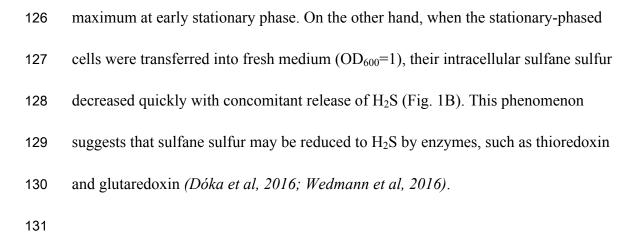
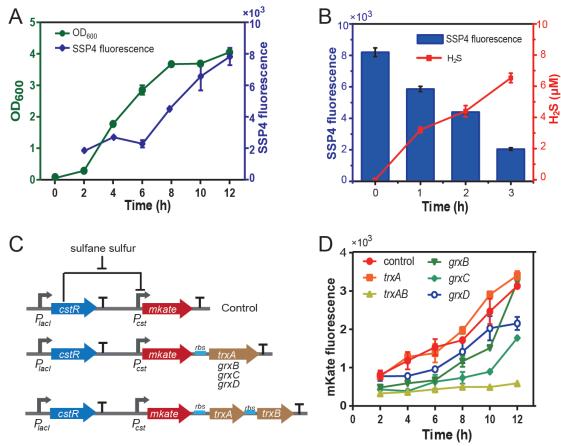
1	OxyR senses reactive sulfane sulfur and activates genes for its removal in
2	Escherichia coli
3	
4	Ningke Hou ¹ , Zhenzhen Yan ¹ , Kaili Fan ¹ , Huanjie Li ¹ , Rui Zhao ¹ , Yongzhen Xia ¹ ,
5	Huaiwei Liu ^{1*} , Luying Xun ^{1,2*}
6	
7	¹ State Key Laboratory of Microbial Technology, Shandong University, Qingdao,
8	266237, People's Republic of China.
9	² School of Molecular Biosciences, Washington State University, Pullman, WA,
10	99164-7520, USA.
11	
12	*Corresponding authors
13	Huaiwei Liu: liuhuaiwei@email.sdu.edu.cn; Tel. +86 532 58631572.
14	Luying Xun: <u>luying_xun@vetmed.wsu.edu;</u> Tel. +1-509-335-2787.
15 16	
17	Running Title: OxyR responses to reactive sulfane sulfur stress
18	
19	

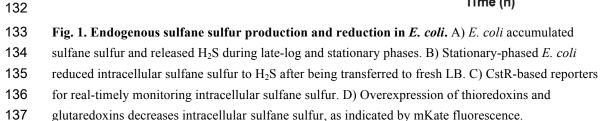
20 Abstract:

21	Reactive sulfane sulfur species such as hydrogen polysulfide and organic persulfide
22	are newly recognized as normal cellular components, involved in signaling and
23	protecting cells from oxidative stress. Their production is extensively studied, but
24	their removal is less characterized. Herein, we showed that reactive sulfane sulfur is
25	toxic at high levels, and it is mainly removed via reduction by thioredoxin and
26	glutaredoxin with the release of H_2S in <i>Escherichia coli</i> . OxyR is best known to
27	respond to H ₂ O ₂ , and it also played an important role in responding to reactive sulfane
28	sulfur under both aerobic and anaerobic conditions. It was modified by hydrogen
29	polysulfide to OxyR C199-SSH, which activated the expression of thioredoxin 2 and
30	glutaredoxin 1. This is a new type of OxyR modification. Bioinformatics analysis
31	showed that OxyRs are widely present in bacteria, including strict anaerobic bacteria.
32	Thus, the OxyR sensing of reactive sulfane sulfur may represent a conserved
33	mechanism for bacteria to deal with sulfane sulfur stress.
34	
35	Keywords: OxyR, reactive sulfane sulfur, oxidative stress, Escherichia coli,
36	thioredoxin, glutaredoxin
37	

38 Introduction:


39	H ₂ S has been proposed as a gasotransmitter because it is involved in many
40	physiological and pathological processes in animals and plants, such as ageing (Hine
41	et al, 2015), neuromodulation (Abe & Kimura, 1996), cancer cell proliferation (Cai et
42	al, 2010), metabolic reprogramming (Gao et al, 2015), and stomatal closure in plant
43	(Lisjak et al, 2010). The mechanism of H_2S signaling is often via protein
44	persulfidation or S-sulfhydration. Since H ₂ S cannot direct react with protein thiols, its
45	oxidation product reactive sulfane sulfur, which can readily react with thiols to
46	generate persulfides, has been identified (Mishanina et al, 2015; Toohey, 2011).
47	Reactive sulfane sulfur species include hydrogen polysulfides (H_2S_n , $n\ge 2$), organic
48	polysulfides (RSS _n H, RSS _n R, $n\geq 2$), and organic persulfides (RSSH), which can also
49	be produced directly from cysteine or cystine, and they are now considered as normal
50	components in both prokaryotic and eukaryotic cells (Sawa et al, 2018; Yadav et al,
51	2016). They possess both nucleophilic and electrophilic characteristics, while thiols
52	(cysteine, GSH, etc.) are generally nucleophilic (Ono et al, 2014; Park et al, 2015).
53	As nucleophiles, they are better reductants than thiols (Ida et al, 2014); as
54	electrophiles, the electrophilic sulfane sulfur (S^0) can be transferred to protein thiols
55	to generate protein-SSH, which modifies enzyme activities and protects proteins from
56	irreversible oxidation (Mustafa et al, 2009; Paul & Snyder, 2015). Owing to these
57	unique dual-reactivities, reactive sulfane sulfur is involved in many cellular processes,
58	such as redox homeostasis maintenance, virulence regulation in pathogenic bacteria,
59	and biogenesis of mitochondria (Fujii et al, 2018; Peng et al, 2017). Albeit the good


60	roles, sulfane sulfur may be toxic at high concentrations. Indeed, elemental sulfur has
61	been used as an antimicrobial agent for ages, and its efficiency is likely impaired by
62	its low solubility (Williams & Cooper, 2010). Due to its low solubility, elemental
63	sulfur is not considered as a reactive sulfane sulfur species. Advances in the synthesis
64	of sulfur nanoparticles have significantly increased the antimicrobial efficiency of
65	sulfur (Rai et al, 2016). Sulfur is often used as a fungicide. Although its toxicity
66	mechanism is unclear, a recent study suggested that sulfur is transported into the cell
67	in the form of hydrogen polysulfide (Sato et al, 2011), inducing protein persulfidation
68	as a possible toxic mechanism (Islamov et al, 2018). Fungi may use glutathione to
69	reduce polysulfides to H ₂ S as a detoxification mechanism (Samrat et al, 2013; Sato et
70	al, 2011). Organosulfur compounds can be used to treat antibiotic-resistant bacteria,
71	and they are converted to hydrogen polysulfide inside the cells for the toxicity (Xu et
72	al, 2018). Both bacteria and fungi show reduced viability being exposed to sulfane
73	sulfur stress (Sato et al, 2011; Xu et al, 2018). Therefore, intracellular sulfane sulfur is
74	likely maintained within a range for microorganisms under normal conditions.
75	Multiple pathways for sulfane sulfur generation have been discovered.
76	Cystathionine β -synthase and cystathionine γ -lyase produce sulfane sulfur from
77	cystine (Ida et al, 2014); 3-mercaptopyruvate sulfurtransferase (3-MST) and
78	cysteinyl-tRNA synthetase (CARS) produce sulfane sulfur from cysteine (Akaike et al,
79	2017; Nagahara et al, 2018); Sulfide:quinone oxidoreductase and superoxide
80	dismutase (SOD) produce sulfane sulfur from H ₂ S (Olson et al, 2018; Xin et al, 2016).
81	Catalase can oxidize H ₂ S and polysulfides to sulfur oxides (Olson et al, 2017). Most

