 
each subject, we calculated the dimensionality using the participation ratio [35,36] during task and rest 
states and found that during task states, dimensionality significantly increased. b) We calculated the 
dimensionality of spiking activity across trials and found that during task states, dimensionality 
significantly increased. These findings provide a potential information-theoretic interpretation of neural 
correlation and variability reduction during task states. Boxplots indicate the interquartile range of the 
distribution, dotted black line indicates the mean, grey line indicates the median, and the distribution is 
visualized using a swarm plot. 
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From neurons to neural masses: Modeling neural dynamics of cortical areas 
In the previous sections, we provided empirical evidence that task states reduce 

inter-area correlations and variability in multi-unit spiking and fMRI data. In this section, we 
construct a biologically plausible model that provides a parsimonious explanation of correlation 
and variability reductions in mean field spiking networks and cortical BOLD dynamics. 

Neurophysiologically, functional brain areas are composed of local circuits with balanced 
excitatory and inhibitory neural activity (Fig 6A). In previous work, local circuits have been 
demonstrated to have clustered excitatory connections [37], leading to slow dynamics and high 
variability in spiking networks simulated in silico [6]. Using this previously established model, we 
systematically perturbed this balanced network under a distribution of inputs to estimate the 
mean-field transfer function of a cortical population. We found that the population transfer 
function approximated a sigmoid activation function (Fig 6B). Approximating the mean-field 
transfer function of a cortical area allowed us to focus our modeling efforts on simplified 
excitatory networks across large cortical areas, since most inter-area cortical networks rely on 
excitatory connectivity [38]. 
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Fig 6. Inferring the mean-field transfer function of a neural population with a balanced spiking 
model with clustered excitatory connectivity. a)  Schematic illustration of the balanced spiking model 
with clustered excitatory connections. Network architecture and parameters are identical to those reported 
in [6]. Red triangles indicate excitatory cells, blue circles indicate inhibitory cells. b) The population spike 
rate (excitatory cells only) subject to inhibitory regulation. We systematically stimulated a subset of the 
neural population and measured the corresponding mean excitatory spike rate. Spike rates were 
normalized between 0 and 1. Excitatory stimulation was implemented by stimulating 400 excitatory 
neurons, and inhibitory stimulation was implemented by stimulating 400 inhibitory neurons. Spiking 
statistics were calculated across 30 trials, with each point in the scatter plot indicating a different 50ms 
time bin. c) Population neural variability (excitatory cells only), as a function of input stimulation. d) Based 
on panel b, we approximated the mean field neural transfer function as a sigmoid. A sigmoid transfer 
function produces optimal input-output dynamics for a narrow range of inputs (gray). The same input 
distribution mean shifted by some excitatory/inhibitory stimulation produces a quenched dynamic range.  
 

In this balanced spiking network, any evoked stimulation, excitatory or inhibitory, would 
result in reduced variability (Fig 6C). Specifically, the magnitude of stimulation was negatively 
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correlated with spiking variability in the balanced spiking model (rho = -0.92; p<0.0001). While 
previous studies have suggested that the mean and variance of the spike rate may be 
independent of each other, those studies focused on mean-matching the spike rate of individual 
neurons within the same local population [3,6]. However, in this study, we focus exclusively on 
the mean-field level rather than individual neurons. We found a highly negative association 
between mean and variance under experimental perturbation, suggesting that at the mean-field 
level, mean and variance cannot be mechanistically dissociated. Based on these 
considerations, we hypothesized that during periods in which global neural activity levels are 
elevated, such as task states, both neural variability and correlations would be globally 
quenched.  
 

Neural variability is quenched during task-evoked states in a neural mass model 
Here we rigorously ground the intuition that task-evoked activity reduces output 

variability using neural mass modeling and dynamical systems theory. A recent study provided 
evidence that an evoked stimulus drives neural populations in sensory cortex around a stable 
fixed point attractor [4]. We first extended these findings using a simplified neural mass model, 
which allows for a comprehensive dynamical systems analysis that is mathematically difficult in 
higher dimensions. Additionally, this enabled a simpler theoretical approach to investigating 
changes in neural dynamics that are generalizable across mean-field neural cortical areas (i.e., 
populations with sigmoidal transfer functions). 
  We first characterized the relationship between task-evoked and spontaneous activity in 
a large neural population using a single neural mass unit. We simulated the neural population’s 
dynamics across a range of fixed input strengths (Fig 7A), finding a nonlinear relationship 
between stimulus strength and the observed variability of the neural population (Fig 7C). We 
found that variability was highest when there was no stimulation, while variability decreased for 
any type of evoked stimulation (e.g., negative or positive input amplitudes). Despite the model’s 
simplicity, these findings are consistent with our (and others’) empirical and model results 
demonstrating that task states quench time series variability in both human and animal data 
[1,3,4].  
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Fig 7. Task-evoked activity induces changes in neural variability and the underlying attractor 
dynamics. Our minimal modeling approach directly links descriptive statistics (e.g., time series variability) 
with rigorous dynamical systems analysis (e.g., attractor dynamics). a) During different evoked states 
(i.e., fixed inputs), there is a reduction in the observed time series variability (measured by variance 
across time). This is directly related to how input-output responses change due to the changing slope in 
the sigmoid transfer function. b) We visualized the phase space for each of the neural populations 
according to state by plotting the derivative of denoted by . For each state, we estimated the fixedX1 Ẋ 1  
point attractor (plotted as a star), denoting the level of mean activity the system is drawn to given some 
fixed input (or absence thereof). Arrows denote the direction/vector toward each fixed point, which specify 
the characteristic time scale (i.e., the speed) the system approaches the fixed point. c) We ran 
simulations across a range of stimulation amplitudes, calculating the variance across time at each 
amplitude. d) We characterized the shifting attractor dynamics for each stimulus by computing the 
characteristic time scale at the fixed point for each stimulation amplitude. The characteristic time scale 
across all fixed points is perfectly correlated with the neural variability of the simulated time series across 
all fixed inputs (rank correlation = 1.0). 
 
 We sought to leverage the model’s simplicity to characterize dynamical systems 
properties governing the observed neural variability. This would provide rigorous evidence that 
shifting the underlying attractor dynamics alters the observed neural signals. We first performed 
a state space analysis in one dimension to identify the stable fixed point attractor (i.e., the 
equilibrium level of activity the system is drawn to during a particular state) for the intrinsic and 
evoked states (Fig 7B). The state space view enabled visualization of the system’s full dynamics 
across different evoked states (Fig 7B). For example, dynamics around the fixed point attractor 
in the intrinsic baseline (rest) state appeared to approach equilibrium slowly. This can be 
identified by observing the angle where the curve intersects 0 on the y-axis (i.e., when ;x ̇ = 0  
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Fig 7B). The angle of this curve corresponds to the characteristic time scale, a dynamical 
property characterizing the speed with which the system approaches the attractor (a higher 
value reflects slower dynamics; see Methods) [39]. 

To quantify this more rigorously, we performed a linear stability analysis around the fixed 
point attractor of the system across the same range of stimulation amplitudes. For each input, 
we analytically calculated the characteristic time scale at each fixed point. Again, we found a 
nonlinear relationship between the amplitude of the stimulus and the characteristic time scale of 
the neural population (Fig 7D), and found that the characteristic time scale explained 100% of 
the variance of the simulated stimulus-evoked variability (Fig 7C). These results demonstrate 
that changes in observed neural variability can be directly attributed to changes in the 
underlying attractor dynamics.  

To ensure that the model explanation would generalize to data obtained on a slower 
time scale (e.g., fMRI BOLD data), we transformed the simulated neural activity into fMRI BOLD 
activity using the Balloon-Windkessel model [40]. The Balloon-Windkessel is a nonlinear 
transformation of neural activity to model the BOLD signal that takes into account the 
normalized blood volume, blood inflow, resting oxygen extraction fraction, and the normalized 
deoxyhemoglobin content. Consistent with previous accounts [2], we found that the 
characteristic time scale around the fixed point attractor was still strongly correlated with BOLD 
variability (rho=0.97; p<0.0001; S6 Fig). 

