Summary
Selective degradation of organelles via autophagy is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few specialized autophagosomal receptors and remodelers. Using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence factors involved in human ER-phagy. We mechanistically investigated two pathways unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which reverses the logic of general autophagy. Mitochondrial crosstalk with ER-phagy bypasses the energy sensor AMPK, instead directly impacting ULK1. Second, ER-localized UFMylation is required for ER-phagy that represses the unfolded protein response. The UFL1 ligase is brought to the ER surface by DDRGK1, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the unique cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.