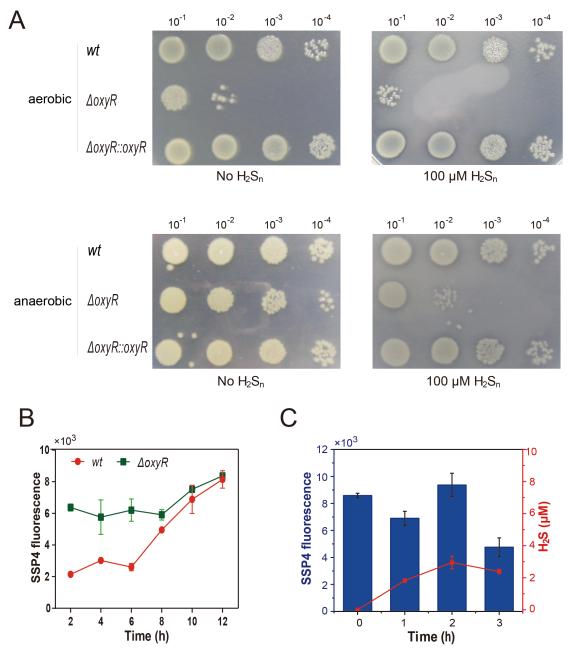

82	microorganisms possess several of these pathways. On the flipside, elimination
83	pathways are less investigated. Aerobic microorganisms may apply persulfide
84	dioxygenase to remove excessive sulfane sulfur (Xia et al, 2017), and the persulfide
85	dioxygenase expression can be induced by sulfane sulfur via sulfane sulfur-sensing
86	transcription factors (H et al, 2017; Lira et al, 2018; Luebke et al, 2014).
87	For anaerobic microorganisms that dominate in the intestinal tract, their sulfane
88	sulfur elimination pathways are ambiguous. A reasonable hypothesis is that they use
89	glutathione (GSH) or NADPH to reduce sulfane sulfur to H_2S and then release it out
90	of cells (Carbonero et al, 2012), as observed in anaerobically cultured fungi (Abe et al,
91	2007; Sato et al, 2011). A recent report that two thioredoxin-like proteins catalyze the
92	reduction of protein persulfidation in Staphylococcus aureus also support the
93	hypothesis (Peng et al, 2017). However, it is unclear whether sulfane sulfur induces
94	the expression of these enzymes.
95	Escherichia coli, a common intestinal bacterium, contains three thioredoxins and
96	four glutaredoxins. The expression of TrxA, GrxB, and GrxD is regulated by
97	guanosine 3',5'-tetraphosphate, and the expression of GrxC is regulated by cAMP,
98	both of which are nutrient related messengers (Lim et al, 2000; Srivatsan & Wang,
99	2008). These four enzymes are highly abundant in E. coli; together they account for
100	more than 1% of total protein (Fernandes et al, 2005; Fernandes & Holmgren, 2004;
101	Ritz et al, 2000). The expression of GrxA, TrxC, and KatG (catalase) is regulated by
102	OxyR upon exposure to H ₂ O ₂ . Without oxidative stress, these proteins are much lower
103	than other thioredoxins and glutaredoxins (Fernandes & Holmgren, 2004;

104 Gutierrez-Ríos et al, 2007; Ritz et al, 2000).

105	OxyR was initially identified as a regulator responding to reactive oxygen
106	species (ROS) (Christman et al, 1985; Storz et al, 1990). ROS triggers the formation
107	of intra disulfide bond between Cys ¹⁹⁹ and Cys ²⁰⁸ or oxidizes Cys ¹⁹⁹ to C199-SOH.
108	The exact mechanism is still in debate (Choi et al, 2001; Kim et al, 2002; Zheng et al,
109	1998). Three additional modifications on Cys199 (C199-SNO, C199-SSG and
110	avicinylation) are also known, which result in different OxyR configurations, DNA
111	binding affinities, and promoter activities (Haridas et al, 2005; Kim et al, 2002; Seth
112	& Stamler, 2012). Thus, OxyR leads to multi-levels of transcriptional responses when
113	responding to different stress signals.
114	Herein, we systematically investigated the sulfane sulfur reduction activity and
115	expression pattern of thioredoxins, glutaredoxins, and KatG in E. coli. We found that
116	these enzymes are responsible for maintaining the homeostasis of intracellular sulfane
117	sulfur. Further investigation unveiled a new and H_2S_n -specific modification of OxyR.
118	
119	Results:
120	The accumulation and reduction of endogenous sulfane sulfur in E. coli
121	E. coli has endogenous sulfane sulfur producing enzymes, including CARS,
122	3-MST, SodA, and SodC (Akaike et al, 2017; Nagahara et al, 2018; Olson et al,
123	2018). We cultured early-log phased E. coli cells in LB medium and used the sulfane
124	sulfur sensitive probe SSP4 (Fig. 1A) to detect intracellular sulfane sulfur. The
125	intracellular sulfane sulfur started to accumulate at middle-log phase and reached the

Thioredoxin and glutaredoxin participate in the reduction of intracellular sulfane

sulfur


141	To confirm the change of intracellular sulfane sulfur <i>in vivo</i> , we constructed a
142	transcription factor (TF)-based reporting plasmid, which contained a sulfane
143	sulfur-sensing TF (CstR) (Luebke et al, 2014), its cognate promoter (Pcst), and a red
144	fluorescent protein (mKate, with a C-terminus degradation tag ssrA) (Fig. 1C). Using
145	the reporting plasmid, the increase of intracellular sulfane sulfur in live cells (Fig. 1A)
146	was reported as the mKate fluorescence (Fig. 1D). When GrxB, GrxC, or GrxD was
147	co-transcribed with mKate under the control of CstR, their expression could partially
148	decrease the sulfane sulfur accumulation as reflected with the mKate fluorescence
149	intensity (Fig. 1D). When TrxA was co-transcribed, it did not affect sulfane sulfur
150	accumulation (Fig. 1D). However, when thioredoxin reductase (TrxB) was
151	co-expressed with TrxA, sulfane sulfur were not increased during the log phase of
152	growth (Fig. 1D). These results indicate that thioredoxin and glutaredoxin reduce
153	sulfane sulfur inside <i>E. coli</i> .
154	The artificial operons contained a negative feedback loop when coupled with an
155	enzyme that reduces sulfane sulfur (Fig. 1C&D). The loop effectively maintained
156	intracellular sulfane sulfur levels within a narrow range, defined by the leaky strength
157	of <i>Pcst</i> and the sensitivity of CstR as well as the controlled enzyme activity. Since
158	OxyR is known to regulate similar enzymes, such as TrxC, GrxA, and KatG, we
159	speculated that OxyR may play a role similar as CstR in the artificial operons (Fig.
160	1C).
161	

OxyR alleviates sulfane sulfur stress by regulating the expression of TrxC, GrxA, and

KatG under both aerobic and anaerobic conditions

164	We deleted <i>oxyR</i> gene in <i>E. coli</i> and observed that the mutant became more
165	sensitive to exogenously added H_2S_n under both aerobic or anaerobic conditions (Fig.
166	2A). After complementing $oxyR$ into $\Delta oxyR$, the strain reassumed the tolerance to
167	H_2S_n to the same level of the wild type (<i>wt</i>) (Fig. 2A). The results indicated that OxyR
168	play an important role in dealing with the exogenously sulfane sulfur stress both
169	under aerobic or anaerobic conditions. Compared with wt , $\Delta oxyR$ had higher
170	intracellular sulfane sulfur at log-phase (Fig. 2B). In addition, when the $\Delta oxyR$ cells at
171	the stationary phase were transferred into fresh LB medium at OD_{600} of 1, the
172	decrease of the intracellular sulfane sulfur and release of H_2S were slower than that of
173	the wt cells (Fig. 2C and Fig. 1B). The results suggested that OxyR responds to
174	sulfane sulfur and activates the expression of sulfane sulfur reduction enzymes.

bioRxiv preprint doi: https://doi.org/10.1101/561019; this version posted February 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

177Fig. 2. OxyR affects RSS reduction in *E. coli*. A) *E. coli* $\Delta oxyR$ is more sensitive to exogenous H_2S_n 178stress. B) *E. coli* $\Delta oxyR$ accumulates more endogenous sulfane sulfur than *E. coli* wt during growth in179LB. C) Stationary-phased *E. coli* $\Delta oxyR$ reduces endogenous sulfane sulfur to H_2S more slowly than *E.*180*coli* wt (Fig. 1B) after being transferred to fresh LB.