Neural correlations are quenched during task states in a network model 
We generalized the dynamical systems analysis in one dimension to two dimensions, 

allowing us to focus on correlations across cortical areas. We show illustrations of the state 
space for intrinsic and task-evoked states (Fig 8B,D), as well as the corresponding time series 
(Fig 8A,C) for our model. Induced negative activity produced qualitatively similar results to the 
activated state (Fig 8D) due to subthreshold levels of activity rather than saturating levels of 
activity.  
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Fig 8. Task-evoked activity quenches neural correlations by altering the underlying attractor 
dynamics. We used a two unit network model, the minimal model necessary to study dynamic changes 
in neural correlations. a) At baseline, we observed slow, high amplitude fluctuations and high neural 
correlations. b) To characterize the underlying attractor dynamics, we visualized the two-dimensional 
state space, visualizing the flow field and the nullclines (blue and red curves, where the rate of change is 
0) for each unit. The intersection of the two nullclines denote the fixed point attractor. We overlaid the 
simulated scatter plot (cyan dots) to illustrate the correspondence between the attractor dynamics and 
simulation. c) We injected a fixed input stimulation, shifting the network to an ‘evoked’ state, which 
caused a decrease in neural variability and correlation. d) The external input transiently moved the fixed 
point, altering the attractor dynamics and the corresponding scatter plot. e) We systematically injected a 
range of fixed inputs into the network. We found that neural correlations were optimal with no external 
stimulation, and decreased with any external stimulation. f) Across stimulation strengths, we found that 
the generalized characteristic time scale (see Methods) near the fixed point explained 98% of the neural 
correlation variance, providing a direct association between the network’s attractor dynamics and 
observed neural correlations. 
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The state space analysis (Fig 8B,D) allowed us to track the simultaneous evolution of the 
two neural masses, providing a geometric interpretation of the system. We observed 
qualitatively that shifts in the attractor dynamics (i.e., changes to the flow field) due to 
stimulation were directly associated with changes to the correlation between the two neural 
masses. Specifically, we observed that intrinsic state dynamics supported slower, elongated 
trajectories along a diagonal axis, consistent with correlated neural activity between the two 
masses (Fig 8B). This was due to a slower characteristic timescale near the fixed point attractor, 
which corresponds mathematically to eigenvalues with smaller magnitudes. In contrast, during 
evoked states, the system approached the fixed point attractor at a faster speed, quenching 
trajectories in state space that supported correlated variability (Fig 8D). Thus, the visualization 
of the state space demonstrated that changes in neural correlations were associated with 
changes to the flow field around the fixed point attractor. 
 To more carefully test the relationship between state-dependent neural correlations, we 
simulated our network model across a range of fixed input amplitudes. Despite no changes to 
the network’s connectivity structure, we found that neural correlations systematically changed 
(decreased) as a function of evoked stimulation (Fig 8E). Further, using dynamical systems 
analysis, we found that a generalization of the characteristic time scale in higher dimensions 
accounted for changes in neural correlations (rho=0.99; p<0.0001; Fig 8F). In other words, we 
analytically determined that evoked stimulation shifted the attractor dynamics, changing the 
neural correlations in a network model with fixed synaptic connections. We found consistent 
results after transforming the neural activity to fMRI BOLD activity using the Balloon-Windkessel 
model [40], finding that changes to the characteristic time scale accounted for changes in BOLD 
correlations (i.e., FC) (rho=0.97; p<0.0001; S7 Fig). These results were reproduced using 
mutual information (rho=0.94; p<0.0001), a nonlinear measure of statistical dependence [41], 
and non-parametric rank correlation (rho=0.99; p<0.0001). This suggests that the quenching of 
shared variance encompasses both parametric and non-parametric linear and nonlinear 
measures of statistical dependencies. 

Discussion 
The present results suggest that task-evoked neural activity globally quenches neural 

time series variability and correlations. We showed this in NHP spiking and human fMRI data, 
illustrating the generality of the phenomena. This supports the hypothesis that during task 
states, decreases in neural variability and correlations suppress ongoing spontaneous activity, 
better supporting information coding [22]. We subsequently provided a dynamical systems 
model to demonstrate that evoked activity strengthened the system’s fixed point attractor, 
quenching neural variability and correlations. This provided a mechanistic framework to interpret 
the empirical results. Importantly, the use of a sigmoid transfer function to model mean-field 
cortical dynamics revealed a simple interpretation underlying neural variability and correlation 
suppression widely applicable to many types of neural data. During task states, the slope of the 
neural transfer function decreases, reducing the dynamic range of input-output responses. This 
results in reduced overall output variability, as well as reduced shared variability (e.g., 
correlations) from connected neural populations. The collective empirical and theoretical results 
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provide strong evidence that observed neural variability and correlations are state-dependent, 
and these changes emerge from the activity dynamics governed by the transfer functions of 
large neural masses. 

The relationship between neural correlations and neural communication (or FC) is 
complex. For example, it appears that a decrease in the neural correlation between a pair of 
brain regions does not simply imply a reduction in communication. In the spiking literature, this 
interpretation is attributed to a reduction of shared spontaneous activity (or, neural noise). This 
is because the cross-trial mean evoked response (i.e., “the signal” associated with the task or 
stimulus) is removed prior to calculating the correlation, leaving only “neural noise” or 
spontaneous, moment-to-moment activity [10]. Notably, this “neural noise” can still be important, 
since some portion of it drives trial-by-trial variability in cognition and behavior. In the fMRI 
literature, this is equivalent to regressing out the cross-trial mean task-evoked activity 
associated with the task/stimulus prior to calculating FC [23]. (This type of FC is also referred to 
as “background connectivity” [32]) The primary reason for this is to target neural-to-neural 
correlations, rather than task-to-neural correlations.  

Our theoretical and empirical results clarify the interpretation of correlation changes from 
rest to task states in large-scale neural systems. Though empirical studies in large-scale 
functional networks using fMRI have reported FC increases during task states [42], we recently 
found that task-evoked activity inappropriately inflates FC estimates if the mean-evoked activity 
response is not properly accounted for [23]. Indeed, when properly accounting for the 
mean-evoked response, we found that FC changes from rest to task states were dominated by 
FC decreases (see Fig 3I). The correction of the mean-evoked response in our paradigm 
brought the empirical results in line with our modeling results, suggesting a counterintuitive 
interpretation of FC changes during tasks: task co-activation in the presence of neural 
correlation quenching is consistent with task-related signal communication with background 
noise suppression. This can be understood from an information-theoretic perspective: during 
task communication, ongoing spontaneous activity will be suppressed (i.e., neural variability and 
correlations), increasing the fidelity of the task signal (mean task-evoked response). Our results 
were consistent using both correlation and covariance measures, suggesting that these 
decreases were due to reductions in shared variance rather than changes in unshared variance 
[28–30]. Furthermore, the present results do not rely on regressing out the task; correlation and 
variability quenching were also observed independent of this preprocessing step (see Fig 4). 
This was achieved by isolating cross-trial variance, which is similar to computing FC with a beta 
series correlation [43]. 

Though we largely focused on FC decreases during task states in both data sets, we 
identified a small number of correlations that increased during task state. Most of these 
correlation increases were primarily between regions belonging to different functional networks, 
which is consistent with previous literature [14–16]. Correlation increases have also been 
reported in the NHP spiking literature, where spike count correlations between units with more 
similar task tuning (e.g., similar receptive fields) tend to decrease, while spike count correlations 
between units with dissimilar task tuning increase [20]. This appears to be conceptually 
consistent with the present fMRI findings, where regions in the same network tend to decrease 
their correlations, while regions across functionally distinct networks tend to increase their 
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correlations. For example, our results reliably show correlation increases between the 
cingulo-opercular (a control processing network) and the default mode network (an automatic 
processing network) during tasks (Fig 3F) [44,45]. However, such findings are observational, 
and future work will be necessary to directly evaluate this hypothesis. Moreover, the simplicity of 
our current computational model is unable to account for these complex correlation changes. 
Our current model is limited to only two neural masses and therefore unable to account for 
potential differences in task tuning and receptive fields. Thus, it will be important for future work 
to investigate the theoretical basis (and functional relevance) of neural correlation increases in 
more complex networks. 