181

```
182 To confirm OxyR responds to H_2S_n and activates the expression of trxC, grxA
183 and katG, we constructed three reporting plasmids with an mKate gene under the
184 control of a trxC, grxA, or katG promoter. These plasmids were transformed into E.
185 coli wt and \Delta oxyR. The recombinant cells were subjected to H_2S_n stress under aerobic
```

186	conditions. In <i>wt</i> , all three promoters led to a low <i>mKate</i> expression in the absence of
187	H_2S_n but resulted in obviously higher expression when H_2S_n was added (Fig. 3A).
188	Whereas in the $\Delta oxyR$ strain, the three promoters led to constantly low expression of
189	<i>mKate</i> with or without H ₂ S _n stress (Fig. 3B). After introducing <i>oxyR</i> back to $\Delta oxyR$,
190	the promoters performed the same as that in wt (Fig. 3C). Further, overexpression of
191	<i>trxC</i> , <i>grxA</i> , and <i>katG</i> in <i>E</i> . <i>coli</i> $\Delta oxyR$ decreases intracellular sulfane sulfur (Fig. S1).
192	The induction by H_2S_n was further conformed by <i>in vitro</i> transcription-translation
193	experiments. DTT or H_2S_n treated-OxyR and a DNA fragment containing the <i>trxC</i>
194	promoter and <i>mKate</i> (P_{trxC} - <i>mKate</i>) were added into the cell-free
195	transcription-translation system. When DTT-treated OxyR (the reduced form) was
196	used, <i>mKate</i> expression was low. Whereas, when H ₂ S _n -treated OxyR was used, <i>mKate</i>
197	expression was significantly increased (Fig. 4). These results indicated that H_2S_n
198	induces the <i>trxC</i> promoter via directly modifying OxyR.

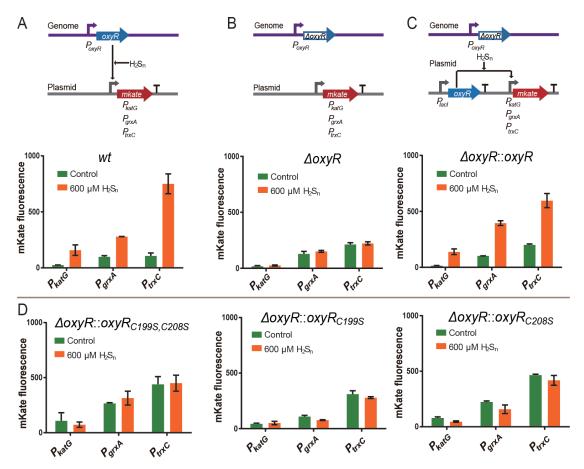
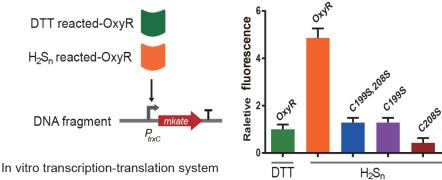



Fig. 3. H_2S_n upregulates expression of *katG*, *grxA*, and *trxC* via OxyR under aerobic conditions. A) H₂S_n induces expression of katG, grxA, and trxC in E. coli wt. B) The induction effect is lost in E. coli *doxyR*. C) OxyR complementation recovers the induction effect. D) Cys199 and Cys208 single or double mutants lost the induction effect.

We also test the induction by H_2S_n under anoxic conditions using qPCR as

mKate does not mature under anaerobic conditions. Similarly, katG, grxA, and trxC

Fig. 4. In vitro transcription-translation analysis of H₂S_n activation of OxyR and its mutants.

had higher expression in wt when 200 μ M H₂S_n were added (Fig. 5A), but not in

213 $\Delta oxyR$ (Fig. 5B). After complementing oxyR to $\Delta oxyR$, the induction was resumed

214 (Fig. 5C).

215

Fig. 5. H_2S_n upregulates expression of *katG*, *grxA*, and *trxC* via OxyR under anoxic conditions. A) H₂S_n induces expression of *katG*, *grxA*, and *trxC* in *E*. *coli wt*. B) The induction effect is lost in *E*. *coli* $\Delta oxyR$. C) OxyR complementation recovers the induction effect.

220

216

Since the H_2S_n solution contained some sulfide, we tested if sulfide could induce the gene expression. Sulfide did not induce the expression of related genes in *wt* (Fig. 6B), excluding the signal function of sulfide. When we used *E. coli* cells harboring a sulfide:quinone oxidoreductase (SQR) of *C. pinatubonensis* JMP134, the added sulfide was oxidized to H_2S_n (*Xin et al, 2016*), which induced the expression of *trxC*, *grxA* and *katG* (Fig. 6A).

bioRxiv preprint doi: https://doi.org/10.1101/561019; this version posted February 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

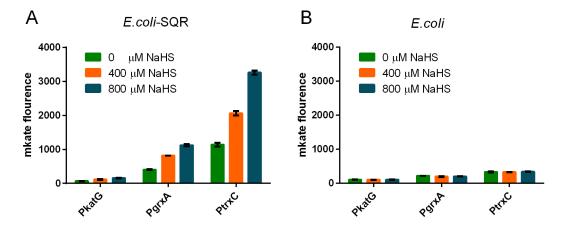


Fig. 6. The induction of *trxC*, *grxA and katG* by NaHS with (A) or without (B) SQR. The *sqr* of *C*.
 pinatubonensis JMP134 gene was expressed under the *P_{lacI}* promoter in the pBBrMCS2 plasmid.

232 The molecular mechanism of OxyR sensing H_2S_n

228

OxyR contains six cysteine residues. Previous studies indicated two of them 233 (Cys¹⁹⁹ and Cys²⁰⁸) are involved in ROS sensing (Zheng et al, 1998). We constructed 234 an $OxyR_{4C \rightarrow A}$ mutant (except for Cys^{199} and Cys^{208} , the other four cysteines were 235 mutated to alanines) and expressed it in $\Delta oxyR$. The mutant regulated trxC, grxA, or 236 237 *katG* promoters essentially the same as the wild-type OxyR in the presence of H_2S_n . Whereas, OxyR_{C1995}, OxyR_{C2085}, and OxyR_{C1995}: C2085 all lost the regulation function 238 (Fig. 3D). Together, these results indicated that the same as in ROS sensing, only 239 Cys^{199} and Cys^{208} are involved in H_2S_n sensing. 240 To find out the molecular mechanism on how OxyR senses H₂S_n, mass 241 spectrometry analysis was performed to analyze the H₂S_n-treated OxyR. A short 242 peptide (MW: 1356.67) containing Cys¹⁹⁹ but not Cys²⁰⁸ was identified (peptide 1, Fig. 243 7 and Fig. S2) and about 20% of it contained a persulfidation on Cys¹⁹⁹ (MW: 244 1388.64) (peptide 2, Fig. 7 and Fig. S3), according to the peak area in MS^1 245 spectrogram. A peptide containing Cys²⁰⁸ was also found, but the Cys²⁰⁸ was 246

248 Cys²⁰⁸ was not modified by IAM indicating that it is not accessible to IAM, consistent

with a previous report that Cys^{208} is buried in the protein (*Kim et al, 2002*). No

- 250 peptide containing both Cys¹⁹⁹ and Cys²⁰⁸ was detected. These data collectively
- indicated that OxyR senses H_2S_n via persulfidation on Cys^{199} , other than forming

252 disulfide or $-S_n-(n\geq 3)$ bond between Cys¹⁹⁹ and Cys²⁰⁸.

253

$$OxyR + H_2S_n \xrightarrow{IAM} IAM \xrightarrow{191} LLMIEDGHCLR^{201} peptide 1 4.36e8$$

$$\begin{array}{c} & & & MS^1 area. \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$$

Fig. 7. LTQ-Orbitrap tandem mass analysis of H₂S_n-reacted OxyR. MS data of the peptides are
 provided in Fig. S2~4.

257

254

258 Global transcriptome analysis of H_2S_n -stressed and H_2O_2 -stressed E. coli.

To systematic understand the effect of H₂S_n on *E. coli* and any similarities with 259 the H_2O_2 stress, we analyzed transcriptome response of *E. coli* with or without H_2S_n 260 stress. In the presence of 400 μ M H₂S_n, *E coli* significantly downregulated its energy 261 metabolism-related genes, such as maltoporin (71.3 fold-change) and 262 glycerol-3-phosphate transporter (33.7 fold-change). The most up regulated genes 263 included phage holin (425.9 fold-change), phage recombination protein Bet (96 264 fold-change), and a putative single-stranded DNA binding protein, suggesting that 265 H_2S_n is toxic to *E. coli (Xu et al, 2018)*. When we checked sulfane sulfur-removing 266

enzymes, GrxA had the highest (2.1 fold) and TrxC and KatG had mild (1.6 fold and

268	1.5 fold) transcriptional increases in H_2S_n -stressed cells (Fig. 8A), consistent with the
269	results of fluorescence reporting systems (Fig. 3); whereas, the other sulfane
270	sulfur-reducing enzymes TrxA, TrxB, and GrxD had no obvious transcriptional
271	change, and GrxB and GrxC had a slight decrease (Fig. 8A and 8B). These proteins
272	are regulated by nutrient related regulators and are highly abundant in E. coli (Lim et
273	al, 2000; Srivatsan & Wang, 2008) (Fernandes et al, 2005; Fernandes & Holmgren,
274	2004; Ritz et al, 2000), suggesting that they may play the "house-keeping" role and
275	the OxyR related GrxA, TrxC and KatG are in stress responses

3.8

3.4

3.0

2.6

2.2

1.8

1.4

1.0

0.6

0.2

407

 H_2O_2

276

277

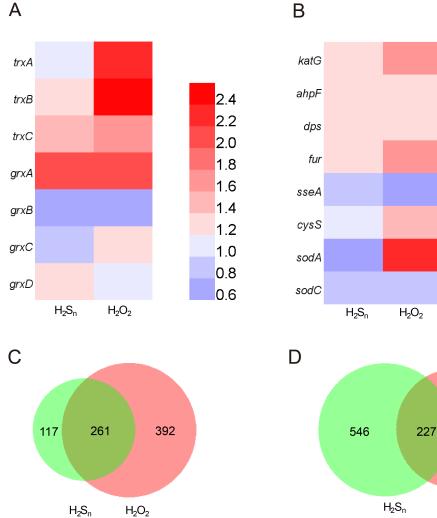
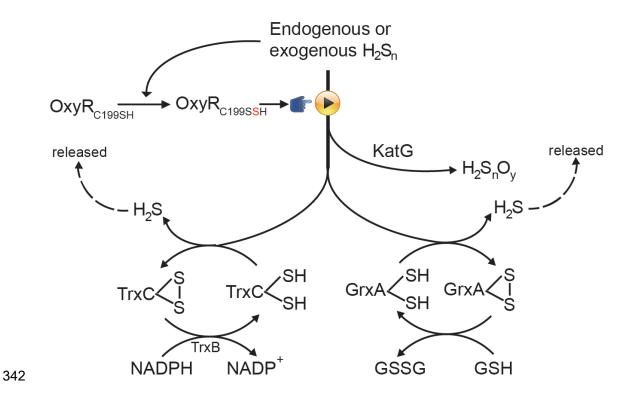


Fig. 8. Transcriptome analysis of H₂S_n- or H₂O₂-stressed *E. coli*. A, B) Transcriptional change of
 genes involved in sulfane sulfur production and reduction. C) Numbers of transcriptionally upregulated
 genes by H₂S_n and H₂O₂ stresses. D) Numbers of transcriptionally downregulated genes by H₂S_n and
 H₂O₂ stresses.

282


283	At a global level, there were also similarities and differences. Among the 1286
284	genes affected by H_2O_2 , upregulated and downregulated ones were 652 and 634,
285	respectively; whereas, among the 1150 genes affected by H_2S_n stress, only about 1/3
286	were upregulated (Fig. 8C and D). Gene ontology (GO) analysis indicated the cellular
287	processes affected by them were different. For instance, H_2S_n stress upregulated more
288	genes pertaining to cellular component, e.g., cell part (GO:0044464) and
289	macromolecular complex (GO:0032991), and downregulated more genes pertaining
290	to molecular function, such as molecular transducer activity (GO:0060089) and signal
291	transducer activity (GO:0004871); whereas H_2O_2 stress upregulated more genes
292	pertaining to molecular function, e.g., ribonucleotide binding (GO:0032553) and
293	carbohydrate derivative binding (GO:0097367), and downregulated no gene
294	pertaining to cellular component (Fig. S5 and S6). The TCA cycle is upregulated by
295	H_2S_n stress but downregulated by H_2O_2 stress; biosynthesis of secondary metabolites
296	(i.e. serine hydroxymethyltransferase, beta-gulcosidase,
297	3-deoxy-7-phosphoheptulonate synthase, etc.) is downregulated by H_2S_n stress but not
298	affected by H ₂ O ₂ stress (Fig. S7 and S8).
299	H_2S_n stress downregulated the expression of 3-MST (encoded by sseA), SodA,
300	and SodC, but did not affect the expression of CARS (encoded by cysS) (Fig. 8B).

301 These four enzymes are all involved in sulfane sulfur generation. Whereas, H_2O_2

302	stress significantly upregulated the expression of CARS and SodA, consistent with the
303	report that proteins involved in sulfane sulfur biosynthesis are induced under
304	oxidative stress because sulfane sulfur functions as antioxidants (Fukuto et al, 2018).
305	GrxA, TrxC, and KatG were similarly upregulated by H_2S_n and H_2O_2 stress; Trx A
306	and TrxB were not obviously affected by H_2S_n stress, but H_2O_2 stress upregulated
307	them (Fig. 8A and B). Overall, the transcriptomic data indicated that H_2S_n and H_2O_2
308	stresses lead to largely different responses in E. coli. However, some proteins like
309	TrxC, GrxA, and KatG, are likely involved in alleviating both stresses.
310	
311	The distribution of OxyR in sequenced bacterial genomes
312	Several sulfane sulfur-sensing TFs have been discovered, and all are involved in
313	regulating the genes involved in sulfur oxidation (H et al, 2017; Lira et al, 2018;
314	Luebke et al, 2014). OxyR is the first global gene regulator that also senses sulfane
315	sulfur. Thus, we invested the distribution of OxyR among 8286 microbial genomic
316	sequences (NCBI updated until November 11, 2017) by using BLAST search, and
317	then confirmed with the conserved domain and phylogenetic tree analysis. 4772
318	identified OxyR distributed in 4494 bacterial genomes, including 2432
319	Gammaproteobacteria, 887 Bataproteobacteria, 478 Alphaproteobacteria, 287
320	Corynebacteriales, 130 Flavobacteiriia, 67 Streptomycetales, and 63 Bacterioidia; the
321	other 24 classes had few genomes containing OxyR (Table S1). Thus, OxyR is widely
322	distributed in bacteria. It is worth noting that OxyR is also present in many obligate
323	anaerobic bacteria, such as <i>Bacteroides</i> spp., <i>Prevotella</i> spp., and <i>Porphromonas</i> spp.

324	Some of them are common residents in the human gut. For anaerobic bacteria, OxyR
325	is more likely to deal with H_2S_n stress than H_2O_2 stress, as the latter is not an issue
326	under anaerobic conditions. It is noteworthy that intestinal tract is an anoxic and
327	sulfur rich environment (Daeffler et al, 2017; Espey, 2013). Hence for intestinal
328	bacteria such as E. coli and Salmonella enterica, OxyR may play important roles for
329	their survival in the gut.
330	
331	Discussion:
332	In this study, we reported the fifth type modification of OxyR, C199-SSH, which
333	is modified by H_2S_n . H_2S_n -modified OxyR upregulates the expression of TrxC, GrxA,
334	and KatG; these enzymes can convert sulfane sulfur to releasable H_2S or $H_2S_nO_y$ (Fig.
335	9). Other OxyR-regulated proteins like hydroperoxide reductase AhpF, DNA
336	protection protein Dps, and transcriptional regulator Fur are also upregulated under
337	H_2S_n stress (Fig. 8A). Therefore, as other modifications (Haridas et al, 2005; Kim et
338	al, 2002; Seth & Stamler, 2012), C199-SSH should also lead to multi-level
339	transcriptional responses. Although Cys^{208} is not modified by $\mathrm{H}_2\mathrm{S}_n$, it plays a critical

 $\label{eq:stabilizing} 340 \qquad \mbox{role during H_2S_n sensing, probably stabilizing the active $C199$-SSH}.$

343 Fig. 8. Schematic representation of the OxyR-regulated RSS reduction pathways in *E. coli*.

345 Reactive sulfane sulfur species are essential intracellular contents. They are beneficial at low levels (Ida et al, 2014; Mustafa et al, 2009; Paul & Snyder, 2015); 346 however, they are toxic at high levels. Our systematic study of H₂S_n stress unveiled 347 348 that TrxA, TrxB, GrxB, GrxC and GrxD may function as a house-keeping machinery to prevent the buildup of intracellular RRS to toxic levels; OxyR-regulated GrxA, 349 TrxC and KatG may function as emergency backups to deal environmentally 350 351 confronted or abnormally over-accumulated sulfane sulfur. Glutathione redoxins and 352 thioredoxins reduce sulfane sulfur to H₂S that is released out of the cell for microorganisms growing under anaerobic conditions (Abe et al, 2007; Sato et al, 2011; 353 354 *Xia et al, 2017*). For bacteria or animal host with SQR, the released H₂S is captured and oxidized back to sulfane sulfur under aerobic conditions (Lagoutte et al, 2010). 355

For *E. coli* and bacteria without SQR, H₂S will be released even under aerobic
conditions (*Li et al, 2019; Xia et al, 2017*).