We propose that a sigmoid transfer function is an effective model of the activation 
dynamics of large cortical areas. This was based on causally manipulating a locally balanced 
E-I circuit with clustered excitatory connectivity [6]. Moreover, the implementation of the sigmoid 
transfer function is consistent with prior computational studies demonstrating that resting-state 
activity (i.e., the absence of task-evoked activity) corresponds to dynamic regimes with large 
amplitude, slow fluctuations [46]. In contrast, during task-evoked states, the output dynamics of 
the sigmoid transfer function are reduced, which correspond to evoked states (e.g., cortical “Up” 
or asynchronous states) that exhibit quenched variability [47,48]. The quenching of output 
variability can be explained by different biological mechanisms, such as clustered excitatory 
connectivity in local circuits, tightening of E-I balance due to inhibitory activation, neural 
adaptation, and/or irregular synaptic vesicle release [4,6,49,50]. The manifestation of these 
biological mechanisms can be summarized at the mean-field by the reduction of the response 
variability due to the decreased slope in the sigmoid transfer function during highly active or 
inactive states. 

The present results may appear to contradict some reports that task engagement 
increases (rather than decreases) overall neural communication. Yet there are several key 
differences between those previous findings and the present results. First, many of the previous 
results focused on communication through coherence, which often involves frequency-specific 
coupling of neural signals [51]. This involves the phase-alignment of neural activity on faster 
timescales, which relates only indirectly to the slower correlation measures of spike rate activity 
and metabolic demand focused on here [52,53]. A second key difference between the present 
and most previous results is our emphasis on the absolute amount of correlation change from 
rest to task, rather than changes in network organization. Previous studies have also 
acknowledged that global signal regression, a common fMRI preprocessing step, shifts the 
baseline of rest- and task-state correlations and artificially induces negative correlations [54,55]. 
This preprocessing step confounds the comparison of the magnitude of correlation changes 
during independent rest- and task-state fMRI. In the present study, we rigorously preprocessed 
our fMRI data while ensuring to not remove the global signal. Along with the recent finding that 
incorrect removal of the mean-evoked response can inflate FC estimates, we suggest that rest 
to task correlation increases in previous fMRI studies should be interpreted with care. 

Despite converging results, there are several key differences in our two empirical data 
sets. First, the time scale of fMRI BOLD activity is much slower than the NHP spiking activity. 
However, these differences were mitigated by measuring spiking variability across trials, which 
is comparable to the time scale of fMRI’s sampling rate (in the hundreds of milliseconds). In 
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addition, our computational model results demonstrated that reductions in neural variability and 
correlations were preserved after nonlinearly transforming the spike rate signal to the fMRI 
BOLD signal with the Balloon-Windkessel model [40]. Another key difference in the data sets is 
the lack of a true resting-state data set in our NHP data. However, to better compare these two 
data sets, we demonstrated in the human fMRI data set that the task block periods showed 
reduced variability relative to inter-block intervals, which is a more analogous comparison to the 
NHP data set. Despite these efforts, it will be important for future work to more thoroughly 
investigate the differences in variability and correlation quenching using experimental paradigms 
that are consistent across the data acquisition techniques. 

In conclusion, we propose a mechanistic framework for interpreting changes in neural 
variability and correlations by investigating the effects of task-state activity on the underlying 
neural attractor dynamics. Using empirical data analysis across two highly distinct neural data 
sets and theoretical modeling, we demonstrated convergent evidence suggesting that task 
states quench neural variability and correlations due to strengthening neural attractor dynamics 
across large-scale neural systems. Our work extends previous research establishing similar 
attractor mechanisms in sensory cortex [4] to characterize the role of attractor dynamics across 
large-scale cortical areas. We expect these findings to spur new investigations to better 
understand how we can interpret neural variability and correlations during task states, providing 
a deeper understanding of dynamic processes in the brain. 

Methods 

Spiking data: Data collection 
The behavioral paradigm for each monkey was a motion-color categorization task (Fig 

1B). Experimental methods for electrophysiology data collected for NHP was previously 
reported in [26] and [56]. Data was collected in vivo from two (one female) behaving adult 
rhesus macaques (Macaca mulatta) across 55 sessions. Data from six distinct cortical regions 
were recorded simultaneously from acutely inserted electrodes. Cortical regions included: MT, 
V4, PIT, LIP, FEF, and LPFC (Fig 1A). Spikes from each region were sorted offline into isolated 
neurons. However, given our interest in inter-region neural correlations across large scale 
neural systems, we pooled spikes from each functional area into a single spike rate time series. 
For each trial, spikes were sorted for a 5s period, beginning 2.5s prior to stimulus onset, and 
until 3.5s after stimulus onset. Further details regarding electrophysiological data collection can 
be found here:  
http://www.sciencemag.org/content/348/6241/1352/suppl/DC1  and here: 
http://www.pnas.org/content/pnas/suppl/2018/07/09/1717075115.DCSupplemental/pnas.171707
5115.sapp.pdf 

All statistical analyses in the main article (detailed below) were performed on a single 
monkey. Independent replication was performed on the second monkey, and is reported in S1 
Fig.  
 

23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/560730doi: bioRxiv preprint 

https://paperpile.com/c/2dfEnv/Iva7
https://paperpile.com/c/2dfEnv/teJK
https://paperpile.com/c/2dfEnv/Rd7A
https://paperpile.com/c/2dfEnv/91pR
http://www.sciencemag.org/content/348/6241/1352/suppl/DC1
http://www.pnas.org/content/pnas/suppl/2018/07/09/1717075115.DCSupplemental/pnas.1717075115.sapp.pdf
http://www.pnas.org/content/pnas/suppl/2018/07/09/1717075115.DCSupplemental/pnas.1717075115.sapp.pdf
https://doi.org/10.1101/560730


Spiking data: Task versus rest variability analysis 
Neural variability analysis was analyzed using an analogous approach to both the 

computational model and fMRI data. However, since we had no true ‘resting-state’ activity for 
the monkey data set, we used the inter-trial interval (ITI; 0.5s - 1s variable duration, see Fig 1B) 
as “resting-state activity”. We used the 0.5s - 1s interval immediately preceding the trial’s 
fixation period to avoid any reward/feedback signals from the previous trial. (Reward/feedback 
from the previous trial was provided more than 1.5s prior to the fixation period.) Spike counts 
were calculated by taking a 50ms sliding window with 10ms increments, consistent with 
previous studies [3]. The mean-evoked response across all trials for a given task rule (e.g., 
motion rule versus color rule) was calculated and removed from each trial, as is common in the 
spike count literature [10] and the fMRI literature [23]. (Statistically this is equivalent to 
performing the task activation regression in the fMRI data, described below.) The mean 
task-evoked response of the ITI period associated with each task condition was also removed. 
This was to control for any artifacts that might be induced due to removal of the mean-evoked 
response. Trials with less than 250ms (or 50 time points) worth of spiking data for either the ITI 
and/or task cue presentation were excluded. This was done to reduce variability of the 
estimated spike count correlations, since correlations with few observations are highly variable.  

We computed the variance across 25 consecutive trials using the average spike rate 
from each cortical recording during either the ITI or the task cue period. This was repeated for 
all trials for each subject. We used across-trial variance to calculate variability rather than Fano 
factor [3]. This choice was due to the insight from our model illustrating that the mean-evoked 
activity and the corresponding variance interact in a nonlinear manner, and that the Fano factor 
is computed as the variance over the mean. Cross-trial variance was computed as 

  arV = ∑
x+n

trial=x
n−1

(r −r)trial ˉ 2

 (1) 

Where  trials, reflected the average spike rate of each trial, and is the mean firing5n = 2 rtrial r̄  
rate for the task condition across all trials (i.e., either the mean firing rate for the color or motion 
task cue period). 

The statistical difference in task versus rest neural variability was computed by using a 
two-way, paired t-test across all bins of 25 consecutive trials. The global neural variability 
change was computed by averaging the variance across all recording areas for each bin. 
Statistics for the regional neural variability change were corrected for multiple comparisons 
using an FDR-corrected threshold of p<0.05. 

In addition, we computed the variance during the ITI and task cue period within trial 
(across time points) (S2 Fig). This analysis demonstrated that moment-to-moment variability 
(rather than trial-to-trial variability) was also quenched from rest to task periods, suggesting that 
variability quenching also occurs at faster timescales. The statistical difference in task versus 
rest neural variability was computed by using a two-way, paired t-test (paired by trial) across all 
trials for each monkey separately. The global neural variability change was computed by 
averaging the variance across all recording areas for each trial (S2 Fig). Statistics for the 
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regional neural variability change were corrected for multiple comparisons using an 
FDR-corrected threshold of p<0.05. 
 

Spiking data: Task versus rest state correlation analysis 
Neural correlations for spiking data using the same preprocessing steps mentioned 

above for spike rate variability analysis. Specifically, the mean-evoked response across all trials 
for each task condition was removed from each trial. Spike count correlations were then 
computed across trials, using groups of 25 trials as described above (Fig 2E-F). 

The difference in task versus rest neural correlations was calculated using a two-way, 
paired t-test (paired by each bin of 25 trials) for each subject separately using Fisher’s 
z-transformed correlation values. The global neural correlation change was computed by 
averaging the Fisher’s z-transformed correlation values between all pairs of cortical regions, and 
comparing the averaged task versus rest correlation for each bin (Fig 2D). Statistics for the 
pairwise neural correlation change (Fig 2E-G) were corrected for multiple comparisons using an 
FDR-corrected threshold of p<0.05. 

In addition, we computed the spike count correlation during the ITI and task cue period 
separately within trial (across time points) (S2 Fig). This analysis demonstrated that 
moment-to-moment correlations (rather than trial-to-trial correlations) were also quenched from 
rest to task periods, suggesting that correlation quenching also occurs at faster timescales. The 
statistical difference in task versus rest neural correlations was computed by using a two-way, 
paired t-test (paired by trial) across all trials for each monkey separately. The global neural 
correlation change was computed by averaging the correlation across all pairs of recording 
areas for each trial (S2 Fig). 
 

fMRI: Data and paradigm 
The present study was approved by the Rutgers University institutional review board. 

Data were collected as part of the Washington University-Minnesota Consortium of the Human 
Connectome Project (HCP) [31]. A subset of data (n = 352) from the HCP 1200 release was 
used for empirical analyses. Specific details and procedures of subject recruitment can be found 
in [31]. The subset of 352 participants was selected based on: quality control assessments (i.e., 
any participants with any quality control flags were excluded, including 1) focal anatomical 
anomaly found in T1w and/or T2w scans, 2) focal segmentation or surface errors, as output 
from the HCP structural pipeline, 3) data collected during periods of known problems with the 
head coil, 4) data in which some of the FIX-ICA components were manually reclassified; 
low-motion participants (i.e., exclusion of participants that had any fMRI run in which more than 
50% of TRs had greater than 0.25mm framewise displacement); removal according to family 
relations (unrelated participants were selected only, and those with no genotype testing were 
excluded). A full list of the 352 participants used in this study will be included as part of the code 
release.  
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All participants were recruited from Washington University in St. Louis and the 
surrounding area. We split the 352 subjects into two cohorts of 176 subjects: an exploratory 
cohort (99 females) and a replication cohort (84 females). The exploratory cohort had a mean 
age of 29 years of age (range=22-36 years of age), and the replication cohort had a mean age 
of 28 years of age (range=22-36 years of age). All subjects gave signed, informed consent in 
accordance with the protocol approved by the Washington University institutional review board. 
Whole-brain multiband echo-planar imaging acquisitions were collected on a 32-channel head 
coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms, flip angle=52º, 
Bandwidth=2,290 Hz/Px, in-plane FOV=208x180 mm, 72 slices, 2.0 mm isotropic voxels, with a 
multiband acceleration factor of 8. Data for each subject were collected over the span of two 
days. On the first day, anatomical scans were collected (including T1-weighted and T2-weighted 
images acquired at 0.7 mm isotropic voxels) followed by two resting-state fMRI scans (each 
lasting 14.4 minutes), and ending with a task fMRI component. The second day consisted with 
first collecting a diffusion imaging scan, followed by a second set of two resting-state fMRI scans 
(each lasting 14.4 minutes), and again ending with a task fMRI session.  

Each of the seven tasks was collected over two consecutive fMRI runs. The seven tasks 
consisted of an emotion cognition task, a gambling reward task, a language task, a motor task, 
a relational reasoning task, a social cognition task, and a working memory task. Briefly, the 
emotion cognition task required making valence judgements on negative (fearful and angry) and 
neutral faces. The gambling reward task consisted of a card guessing game, where subjects 
were asked to guess the number on the card to win or lose money. The language processing 
task consisted of interleaving a language condition, which involved answering questions related 
to a story presented aurally, and a math condition, which involved basic arithmetic questions 
presented aurally. The motor task involved asking subjects to either tap their left/right fingers, 
squeeze their left/right toes, or move their tongue. The reasoning task involved asking subjects 
to determine whether two sets of objects differed from each other in the same dimension (e.g., 
shape or texture). The social cognition task was a theory of mind task, where objects (squares, 
circles, triangles) interacted with each other in a video clip, and subjects were subsequently 
asked whether the objects interacted in a social manner. Lastly, the working memory task was a 
variant of the N-back task.  

Further details on the resting-state fMRI portion can be found in [57], and additional 
details on the task fMRI components can be found in [27]. All fMRI results reported in the main 
article reflect results found with the first cohort of subjects. Independent replication of these 
effects are reported in S4 Fig with the replication cohort. 
 

fMRI: Preprocessing 
Minimally preprocessed data for both resting-state and task fMRI were obtained from the 

publicly available HCP data. Minimally preprocessed surface data was then parcellated into 360 
brain regions using the [58] atlas. We performed additional standard preprocessing steps on the 
parcellated data for resting-state fMRI and task state fMRI to conduct neural variability and FC 
analyses. This included removing the first five frames of each run, de-meaning and de-trending 
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the time series, and performing nuisance regression on the minimally preprocessed data [33]. 
Nuisance regression removed motion parameters and physiological noise. Specifically, six 
primary motion parameters were removed, along with their derivatives, and the quadratics of all 
regressors (24 motion regressors in total). Physiological noise was modeled using aCompCor 
on time series extracted from the white matter and ventricles [59]. For aCompCor, the first 5 
principal components from the white matter and ventricles were extracted separately and 
included in the nuisance regression. In addition, we included the derivatives of each of those 
components, and the quadratics of all physiological noise regressors (40 physiological noise 
regressors in total). The nuisance regression model contained a total of 64 nuisance 
parameters. This was a variant of previously benchmarked nuisance regression models 
reported in [33].  

We excluded global signal regression (GSR), given that GSR artificially induces negative 
correlations [54,60], which would bias analyses of the difference of the magnitude of 
correlations between rest and task. We included aCompCor as a preprocessing step here given 
that aCompCor does not include the circularity of GSR (regressing out some global gray matter 
signal of interest) while including some of the benefits of GSR (some extracted components are 
highly similar to the global signal) [61]. This logic is similar to a recently-developed 
temporal-ICA-based artifact removal procedure that seeks to remove global artifact without 
removing global neural signals, which contains behaviorally relevant information such as 
vigilance [62,63]. We extended aCompCor to include the derivatives and quadratics of each of 
the component time series to further reduce artifacts. Code to perform this regression is publicly 
available online using python code (version 2.7.15) 
(https://github.com/ito-takuya/fmriNuisanceRegression ).  

Task data for task FC analyses were additionally preprocessed using a standard general 
linear model (GLM) for fMRI analysis. For each task paradigm, we removed the mean evoked 
task-related activity for each task condition by fitting the task timing (block design) for each 
condition using a finite impulse response (FIR) model [23]. (There were 24 task conditions 
across seven cognitive tasks.) We used an FIR model instead of a canonical hemodynamic 
response function given recent evidence suggesting that the FIR model reduces both false 
positives and false negatives in the identification of FC estimates [23]. This is due to the FIR 
model’s ability to flexibly fit the mean task-evoked response across all blocks. Removing the 
mean-evoked response of a task condition (i.e., main effect of task) is critical to isolate the 
spontaneous neural activity (and similarly the background connectivity [32]). Importantly, this 
procedure is standard when performing in spike count correlations [10,23]. Analogous statistical 
preprocessing steps were critical when comparing neural correlation measures across human 
fMRI data and NHP spiking data. 