358	S and O are both chalcogens. Reactive sulfane sulfur species are similar
359	chemicals to ROS (e.g., HSSH vs H ₂ O ₂) (Deleon et al, 2016); their modifications to
360	proteins are also analogous, i.e., protein-SSH vs protein-SOH (Mishanina et al, 2015).
361	From an evolutionary perspective, the former's history can be traced back before the
362	Great Oxidation Event (GOE), when O ₂ had not been generated by cyanobacteria. As
363	an abundant element on ancient earth, S should play important roles in ancient
364	microorganisms. Therefore, sulfur metabolism related enzymes had emerged before
365	the oxygen's era. It is reasonable to speculate that the anti-ROS proteins are derived
366	from anti-sulfane sulfur ones (Olson et al, 2017). Possibly that is the reason why the
367	anti-ROS network largely overlaps with that of anti-sulfane sulfur. On the other hand,
368	we also observed that <i>E. coli</i> has obviously responding-discrepancies when
369	confronting H_2O_2 or HSSH (Fig. 7). These discrepancies are in agreement with the
370	multi-level transcriptional responses of OxyR when activated by different reagents
371	(Haridas et al, 2005; Kim et al, 2002; Seth & Stamler, 2012).
372	In conclusion, we discovered that E. coli uses thioredoxins, glutaredoxins, and
373	catalase to control homeostasis of intracellular sulfane sulfur. OxyR functions as a
374	reactive sulfane sulfur sensor via persulfidation of its Cys ¹⁹⁹ both under aerobic or
375	anoxic conditions. This is the fifth type modification observed for OxyR activation.
376	Since OxyR is widely distributed in both aerobic and anaerobic bacteria, the
377	OxyR-regulated network may represent a conserved mechanism that bacteria can

378 resort to when confronting endogenous and/or exogenous sulfane sulfur stress.

379

380 Materials and Methods:

381 Strains, plasmids, and chemicals

All strains and plasmids used in this study are listed in Table S2. Deletion of oxyR

383 was performed following a reported method (Datsenko & Wanner, 2000). E. coli

strains were grown in Lysogeny broth (LB) medium. Antibiotics (50 μ g/ml) were

added when required. SSP4 (3',6'-Di(O-thiosalicyl)fluorecein) was purchased from

386 DOJINDO MOLECULAR TECHNOLOGIES (*Bibli et al, 2018*). H₂S_n was prepared

387 by following Kamyshny & Alexey's method (*Kamyshny et al, 2009*). Briefly, 13 mg

388 of sulfur powder and 70 mg of sodium sulfide were added to 5 ml of anoxic distilled

389 water under argon gas. The pH was adjusted to 9.3 with 6 M HCl. The obtained

390 product contained a mixture of H_2S_n , where n varies from 2 to 8 (Olson et al, 2017),

391 but at low concentration and neutral pH, H₂S₂ is dominant (*Bogdándi et al, 2018; Xin*

392 *et al, 2016).*

393

394 Endogenous sulfane sulfur analysis

395 SSP4 probe was used for batch analysis. Cells were washed with and resuspended in

HEPES buffer (50 mM, pH 7.4); then 10 μ M SSP4 and 0.5 mM CTAB were added.

397 After an incubation at 37°C for 15 min in the dark with gently shaking (125 rpm),

reagents were washed off with HEPES buffer (50 mM, pH 7.4). Reacted-cells were

399 subjected to flow cytometry (FACS) analysis by using BD AccuriTM C5. For each

400 sample, >10,000 cells were analyzed in FL1-A channel. The average fluorescent
401 intensity was used.

402	The CstR-based reporting system was used for real-time analysis. <i>cstR</i> gene was
403	chemically synthesized by Genewiz (Shanghai) company and expressed with P_{lacl}
404	promoter in pTrcHis2A plasmid, where the trc promoter was replaced by the CstR
405	cognate promoter, and a <i>mkate</i> gene (with a C-terminus degradation tag <i>ssrA</i>) was put
406	after it (Table S2, entry 22). For trxA, trxB, grxB, grxC, or grxD overexpression
407	experiment, the gene was put after <i>mkate</i> , separated by an <i>rbs</i> sequence (Table S2,
408	entries 23~27). E. coli strains containing reporting plasmids were culture in LB
409	medium at 37°C with shaking (220 rpm). Fluorescence was analyzed by FACS
410	(FL3-A channel, >10,000 cells).

411

412 Hydrogen sulfide production analysis

413 Production of hydrogen sulfide was determined using a previously reported method

414 (Kimura et al, 2015). Briefly, hydrogen sulfide was derivatized with mBBr then

415 analyzed by HPLC (LC-20A, Shimadzu) equipped with a fluorescence detector

416 (RF-10AXL, Shimadzu). A C18 reverse phase HPLC column (VP-ODS, 150×4 mm,

417 Shimadzu) was pre-equilibrated with 80% Solvent A (10% methanol and 0.25%

418 acetic acid) and 20% Solvent B (90% methanol and 0.25% acetic acid). The column

419 was eluted with the following gradients of Solvent B: 20% from 0 to 10 min; 20%–40%

420 from 10 to 25 min; 40%–90% from 25 to 30 min; 90%–100% from 30 to 32 min; 100%

421 from 32 to 35 min; 100 to 20% from 35 to 37 min; and 20% from 37 to 40 min. The

- flow rate was 0.75 ml/min. For detection, the excitation wavelength was set to 340 nmand emission wavelength was set to 450 nm.
- 424
- 425 H_2S_n inhibition and induction tests

426	For growth inhibition test, middle-log phased <i>E. coli</i> cells (OD600=0.8) were diluted
427	and dripped in freshly prepared LB agar medium containing 0 or 100 $\mu M~H_2S_n$ and
428	incubated in 37°C under aerobic conditions. For anaerobic conditions, the anaerobic
429	LB agar plates were prepared in an anaerobic glove box and the dilution and drip of E .
430	coli cells also performed in an anaerobic glove box, then incubated in an anaerobic
431	incubator at 37°C for 24 hours. For promoter induction test, a <i>mkate</i> gene was put
432	after <i>trxC</i> , <i>grxA</i> , or <i>katG</i> native promoter in pTrchis2A plasmid (Table S2, entries
433	17~19). The <i>oxyR</i> or its mutant gene was expressed under the P_{lacl} promoter in the
434	same plasmid (Table S2, entries 5~16) for complementary experiments. The obtained
435	plasmids were transformed into wt and <i>AoxyR</i> strains. Early log-phased E. coli cells
436	(OD ₆₀₀ = 0.5, in liquid LB) were incubated with 600 μ M H ₂ S _n for 2 hours. Cells were
437	harvested and washed with HEPES buffer (50 mM, pH 7.4), then subjected to FACS
438	analysis (FL3-A channel, >10,000 cells).