FIR modeled task blocks were modeled separately for task conditions within each of the 
seven tasks. In particular, two conditions were fit for the emotion cognition task, where 
coefficients were fit to either the face condition or shape condition. For the gambling reward 
task, one condition was fit to trials with the punishment condition, and the other condition was fit 
to trials with the reward condition. For the language task, one condition was fit for the story 
condition, and the other condition was fit to the math condition. For the motor task, six 
conditions were fit: (1) cue; (2) right hand trials; (3) left hand trials; (4) right foot trials; (5) left foot 
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trials; (6) tongue trials. For the relational reasoning task, one condition was fit to trials when the 
sets of objects were matched, and the other condition was fit to trials when the objects were not 
matched. For the social cognition task, one condition was fit if the objects were interacting 
socially (theory of mind), and the other condition was fit to trials where objects were moving 
randomly. Lastly, for the working memory task, 8 conditions were fit: (1) 2-back body trials; (2) 
2-back face trials; (3) 2-back tool trials; (4) 2-back place trials; (5) 0-back body trials; (6) 0-back 
face trials; (7) 0-back tool trials; (8) 0-back place trials. Since all tasks were block designs, each 
time point for each block was modeled separately for each task condition (i.e., FIR model), with 
a lag extending up to 25 TRs after task block offset. 
 

fMRI: Task state activation analysis 
We performed a task GLM analysis on fMRI task data to evaluate the task-evoked 

activity. The task timing for each of the 24 task conditions was convolved with the SPM 
canonical hemodynamic response function to obtain task-evoked activity estimates [64]. FIR 
modeling was not used when modeling task-evoked activity. Coefficients were obtained for each 
parcel in the Glasser et al. (2016) cortical atlas for each of the 24 task conditions.  

fMRI: Task state versus resting-state variability analysis 
To compare task state versus resting-state variability, we regressed out the exact same 

task design matrix used on task-state regression on resting-state data. This was possible given 
that the number of timepoints of the combined resting-state scans in the HCP data set 
exceeded the number of timepoints of the combined task-state scans (4800 resting-state TRs > 
3880 task-state TRs). This step was to ensure that any spurious change induced through the 
removal of the mean task-evoked response would also induce spurious changes in the 
resting-state data. However, results were qualitatively identical without the regression of the 
task design matrix on resting-state data. 

After task regression, we obtained the residual time series for both resting-state and task 
state fMRI data. We then z-normalized each task run with zero-mean and unit variance such 
that we could appropriately compare the neural variability of task blocks across different runs. 
We emphasize that task activation regression (removal of the mean task-evoked response) was 
removed prior to z-scoring the time series. Additionally, S5 Fig shows results without 
z-normalization, and the results are qualitatively identical.) This enabled us to evaluate whether 
the variability during task blocks significantly decreased relative to inter-block intervals by 
evaluating the variance of task blocks relative to 1. We then extracted the time series variance 
during task blocks, and then averaged the variance across all task conditions to obtain our 
statistic of task-evoked neural variability. To identify the resting-state neural variability, we 
applied the same exact procedure to resting-state time series using the task-state design matrix. 
A sanity check for our analysis was that the ‘intrinsic-state’ neural variability is close to 1 (given 
that the time series was normalized to have unit variance), while the task-state neural variability 
is significantly less than 1 (Fig 3A). This ensured that variability measures were not biased by 
the normalization step.  
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We compared the neural variability of the entire brain during task state periods versus 
resting-state periods. For each subject, we computed the variance during task and resting state 
separately, and then averaged across all brain regions. This resulted in two values per subject, 
representing task state and resting-state variability. We then performed a two-way group paired 
t-test across subjects to assess statistical significance (Fig 3A). We also computed the task 
state versus resting-state difference in neural variability for each brain region separately (Fig 
3B). We corrected for multiple comparisons using an FDR-corrected threshold of p<0.05 (Fig 
3B,C). Cortical surface visualizations were constructed using Connectome Workbench (version 
1.2.3) [31]. 

fMRI: Task state versus resting-state correlation analysis 
We compared task-state versus resting-state FC (i.e., neural correlations), after 

performing the exact same preprocessing steps as mentioned above. Results without 
z-normalization (and using covariance rather than correlations) on the task and rest residual 
time series are reported in S5 Fig. 

We computed the correlation between all pairs of brain regions for each task condition 
during task block periods. We then averaged the Fisher’s z-transformed correlation values 
across all task conditions to obtain a general task state FC matrix (Fig 3E). We repeated the 
same procedure (i.e., using the same task-timed blocks) on resting-state FC to obtain an 
equivalent resting-state FC matrix for each subject (Fig 3D). We directly compared task-state 
FC to resting-state FC by performing two-way group paired t-tests for every pair of brain regions 
using the Fisher’s z-transformed correlation values. Statistical significance was assessed using 
an FDR-corrected threshold of p<0.05 (Fig 3F). To compare the average global correlation 
during task state and resting state, we computed the average correlation between all pairs of 
brain regions during task and resting-state, performing a group paired t-test (Fig 3G). To 
compare the average global connectivity profile of every brain region [65], we computed the 
average Fisher z-transformed correlation of a single region to all other brain regions during task 
and rest and performed a two-way group paired t-test between task and rest (Fig 3H,I). 
Statistical significance was assessed using an FDR-corrected threshold of p<0.05. 

fMRI: Task state versus resting-state variability/correlation analysis without task 
regression 

To compare task-state versus resting-state variability/correlations without regressing out 
task effects using FIR [23], we calculated the variance/correlations for each time point across 
blocks. This approach is similar to previous studies that measured variability changes after 
task/stimulus onset [2,3]. Importantly, because variance/correlations explicitly account for the 
mean across a sample, and variance/correlations are computed for each time point separately, 
this approach accurately accounts for task-locked effects. 

Statistics (i.e., variance/correlations) were calculated across blocks at each time point, 
for each condition separately. To accurately compare task-state to resting-state statistics, we 
computed cross-block statistics for rest data using the same task block design (i.e., 
sham/control blocks). This controlled for the number of task blocks and temporal spacing 
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between blocks. We included the first 15 time points following block onset for both the rest and 
task data. Thus, any task blocks that contained fewer than 15 time points were excluded. This 
was performed for all ROIs for every subject. Summary statistics were aggregated across ROIs, 
task conditions and time points (within rest or task states) and visualized in Fig 4. 

(For this analysis, we used minimally preprocessed data (from the HCP). Additional 
nuisance regression was performed for both rest and task data as described above, excluding 
task regression.) 

 

Information-theoretic analysis 
We evaluated the information-theoretic relevance of rest and task states by 

characterizing the dimensionality of neural activity. To estimate the statistical dimensionality of 
neural data, we used the ‘participation ratio’, as previously described in [36]. We first obtain the 
covariance matrix of activity for rest and task states separately. We then calculatedW   

imd W =
∑
m

i=1
λi

2 

( )∑
m

i=1
λi

2

(2) 

Where corresponds to the statistical dimensionality of , and corresponds to theimd W W λi  
eigenvalues of the covariance matrix . Intuitively, this is related to finding the number ofW  
components needed to explain variance greater than some fixed threshold, with more needed 
components reflecting a higher dimensionality of the data. 

For human fMRI data, we estimated the task-state and resting-state dimensionality by 
calculating the whole-brain covariance matrix for each state. For task state this was done by 
estimating the covariance matrix using task block periods. For resting state this was done by 
calculating the covariance matrix across the equivalently lengthed resting-state periods (using 
the same data in the FC analysis above). We applied equation 2 to the task-state and 
resting-state covariance matrix for each subject. Finally, we applied a two-way, group paired 
t-test comparing the dimensionality of task-state activity to resting-state activity (Fig 5A). We 
replicated this finding in the replication cohort. In addition, we performed this analysis for each 
fMRI task separately (S10 Fig). 

For NHP spiking data, we estimated the task (task cue period) and rest (ITI) 
dimensionality by calculating the covariance matrix between all pairs of population recordings. 
We then applied equation 2 to task and rest periods for each covariance matrix. (Each 
covariance matrix was calculated using bins of 25 consecutive trials.) Finally, we applied a 
two-way group paired t-test (across bins) comparing the dimensionality of task activity to rest 
activity (Fig 5B). We replicated this effect in the held-out second monkey. 

 

Spiking model: Estimating the transfer function of a neural population with a balanced 
spiking model 

Our goal was to evaluate the effects of evoked activity across large neural populations, 
rather than within populations. Thus, we first estimated the transfer function of a neural 
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population using a previously established balanced neural spiking model, with 4000 excitatory 
and 1000 inhibitory units [6]. All parameters are taken directly from [6] with the description 
paraphrased below. Units within the network were modeled as leaky integrate-and-fire neurons 
whose membrane voltages obeyed the equation 

(μ )dt
dV = τ

1 − V + Isyn (3)  
where  indicates the membrane time constant,  is the bias term, and is the synapticτ μ Isyn  
input. When neurons reached , a spike was emitted, and voltages were reset to V th = 1 V re = 0  
for an absolute refractory period of 5ms. was 15ms and 10ms for excitatory and inhibitoryτ  
neurons, respectively. For excitatory neurons,  was randomly sampled from a uniformμ  
distribution between 1.1 and 1.2. For inhibitory neurons,  was randomly sampled from aμ  
uniform distribution between 1 and 1.05.  

Synapses to a neuron were modeled as the sum of excitatory and inhibitory synaptic 
trains  and , respectively, and was calculated as the normalized difference of exponentialsxE xI  
describing the synaptic rise and decay times caused by each presynaptic event. This effectively 
captured the weighted effect of all presynaptic neurons to a target neuron, and specifically 
obeyed the equations 

x (t) x (t)Iy,syn =  E +  I (4) 
 

,(t)xZ =
x −xZ, decay Z, rise
τ −τZ, decay Z, rise 

E, }Z ∈ { I (5) 

 
where the synaptic rise and decay of and  was modeled as the first order differentialxE xI  
equations 

sdt
dxZ, decay  = ∑

 

j
J  
ij j − τZ, decay

xZ, decay (6) 

sdt
dxZ, rise = ∑

 

j
J  
ij j − τZ, rise

xZ, rise (7) 

refers to the synaptic weight from neuron j to i, indicates whether neuron j emitted a spike.J  
ij sj  

Synaptic rise times were the same for excitatory and inhibitory neurons, with 
, while  and . Connection probabilities frommsτE, rise = τ I , rise = 1 msτE, decay = 3 msτ I , decay = 2 p 

xy  
neurons in population  to were , and on average, . However, ify x .5p 

EI = p 
IE = p 

II = 0 .2p 
EE = 0  

two neurons were both excitatory and belonged to the same cluster, the connection strength 
was multiplied by 1.9. (We employed only the homogenous clustered networks, as described by 
[6] , , , and . Excitatory stimulation was.024J  

EE = 0 − .045J  
EI = 0 .014J  

IE = 0 − .057J  
II = 0  

performed by increasing  to the first 400 excitatory neurons from to in μ .050 .50 .050
increments. Inhibitory stimulation was performed by decreasing  by  to  in μ .050 .50 .050
increments to 400 inhibitory neurons. 

To estimate the population transfer function, we simulated 30 trials lasting 2s each at 
each stimulation amplitude. Spike train statistics were estimated across trials in 50ms sliding 
windows with 10ms shifts. Only excitatory neurons were included when calculating the 
population spike train statistics (i.e., mean and variance at each stimulation amplitude). 
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Model code was originally adapted from [6], and was simulated with Julia (version 1.1.1). 
 

Model: One-dimensional minimal network model 
We use the simplest model to mathematically characterize the relationship between 

evoked activity and neural variability: a one-dimensional mean-field model. We used 
Wilson-Cowan-type firing rate dynamics to simulate neural population activity [66]. Specifically, 
our population’s activity obeyed the equation 

  − (w x s )τ i dt
dxi = xi + f ii i + bi +  i + I (8) 

where denotes the firing rate (or a measure of activity), denotes the time constant,xi .1τ i = 0  
 refers to local coupling (auto-correlation),  refers to the input threshold forwii = 1 − .5bi = 0  

optimal activity (or a bias term), refers to the evoked stimulation (  for intrinsic activity), si si = 0 I  
refers to background spontaneous activity sampled from a Gaussian distribution with mean 0 
and standard deviation 0.25, and  is a sigmoid input-output activation function, which isf  
defined as 

  (x)f = 1
1+e−k x* (9) 

where . Numerical simulations were computed using a Runge-Kutta second order methodk = 1  
with a time step of dt=10ms [67]. We simulated neural population activity injecting a fixed input 
(boxcar input) with amplitudes ranging from -5 to 5 in 0.01 increments (Fig 7C). Neural variability 
for each input strength was calculated using the standard deviation of the time series following 
the input onset and preceding input offset. Each trial was run for 20 seconds. Fig 7C was 
generated using input amplitudes of -3, 0, and 3. 

To visualize the full dynamics of our single neural population, we visualized the 
one-dimensional phase space (i.e., flow field on a line) [39]. In particular, we calculated the flow 
field by plotting (i.e., ) as a function of (equation 8). Notably, fixed point attractorsx  ˙  dt

dx xi  
(equilibrium states) are defined where  (Fig. 6B).x  ˙ = 0   
 

Model: Two-dimensional minimal network model 
To characterize the effects of evoked activity on neural correlations, we use a 

two-dimensional neural population model. We extended the one-dimensional network model to 
include two neural populations. The network dynamics obeyed the equations 

  − (w x x s )τ 1 dt
dx1 = x1 + f 11 1 + w21 2 + b1 +  1 + I1 (10) 

  − (w x x s )τ 2 dt
dx2 = x2 + f 22 2 + w12 1 + b2 +  2 + I2 (11) 

where and describe the activity of each population, and all other variables are asx1 x2  
described above. Inter-regional coupling was set to be greater than local coupling, given 
evidence from previous studies that global coupling is greater than local coupling [46,68,69]. 
Specific network parameters for this network model were: , ,w11 = w22 = 2 w12 = w21 = 4  

, . and were sampled from a Gaussian distribution with mean 0−b1 = b2 = 3 .1τ 1 = τ 2 = 0 I1 I2  
and standard deviation 1. For this network model, we decreased the slope of the sigmoid 
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to allow for a larger dynamic, linear response range. The full model code will be madek .5= 0   
publicly available. 

To quantify the relationship between evoked activity and neural correlations, we 
systematically simulated the network under different stimulation states (input strengths). Using 
the same methods as above, we simulated network activity for 50 seconds. We injected fixed 
input into both neural populations with amplitudes from -5 to 5 in 0.01 increments (Fig. 7E). 
Notably, given that the injected stimulation is uncorrelated (due to 0-variance in a fixed input), it 
is non-trivial that the FC between two nodes would change in response to different inputs. 
Neural correlations were calculated using a Pearson correlation of the two time series following 
input onset and preceding input offset.  

The use of a minimal model constrained our network to two dimensions. This allowed us 
to leverage dynamical systems tools to visualize the flow field in the two-dimensional phase 
plane. To identify the fixed point attractors, we first calculated the nullclines for and .x1 x2  
Nullclines are defined as the values of  and  such that  and , respectively.x1 x2 0x  2 

˙ =  0x  1 
˙ =   

The fixed points lie at the intersection of the nullclines. For our particular system of equations, 
the nullclines of and  were defined, respectively, asx1 x2  

x2 = w21

f (−x )−w x −b −s−1
1 11 1 1 1 (12) 

x1 = w12

f (−x )−w x −b −s−1
2 22 2 2 2 (13) 

where parameters are identical to those used in equations 10 and 11. However, the background 
noise, parameter I, was removed when calculating the nullclines. Fixed point attractors 
(equilibrium states) are defined where  (Fig 8B). The full flow field was obtained byx  ˙ = 0  
applying the system of equations (equations 10 and 11) to every point in the phase space (e.g., 
all values of and ).x1 x2  

Model: Evaluating fixed point attractor dynamics and the characteristic time scale 
Our models accurately demonstrated that evoked activity decreased the neural variability 

and correlations from a stochastic dynamical network model. Since our network model was 
governed by firing rate equations which provided us full access to the system’s dynamics, we 
sought to link dynamical mechanisms (in the absence of spontaneous activity) with changes in 
the descriptive statistics. Such an analysis would provide us with a mechanistic understanding 
between descriptive neural statistics used in empirical data analysis and the governing neural 
dynamics. 