440 *Real-time quantitative reverse transcription PCR (RT-qPCR)*

441 RNA sample was prepared by using the TRIzolTM RNA Purification Kit (12183555,

442 Invitrogen). Total cDNA was synthesized using the All-In-One RT Master Mix

443 (ABM). For RT-qPCR, strains were grown in anaerobic LB medium until OD₆₀₀

444	reached 0.4, and then 200 μ M H ₂ S _n were added into anaerobic bottle. After 60 min,
445	cells were collected by centrifugation and RNA was extracted. RT-qPCR was
446	performed by using the Bestar SybrGreen qPCR Mastermix (DBI) and LightCycler
447	480II (Roche). For calculation the relative expression levels of tested genes, GAPDH
448	gene expression was used as the internal standard.
449	
450	Protein purification and reaction with DTT or H_2S_n
451	The $oxyR$ gene with a C-terminal His tag was ligated into pET30. Mutants of $oxyR$
452	were constructed from this plasmid via site-directed mutagenesis (Xia et al, 2015).
453	The obtained plasmids were transformed into E. coli BL21 (DE3). For protein
454	expression, <i>E. coli</i> cells were cultured in LB medium at 25°C with shaking (150 rpm)
455	until OD ₆₀₀ reacted 0.6–0.8, 0.4 mM isopropyl-β-D-thiogalactopyranoside (IPTG)
456	was added, and cells were cultured for additional 16 hours at 16°C. Cells were then
457	harvested and disrupted through a high pressure cracker SOCH-18 (STANSTED);
458	protein was purified via the Ni-NTA resin (Invitrogen). Buffer exchange of the
459	purified protein was performed by using PD-10 desalting column (GE Healthcare).
460	Reactions were performed in an anaerobic glove box. 0.6 mg/ml protein was
461	mixed with 200 mM DTT in a pH 8.0 buffer (50 mM NaH ₂ PO ₄ , 300 mM NaCl). After
462	1-hour incubation at RT, the protein was dialyzed against 0.5 M KCl until the dialysis
463	buffer was free of DTNB-titratable SH group. For H_2S_n reaction, the reduced OxyR
464	was mixed with about 10-fold concentration of H_2S_n and incubated for 30 min at RT.

 $\label{eq:465} \mbox{ Unreacted H_2S_n was removed via dialysis. The reacted-proteins were sealed and taken}$

466 out from the glove box to be used in further experiments.

467

468 *LC-MS/MS analysis of OxyR*

469	The H_2S_n -reacted	OxyR (0.5 mg/m	l) was mixed with iodoacetamide ((IAM), and
-----	-----------------------	----------------	-----------------------------------	------------

- 470 then digested with trypsin by following a previously reported protocol (*H et al, 2017*).
- 471 The Prominence nano-LC system (Shimadzu) equipped with a custom-made silica
- 472 column (75 μ m × 15 cm) packed with 3- μ m Reprosil-Pur 120 C18-AQ was used for
- the analysis. For the elution process, a 100 min gradient from 0% to 100% of solvent
- 474 B (0.1 % formic acid in 98% acetonitrile) at 300 nl/min was used; solvent A was 0.1 %
- 475 formic acid in 2% acetonitrile. The eluent was ionized and electrosprayed via
- 476 LTQ-Orbitrap Velos Pro CID mass spectrometer (Thermo Scientific), which run in
- 477 data-dependent acquisition mode with Xcalibur 2.2.0 software (Thermo Scientific).
- 478 Full-scan MS spectra (from 400 to 1800 m/z) were detected in the Orbitrap with a
- 479 resolution of 60,000 at 400 m/z.
- 480
- 481 In vitro transcription-translation analysis
- 482 In vitro translation-transcription reactions were performed using the Purexpress In
- 483 *Vitro* Protein Synthesis system (NEB #E6800). The reaction solution was prepared in
- 484 the following order: 10 μ L solution A (NEB #E6800), 7.5 μ L solution B (NEB
- 485 #E6800), 2 μL *E. coli* RNA polymerase (NEB #M0551), 1 μL RNase inhibitor, 500
- 486 ng DTT- or H_2S_n reacted protein, 200 ng DNA fragment containing P_{trxC} -mKate, and
- 487 RNase free water. The total volume was 25 μ L. The solution was incubated at 37°C

488	for 3 hours. After reaction, the translated mKate was diluted four times with distilled
489	water, and assayed by using the Synergy H1 microplate reader. The excitation
490	wavelength was set to 588 nm, and the emission wavelength was set to 633 nm. The
491	fluorescence intensity from reduced OxyR was used as standard; fluorescence
492	intensities from other groups were divided by the standard to calculate the relative
493	expression levels.

495 Transcriptomic analysis

496	<i>E. coli wt</i> strain was c	ultured in LB medium u	ntil OD ₆₀₀ read	ched 0.5, and 500 μ M
-----	--------------------------------	------------------------	-----------------------------	---------------------------

497 H_2S_n or 500 μ M H_2O_2 were added. After 20 min of treatment, cells were harvested

498 and total RNA was extracted by using the TRIzolTM RNA Purification Kit (12183555,

499 Invitrogen). RNA quality was assessed with the RNA Nano 6000 Assay Kit of the

500 Agilent Bioanalyzer 2100 system (Agilent Technologies). rRNA was removed with

501 the Ribo-Zero rRNA Removal Kit (MRZMB 126, Epicentre Biotechnologies). For

502 cDNA library construction, first-strand cDNA was synthesized by using random

503 hexamer primers from fragmentation of mRNA and second-strand cDNA was

synthesized by using a dNTP mixture containing dUTP with DNA polymerase I and

505 RNase H. After adenylation of the ends of blunt-ended DNA fragments, NEBNext

506 index adaptor oligonucleotides were ligated to the cDNA fragments. The

second-strand cDNA containing dUTP was digested with the USER enzyme. The

508 first-strand DNA fragments with ligated adaptors on both ends were selectively

509 enriched in a 10-cycle PCR reaction, purified (AMPure XP), and the library was

510	quantified using the Agilent High Sensitivity DNA assay on the Agilent Bioanalyzer
511	2100 system. The library was sequencing on Illumina Hiseq 2500 platform.
512	Sequencing was performed at Beijing Novogene Bioinformatics Technology Co., Ltd.
513	The clean data were obtained from raw data by removing reads containing adapter,
514	poly-N and low quality reads. The clean reads were aligned with the genome of E .
515	coli BL21 by using Bowtie2-2.2.3. Gene expression was quantified as reads per
516	kilobase of coding sequence per million reads (RPKM) algorithm. Genes with a
517	p-value<0.05 found by DESeq and change fold>1.5 were considered as significantly
518	differentially expressed. Gene Ontology (GO) and KEGG analyses were performed at
519	NovoMagic platform provided by Beijing Novogene Bioinformatics Technology Co.,
520	Ltd.
521	
522	Analysis of OxyR distribution in sequenced bacterial genomes.
523	A microbial genomic protein sequence set from NCBI updated until November 11,

524 2017 was downloaded for OxyR search. The query sequences of OxyR were reported

525 OxyR proteins (Choi et al, 2001; Inseong et al, 2015; Kaewkanya et al, 2003) and

526 were used to search the database by using Srandalone BLASTP algorithm with

- 527 conventional criteria (e-value $\leq 1e^{-5}$, coverage $\geq 45\%$, identity $\geq 30\%$) to obtain
- 528 OxyR candidates from 8286 bacterial genomes. A conserved domain PBP2_OxyR
- and PRK11151 were used as standard features for further filtration of OxyR
- 530 candidates. The candidates containing PBP2_OxyR or PRK11151 were identified as

531 putative OxyR.

_	\sim	0
5	_≺	`'
0	\mathbf{J}	_

533 Acknowledgments

- 534 The work was financially supported by grants from the National Natural Science
- 535 Foundation of China (91751207, 31770093), the National Key Research and
- 536 Development Program of China (2016YFA0601103), and the Natural Science
- 537 Foundation of Shandong Province (ZR2016CM03, ZR2017ZB0210).

538

```
539 References
```

540 Abe K, Kimura H. 1996. The possible role of hydrogen sulfide as an endogenous

neuromodulator. *J Neuroscience* **16**: 1066-1071.

- 542
- Abe T, Hoshino T, Nakamura A, Takaya N. 2007. Anaerobic elemental sulfur
 reduction by fungus *Fusarium oxysporum. Journal of the Agricultural Chemical Society of Japan* 71: 2402-2407.

- 547 Akaike T, Ida T, Wei F-Y, Nishida M, Kumagai Y, Alam MM, Ihara H, Sawa T,
- 548 Matsunaga T, Kasamatsu S, Nishimura A, Morita M, Tomizawa K, Nishimura A,
- 549 Watanabe S, Inaba K, Shima H, Tanuma N, Jung M, Fujii S et al. 2017.
- 550 Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial
- 551 bioenergetics. *Nature Communications* **8**: 1177. doi: 10.1038/s41467-017-01311-y
- 552
- 553 Bibli S-I, Luck B, Zukunft S, Wittig J, Chen W, Xian M, Papapetropoulos A, Hu J,

554	Fleming I.	2018. A	A selective	and	sensitive	method	for	quantification	of	endogenous
-----	------------	---------	-------------	-----	-----------	--------	-----	----------------	----	------------

- 555 polysulfide production in biological samples. *Redox Biology* 18: 295-304.
- 556 https://doi.org/10.1016/j.redox.2018.07.016
- 557
- 558 Bogdándi V, Ida T, Sutton TR, Bianco C, Ditrói T, Koster G, Henthorn HA, Minnion
- 559 M, Toscano JP, Van dVA. 2019. Speciation of reactive sulfur species and their
- 560 reactions with alkylating agents: do we have any clue about what is present inside the
- 561 cell? Br J Pharmacol 176:646-670. doi: 10.1111/bph.14394.
- 562
- 563 Cai WJ, Wang ML, Wang C, Zhu YC. 2010. Hydrogen sulfide induces human colon
 564 cancer cell proliferation: role of Akt, ERK and p21. *Cell Biol Int* 34: 565-572.
- 565
- 566 Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. 2012. Microbial
- pathways in colonic sulfur metabolism and links with health and disease. *Frontiers in Physiology* 3: 448. doi: 10.3389/fphys.2012.00448.
- 569

```
570 Choi H-J, Kim S-J, Mukhopadhyay P, Cho S, Woo J-R, Storz G, Ryu S-E. 2001.
```

- 571 Structural basis of the redox switch in the OxyR transcription factor. *Cell* 105:
- 572 103-113. https://doi.org/10.1016/S0092-8674(01)00300-2
- 573

574 Christman MF, Morgan RW, Jacobson FS, Ames BN. 1985. Positive control of a 575 regulon for defenses against oxidative stress and some heat-shock proteins in 576 Salmonella typhimurium. *Cell* **41**: 753-762.

577

- 578 Dóka É, Pader I, Bíró A, Johansson K, Cheng Q, Ballagó K, Prigge JR, Pastor-Flores
- 579 D, Dick TP, Schmidt EE. 2016. A novel persulfide detection method reveals protein
- 580 persulfide-and polysulfide-reducing functions of thioredoxin and glutathione systems.
- 581 *Science advances* **2**: e1500968. doi: 10.1126/sciadv.1500968.

582

- 583 Daeffler KNM, Galley JD, Sheth RU, Ortiz Velez LC, Bibb CO, Shroyer NF,
- 584 Britton RA, Tabor JJ. 2017. Engineering bacterial thiosulfate and tetrathionate sensors
- for detecting gut inflammation. *Molecular Systems Biology* 13:923. doi:
 10.15252/msb.20167416.

587

- 588 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in
- 589 Escherichia coli K-12 using PCR products. *Proceedings of the National Academy of*

590 Sciences of the United States of America **97**: 6640-6645.

- 592 Deleon ER, Gao Y, Huang E, Arif M, Arora N, Divietro A, Patel S, Olson KR. 2016.
- A case of mistaken identity: are reactive oxygen species actually reactive sulfide
 species? *Am J Physiol Regul Integr Comp Physiol* **310**: R549.
- 595
- 596 Espey MG. 2013. Role of oxygen gradients in shaping redox relationships between 597 the human intestine and its microbiota. *Free Radical Biology & Medicine* 55:

bioRxiv preprint doi: https://doi.org/10.1101/561019; this version posted February 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

598	130-140.

599

600	Fernandes AP, Fladvad M, Berndt C, Andrésen C, Lillig CH, Neubauer P,
601	Sunnerhagen M, Holmgren A, Vlamis-Gardikas A. 2005. A novel monothiol
602	glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin
603	reductase. J Biol Chem 280: 24544-24552.
604	

605 Fernandes AP, Holmgren A. 2004. Glutaredoxins: glutathione-dependent redox

- enzymes with functions far beyond a simple thioredoxin backup system. *Antioxid Redox Signal* 6: 63-74.
- 608
- Fujii S, Sawa T, Motohashi H, Akaike T. 2019. Persulfide synthases that are
 functionally coupled with translation mediate sulfur respiration in mammalian cells. *Br J Pharmacol* 176:607-615. doi: 10.1111/bph.14356.
- 612
- 613 Fukuto JM, Ignarro LJ, Nagy P, Wink DA, Kevil CG, Feelisch M, Cortese-Krott MM,
- 614 Bianco CL, Kumagai Y, Hobbs AJ, Lin J, Ida T, Akaike T. 2018. Biological
- 615 hydropersulfides and related polysulfides a new concept and perspective in redox
- 616 biology. *FEBS Lett* **592**: 2140-2152. doi:10.1002/1873-3468.13090
- 617
- 618 Gao XH, Krokowski D, Guan BJ, Bederman I, Majumder M, Parisien M, Diatchenko
- 619 L, Kabil O, Willard B, Banerjee R. 2015. Quantitative H2S-mediated protein

- 620 sulfhydration reveals metabolic reprogramming during the integrated stress response.
- 621 *Elife* **4**:e10067. doi: 10.7554/eLife.10067.
- 622
- 623 Gutierrez-Ríos RM, Freyre-Gonzalez JA, Resendis O, Collado-Vides J, Saier M,
- Gosset G. 2007. Identification of regulatory network topological units coordinating
 the genome-wide transcriptional response to glucose in *Escherichia coli*. *BMC Microbiol* 7: 53-53.
- 627
- Li H, Li J, Lü C, Xia Y, Xin Y, Liu H, Xun L, Liu H. 2017. FisR activates
 σ(54)-dependent transcription of sulfide-oxidizing genes in *Cupriavidus pinatubonensis* JMP134. *Mol Microbiol* 105: 373-384. doi: 10.1111/mmi.13725.
- 631
- Haridas V, Kim SO, Nishimura G, Hausladen A, Stamler JS, Gutterman JU. 2005.
- Avicinylation (thioesterification): a protein modification that can regulate the
 response to oxidative and nitrosative stress. *Proceedings of the National Academy of Sciences of the United States of America* 102: 10088-10093.
- 636
- 637 Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A,
- 638 Treviño-Villarreal J, Mejia P, Ozaki CK. 2015. Endogenous hydrogen sulfide
 639 production is essential for dietary restriction benefits. *Cell* 160: 132-144.
- 640
- 641 Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M,

642	Motohashi H, Fujii S, Matsunaga T. 2014. Reactive cysteine persulfides and
643	S-polythiolation regulate oxidative stress and redox signaling. Proceedings of the
644	National Academy of Sciences 111: 7606-7611.

646 Inseong J, In-Young C, Hee-Won B, Jin-Sik K, Saemee S, You-Hee C, Nam-Chul H.

647 2015. Structural details of the OxyR peroxide-sensing mechanism. *Proceedings of the*

649

Islamov RA, Bishimova I, Sabitov AN, Ilin AI, Burkitbaev MM. 2018. Lack of
mutagenic activity of sulfur nanoparticles in micronucleus test on L5178Y Cell
Culture. *Cell & Tissue Biology* 12: 27-32.

653

Kaewkanya N, Skorn M, Paiboon V. 2003. The OxyR from *Agrobacterium tumefaciens*: evaluation of its role in the regulation of catalase and peroxide responses. *Biochemical & Biophysical Research Communications* 304: 41-47.

657

Kamyshny A, Borkenstein CG, Ferdelman TG. 2009. Protocol for quantitative
detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural
aquatic samples. *Geostandards and Geoanalytical Research* 33: 415-435.
10.1111/j.1751-908X.2009.00907.x

663 Kim SO, Merchant K, Nudelman R, Jr WFB, Keng T, Deangelo J, Hausladen A,

⁶⁴⁸ *National Academy of Sciences of the United States of America* **112**: 6443-6448.

664	Stamler JS. 2002. OxyR : A Molecular Code for Redox-Related Signaling. C	Cell	109:
665	383-396.		

- 667 Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y,
- 668 Kimura H. 2015. Identification of H₂S₃ and H₂S produced by 3-mercaptopyruvate
- sulfurtransferase in the brain. *Scientific Reports* **5**: 14774. 10.1038/srep14774
- 670 https://www.nature.com/articles/srep14774#supplementary-information
- 671
- 672 Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F.
- 673 2010. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes

reverse electron transfer in colonocytes. *Biochim Biophys Acta* **1797**: 1500-1511.

- 675
- 676 Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, Xun L. 2019. Escherichia coli uses
- 677 different enzymes to produce H₂S and reactive sulfane sulfur from L-cysteine.