To understand how attractor dynamics influenced simulated activity in a network model, 
we characterized the dynamics around the network’s fixed point attractor. Specifically, we 
performed a linear stability analysis around the fixed point (i.e., the equilibrium level of activity 
the system is drawn to during a particular state or input, e.g., Fig 7B) in both the 
one-dimensional and two-dimensional network models. In the one-dimensional case, this 
analysis is equivalent to evaluating the first derivative of equation 8 at the fixed point (e.g., the 
slope of the line at the starred locations in Fig 7B). We then calculate the characteristic time 
scale T at the fixed point  (in one-dimension) with the equationx*  
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T = 1
|f (x )|′ * (14) 

where represents equation 8 [39]. The characteristic time scale captures the speed with whichf  
the system approaches the fixed point attractor. We calculated the characteristic time scale 
across the same range of evoked stimulation strengths as in the neural variability analysis. 
Fixed points were computed numerically by running the network model until it reached a steady 
state in the absence of noise/spontaneous activity. 

The characteristic time scale is an established measure for one-dimensional systems. 
However, we sought to extend the characteristic time scale beyond a single dimension to 
evaluate shifting attractor dynamics in higher dimensions. We first performed a linear stability 
analysis in two dimensions by evaluating the Jacobian matrix for our two-dimensional system at 
the fixed point , )(x*

1 x*
2  

(15) 
Where and refer to the equations governing neural populations 1 and 2 (equations 10 andf 1 f 2  
11, respectively).  For our particular system of equations, the Jacobian was calculated as  

(16) 
For each input strength (i.e., differing evoked states), we evaluated the Jacobian at the fixed 
point attractor. We then calculated the two eigenvalues (denoted and ) and eigenvectorsλ1 λ2  
(denoted and ) of the Jacobian using an eigendecomposition. To calculate the generalizedv1 v2  
characteristic time scale in two dimensions, we first calculated the linear combination of the 
eigenvectors weighted by the real eigenvalues, and computed the magnitude of the vector, such 
that 

(x, ) e(λ )v  re(λ )vvsum y = r 1 1 +  2 2 (17) 
We then define the two dimensional characteristic time scale as the reciprocal of theT   
magnitude of , such that(x, )vsum y  

T  = 1
| |√x +y2 2

(18) 

We calculated for a range of values  in 0.01 increments, and correlated T  , − , ]s1 s2 ∈ [ 5 5 T   
across all values of and with the corresponding neural correlations [39].s1 s2  

Model: Simulating fMRI BOLD activity 
We used the above model to simulate fMRI BOLD activity to demonstrate that changes 

in neural variability and correlations would extend to fMRI BOLD dynamics (S6-7 Fig). Neural 
activity generated from our model simulations was transformed to fMRI BOLD activity using the 
Balloon-Windkessel model, a nonlinear transformation from neural activity to the fMRI BOLD 
signal [40,70]. Notably, the transformation assumes a nonlinear transformation of the 
normalized deoxyhemoglobin content, normalized blood inflow, resting oxygen extraction 
fraction, and the normalized blood volume. All state equations and biophysical parameters were 
taken directly from [40] (equations 4-5). The Balloon-Windkessel model was implemented in 

34 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/560730doi: bioRxiv preprint 

https://paperpile.com/c/2dfEnv/vwTo
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BJ%7D(x_1%5E*%2Cx_2%5E*)%20%3D%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cfrac%7Bdf_1%7D%7Bdx_1%7D%20%26%20%5Cfrac%7Bdf_1%7D%7Bdx_2%7D%20%5C%5C%20%5Cfrac%7Bdf_2%7D%7Bdx_1%7D%20%26%20%5Cfrac%7Bdf_2%7D%7Bdx_2%7D%20%20%5Cend%7Barray%7D%20%5Cright)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BJ%7D(x_1%5E*%2Cx_2%5E*)%20%3D%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cbig(-1%20%2B%20f%27(w_%7B11%7D%20x_1%20%2B%20w_%7B21%7Dx_2%20%2B%20b_1%20%2B%20s_1)%5Cbig)%20%5Cfrac%7B1%7D%7B%5Ctau_1%7D%20%26%20%5Cbig(f%27(%20w_%7B11%7D%20x_1%20%2B%20w_%7B21%7D%20x_2%20%2B%20b_1%20%2B%20s_1)%5Cbig)%20%5Cfrac%7B1%7D%7B%5Ctau_1%7D%20%5C%5C%20%5Cbig(%20f%27(w_%7B22%7D%20x_2%20%2B%20w_%7B12%7D%20x_1%20%2B%20b_2%20%2B%20s_2)%5Cbig)%5Cfrac%7B1%7D%7B%5Ctau_2%7D%20%26%20%5Cbig(-1%20%2B%20f%27(w_%7B22%7D%20x_2%20%2B%20w_%7B12%7D%20x_1%20%2B%20b_2%20%2B%20s_2)%5Cbig)%5Cfrac%7B1%7D%7B%5Ctau_2%7D%20%5Cend%7Barray%7D%20%5Cright)%0
https://paperpile.com/c/2dfEnv/vwTo
https://paperpile.com/c/2dfEnv/Iva7+1R9a
https://paperpile.com/c/2dfEnv/Iva7
https://doi.org/10.1101/560730


Python (version 2.7.13), and the implementation code has been made publicly available on 
GitHub (https://github.com/ito-takuya/HemodynamicResponseModeling). 

Code and data availability 
All code related to analyses and models in this study will be publicly released on GitHub. Code 
will provide supplementary details on data analysis, computational modeling, and figure 
generation. All fMRI human data is publicly available through the Human Connectome Project 
(http://www.humanconnectomeproject.org ) [31]. Inquiries related to monkey electrophysiology 
data can be made to authors S.L.B. and E.K.M. 
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Supplementary Figures 

 
S1 Fig. Replication analysis for the excluded NHP subject. This figure is organized identically to Fig 2, 
but using data from a replication subject. We find nearly identical patterns between the exploratory and 
replication subjects, with the exception that we did not replicate any correlation increases. a) Multi-unit 
spike recordings from six different cortical regions fed into our analyses. b) As in our empirical fMRI data 
set, we calculated the global variability across task and rest states (estimated using the standard 
deviation across trials). c) We then calculated the global neural correlation (i.e., the spike count 
correlation across trials) for task and rest states between all pairs of recorded brain regions. (Spike rates 
were averaged within each cortical area.) d-f) For each pair of brain regions, we visualized the correlation 
matrices between each recording site for the averaged rest, task, and the differences between task 
versus rest state spike count correlations. For panels d-f, plots were thresholded and tested for multiple 
comparisons using an FDR-corrected p<0.05 threshold. Boxplots indicate the interquartile range of the 
distribution, dotted black line indicates the mean, grey line indicates the median, and the distribution is 
visualized using a swarm plot. 
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S2 Fig. Neural correlations and variability are quenched within trials from rest to task intervals. 
We analyzed the variability across time points (within trial) during ITIs and task cue periods to evaluate 
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whether correlation and variability quenching also occurred on a moment-to-moment basis (i.e., faster 
timescale). Task cue intervals and ITIs were matched to have equivalent time points on a trial-by-trial 
basis. a1,a2) Global variability across the two states (estimated using the variance across time points) 
between task and rest state windows. b1,b2) We then calculated the global spike count correlation 
between the exact same task cue intervals with equivalent rest intervals between all pairs of recorded 
brain regions. (Spike rates were averaged within each cortical area.) c1,c2) We also calculated the global 
firing rate (averaged across all recording areas) during the task interval and rest interval. d1-f1,d2-f2) For 
each pair of brain regions, we visualize the spike count correlation matrices between each recording site 
for the averaged rest, task, and the differences between task versus rest state spike count correlation. For 
panels d-f, plots were thresholded and tested for multiple comparisons using an FDR-corrected p<0.05 
threshold. Boxplots indicate the interquartile range of the distribution, dotted black line indicates the 
mean, grey line indicates the median, and the distribution is visualized using a strip plot.  