678 Frontiers in Microbiology 10: 298. doi: 10.3389/fmicb.2019.00298

- 680 Lim CJ, Daws T, Gerami-Nejad M, Fuchs JA. 2000. Growth-phase regulation of the
- 681 *Escherichia coli* thioredoxin gene. *Biochim Biophys Acta* 1491: 1-6.
- 682
- 683 Lira NPVD, Pauletti BA, Marques AC, Perez CA, Caserta R, Souza AAD, Vercesi
- 684 AE, Leme AFP, Benedetti CE. 2018. BigR is a sulfide sensor that regulates a sulfur
- transferase/dioxygenase required for aerobic respiration of plant bacteria under sulfide

686 stress. *Scientific Reports* **8**:3508. doi: 10.1038/s41598-018-21974-x.

687

688 Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood

- 689 Whiteman M, Hancock JT. 2010. A novel hydrogen sulfide donor causes stomatal
- 690 opening and reduces nitric oxide accumulation. *Plant Physiol Biochem* **48**: 931-935.

691

- 692 Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. 2014.
- 693 The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in
- 694 Staphylococcus aureus. Mol Microbiol 94: 1343-1360. doi: 10.1111/mmi.12835

695

Mishanina TV, Libiad M, Banerjee R. 2015. Biogenesis of reactive sulfur species for
signaling by hydrogen sulfide oxidation pathways. *Nat Chem Biol* 11: 457-464. doi:
10.1038/nchembio.1834

699

Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G,
Wang R, Snyder SH. 2009. H₂S signals through protein S-sulfhydration. *Science signaling* 2: ra72.

703

Nagahara N, Koike S, Nirasawa T, Kimura H, Ogasawara Y. 2018. Alternative
pathway of H₂S and polysulfides production from sulfurated catalytic-cysteine of
reaction intermediates of 3-mercaptopyruvate sulfurtransferase. *Biochem Biophys Res Commun* 496: 648-653. https://doi.org/10.1016/j.bbrc.2018.01.056

|--|

709	Olson KR, Gao Y, Arif F, Arora K, Patel S, Deleon ER, Sutton TR, Feelisch M,							
710	Cortesekrott MM, Straub KD. 2018. Metabolism of hydrogen sulfide (H_2S) and							
711	production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biology							
712	15 : 74-85.							
713								
714	Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD. 2017. Catalase							
715	as a sulfide-sulfur oxido-reductase: an ancient (and modern?) regulator of reactive							
716	sulfur species (RSS). <i>Redox Biology</i> 12 : 325-339.							
717	https://doi.org/10.1016/j.redox.2017.02.021							
718								
719	Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P,							
720	Xian M, Lin J. 2014. The redox chemistry and chemical biology of H_2S ,							
721	hydropersulfides and derived species: implications to their possible biological activity							
722	and utility. Free Radical Biology & Medicine 77: 82-94.							
723								
724	Park CM, Weerasinghe L, Day JJ, Fukuto JM, Ming X. 2015. Persulfides: current							
725	knowledge and challenges in chemistry and chemical biology. Molecular Biosystems							
726	11 : 1775-1785.							

728 Paul BD, Snyder SH (2015) Chapter Five - Protein Sulfhydration. In Methods in

729 Enzymology, Cadenas E, Packer L (eds), Vol. 555, pp 79-90. Academic Press

731	Peng H, Zhang Y, Palmer LD, Kehl-Fie TE, Skaar EP, Trinidad JC, Giedroc DP.
732	2017. Hydrogen sulfide and reactive sulfur species impact proteome S-sulfhydration
733	and global virulence regulation in <i>Staphylococcus aureus</i> . ACS Infectious Diseases 3:
734	744-755. doi: 10.1021/acsinfecdis.7b00090
735	
736	Rai M, Ingle AP, Paralikar P. 2016. Sulfur and sulfur nanoparticles as potential
737	antimicrobials: from traditional medicine to nanomedicine. Expert review of
738	anti-infective therapy 14: 969-978. doi: 10.1080/14787210.2016.1221340.
739	
740	Ritz D, Patel H, Doan B, Zheng M, Aslund F, Storz G, Beckwith J. 2000. Thioredoxin
741	2 is involved in the oxidative stress response in <i>Escherichia coli</i> . J Biol Chem 275:
742	2505-2512.
743	
744	Samrat RC, Amrita M, Mahua G, Sulagna B, Dipankar C, Arunava G. 2013.
745	Investigation of antimicrobial physiology of orthorhombic and monoclinic
746	nanoallotropes of sulfur at the interface of transcriptome and metabolome. Applied
747	Microbiology & Biotechnology 97: 5965-5978.
748	
749	Sato I, Shimatani K, Fujita K, Abe T, Shimizu M, Fujii T, Hoshino T, Takaya N.

2011. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur
tolerance via polysulfide shuttle in fungi. *J Biol Chem* 286: 20283-20291. doi:

752	10.1074/jbc.M111.225979.
-----	--------------------------

754	Sawa T,	Ono K,	Tsutsuki H,	Zhang T,	Ida T,	Nishida M,	Akaike T ((2018)) Chap	ter
-----	---------	--------	-------------	----------	--------	------------	------------	--------	--------	-----

- 755 One Reactive cysteine persulphides: occurrence, biosynthesis, antioxidant activity,
- 756 methodologies, and bacterial persulphide signalling. In Advances in Microbial
- 757 *Physiology*, Poole RK (ed), Vol. 72, pp 1-28. Academic Press

758

- 759 Seth D, Stamler JS. 2012. Endogenous protein S-Nitrosylation in E. coli: regulation
- 760 by OxyR. *Science* **336**: 470-473.
- 761
- 762 Srivatsan A, Wang JD. 2008. Control of bacterial transcription, translation and
 763 replication by (p)ppGpp. *Curr Opin Microbiol* 11: 100-105.
- 764
- Storz G, Tartaglia LA, Ames BN. 1990. Transcriptional regulator of oxidative
 stress-inducible genes: direct activation by oxidation. *Science* 248: 189-194.

767

Toohey JI. 2011. Sulfur signaling: is the agent sulfide or sulfane? *Anal Biochem* 413:
1-7.

770

Wedmann R, Onderka C, Wei S, Szijártó IA, Miljkovic JL, Mitrovic A, Lange M,
Savitsky S, Yadav PK, Torregrossa R. 2016. Improved tag-switch method reveals that
thioredoxin acts as depersulfidase and controls the intracellular levels of protein

- persulfidation. *Chemical Science* 7: 3414-3426.
- 775
- Williams JS, Cooper RM. 2010. The oldest fungicide and newest phytoalexins a
- reappraisal of the fungitoxicity of elemental S. *Plant Pathol* **53**: 263-279.
- 778
- 779 Xia Y, Chu W, Qi Q, Xun L. 2015. New insights into the QuikChangeTM process
- 780 guide the use of Phusion DNA polymerase for site-directed mutagenesis. *Nucleic*
- 781 *Acids Res* **43**: e12. doi: 10.1093/nar/gku1189.
- 782
- Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, Xun L. 2017. Sulfide production and
 oxidation by heterotrophic bacteria under aerobic conditions. *ISME Journal* 11: 2754
 -2766. doi: 10.1038/ismej.2017.125.
- 786
- 787 Xin Y, Liu H, Cui F, Liu H, Xun L. 2016. Recombinant *Escherichia coli* with sulfide:
- 788 quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite

and thiosulfate via a new pathway. *Environ Microbiol* **18**: 5123-5136.

- 790
- 791Xu Z, Qiu Z, Liu Q, Huang Y, Li D, Shen X, Fan K, Xi J, Gu Y, Tang Y, Jiang J, Xu
- J, He J, Gao X, Liu Y, Koo H, Yan X, Gao L. 2018. Converting organosulfur
 compounds to inorganic polysulfides against resistant bacterial infections. *Nature*
- 794 *Communications* **9**: 3713. doi: 10.1038/s41467-018-06164-7
- 795

bioRxiv preprint doi: https://doi.org/10.1101/561019; this version posted February 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 796 Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR,
- 797 Banerjee R. 2016. Biosynthesis and reactivity of cysteine persulfides in signaling. J
- 798 Am Chem Soc 138: 289-99. doi: 10.1021/jacs.5b10494.
- 799
- 800 Zheng M, Åslund F, Storz G. 1998. Activation of the OxyR transcription factor by
- 801 reversible disulfide bond formation. Science 279: 1718-1722. doi:
- 802 10.1126/science.279.5357.1718
- 803
- 804