43 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/560730doi: bioRxiv preprint 

https://doi.org/10.1101/560730


 

 
S3 Fig. Task-evoked activity is negatively correlated with neural variability and 
correlations across regions in fMRI data. a)  We replicated a previous result [2], 
demonstrating that regions that activated more during tasks tend to decrease their neural 
variability more during task states. b) We extended those results to evaluate the relationship 
between task-evoked activity and FC across regions. We found that regions that activated more 
during tasks tend to decrease their global functional FC accordingly during task states. Scatter 
plots reflect each parcel in the Glasser atlas [58], and are colored according to network 
affiliation [13]. Best fit lines were estimated using linear regression, but correlations were 
calculated using a non-parametric rank correlation. c,d) Replication of panels a,b, respectively 
using the replication cohort of subjects. Statistics were calculated using the same steps as in 
[2]. To calculate the averaged regional task activation, we first performed a group t-test for each 
task against 0, took the absolute value of the t-statistic, and then averaged across tasks. To 
calculate the averaged regional FC and SD, we performed a group t-test against 0 for each 
region. We then correlated these values across regions to measure the relationship between 
activity and FC, and activity and SD.  
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S4 Fig. Replication data set: Neural variability and correlations decrease during task states in 
human fMRI data.  We successfully replicated results from Fig 3 using our held-out cohort of 176 
subjects. a) We first compared the global variability during task and rest states, which is averaged across 
all brain regions, and then b) computed the task- versus rest-state variability for each brain region. c) The 
percentage of brain regions with significant increases/decreases of neural variability during task. d) We 
next compared the correlation matrices for resting state blocks with (e) task state blocks, and (f) 
computed the task- versus rest-state correlation matrix difference. g) We found that the average FC 
between all pairs of brain regions is significantly reduced during task state. h) We found that the average 
correlation for each brain region, decreased for each brain region during task state. i) We calculated the 
percentage of correlation increases/decreases for all pairs of brain regions. For panels b-f, h, and i, plots 
were tested for multiple comparisons using an FDR-corrected p<0.05 threshold. Boxplots indicate the 
interquartile range of the distribution, dotted black line indicates the mean, grey line indicates the median, 
and the distribution is visualized using a swarm plot. 
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S5 Fig. Non-normalized data using variance and covariance, using the full set of 352 subjects. 
Neural variance and covariance decreased during task states in human fMRI data. We successfully 
replicated results from Fig 3 using, but without z-normalizing the time series (and using covariance 
instead of correlation). The combination of reduced correlations (Fig 3) and covariance measures 
suggested that shared signal dynamics is reduced from task to rest [28–30]. a) We first compared the 
global variability during task and rest states, which is averaged across all brain regions, and then b) 
computed the task- versus rest-state variability for each brain region. c) The percentage of brain regions 
with significant increases/decreases of neural variability during task. d) We next compared the covariance 
matrices for resting state blocks with (e) task state blocks, and (f) computed the task- versus rest-state 
covariance matrix difference. g) We found that the average covariance between all pairs of brain regions 
is significantly reduced during task state. h) We found that the average covariance for each brain region, 
decreased for each brain region during task state. i) We calculated the percentage of covariance 
increases/decreases for all pairs of brain regions. For panels b-f, h, and i, plots were tested for multiple 
comparisons using an FDR-corrected p<0.05 threshold. Boxplots indicate the interquartile range of the 
distribution, dotted black line indicates the mean, grey line indicates the median, and the distribution is 
visualized using a swarm plot. 
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S6 Fig. Task-state neural variability reduction is preserved in the BOLD signal in the neural mass 
model.  a) We simulated the neural mass model under the same three stimulus conditions (de-activated, 
baseline, and activated states) as in Fig 7A. b) We subsequently applied the Balloon-Windkessel 
transformation to the simulated neural activity, a nonlinear transformation from neural activity to the fMRI 
BOLD signal [40]. Notably, the transformation assumes a nonlinear transformation of the normalized 
deoxyhemoglobin content, normalized blood inflow, resting oxygen extraction fraction, and the normalized 
blood volume. All BOLD signals were de-meaned such that it is possible to visually compare the time 
series variance of each stimulus condition. c) We simulated BOLD activity under a range of stimulus 
conditions and calculated the standard deviation of each time series. d) We calculated the rank 
correlation of the standard deviation of the BOLD signal across stimulus conditions with the characteristic 
time scale at each condition. 
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S7 Fig. Task-state neural correlation reduction is preserved in the BOLD signal in the two-unit 
neural mass model. a-b)  Using the simulated the neural mass data in Fig 8, we applied the 
Balloon-Windkessel transform to convert our neural data into BOLD data [40]. c) We simulated BOLD 
activity under a range of stimulus conditions and calculated the neural correlation between the two units 
of each. d) We calculated the rank correlation of the neural correlation of the BOLD signal across stimulus 
conditions with the characteristic time scale at each condition. 
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S8 Fig. fMRI variability reduction analysis for each of the 7 HCP tasks separately. a) This panel is 
identical to the analysis performed in Fig 3A, except that it was performed on each HCP task separately. 
Global variability, averaged across all regions, was reduced for 4/7 of the HCP tasks. Global variability 
was not reduced for the Emotion and Motor tasks, though task-evoked activity was correlated with 
task-evoked variability reduction across space (see next panel). b) This panel is identical to the analysis 
performed in S3 Fig, except that the spatial correlation was performed on each HCP task separately (and 
is visualized as a bar plot rather than a scatter plot). Regional task-evoked variability was significantly 
negatively correlated with the magnitude of task-evoked activation (absolute value) for 6/7 of the HCP 
tasks. All analyses (in panels a and b) were corrected for multiple comparisons using FDR correction. 
(***= FDR-corrected p<0.0001; **=FDR-corrected p<0.01; *=FDR-corrected p<0.05). Boxplots indicate the 
interquartile range of the distribution, dotted black line indicates the mean, and the distribution is 
visualized using a swarm plot.  
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S9 Fig. Task versus rest fcMRI analysis for each of the 7 HCP tasks separately. a) This panel is 
identical to the analysis performed in Fig 3G, except that it was performed on each HCP task separately. 
Whole-brain FC, averaged across all pairs of regions, was reduced for 7/7 of the HCP tasks. b) This 
panel is identical to the analysis performed in S3 Fig, except that the spatial correlation was performed on 
each HCP task separately (and is visualized as a bar plot). Regional task-evoked FC was significantly 
negatively correlated with the magnitude of task-evoked activation (absolute value)  for 4/7 of the HCP 
tasks. All analyses (in panels A and B) were corrected for multiple comparisons using FDR correction. 
(***= FDR-corrected p<0.0001; **=FDR-corrected p<0.01; *=FDR-corrected p<0.05). c) Task- versus 
rest-state FC analysis for each of the 7 HCP tasks separately. (This figure is identical to Fig. 3f, except 
that the statistics were performed on each task separately.) Though whole-brain FC differences from task 
to rest are different for each task, there are mostly FC decreases during task state relative to rest state. 
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Boxplots indicate the interquartile range of the distribution, dotted black line indicates the mean, and the 
distribution is visualized using a swarm plot.  
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S10 Fig. Task versus rest dimensionality comparison for each of the 7 HCP tasks separately. a) 
This panel is identical to the analysis performed in Fig 5A, except that it was performed on each HCP task 
separately. Whole-brain dimensionality increased from rest to task states for each of the 7 HCP tasks. 
Boxplots indicate the interquartile range of the distribution, dotted black line indicates the mean, and the 
distribution is visualized using a swarm plot. (***= FDR-corrected p<0.0001; **=FDR-corrected p<0.01; 
*=FDR-corrected p<0.05) 
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