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Abstract  
 
Primates can quickly and advantageously adopt complex rule-based behaviors. We studied 

acquisition of a classification task while recording single neurons in the dorsal-anterior-cingulate-

cortex (dACC) and the Striatum. Monkeys performed trial-by-trial classification on a rich set of multi-

cue patterns, allowing de-novo learning with varying conceptual complexities every few days. To 

examine neural dynamics during the learning itself, we represent each rule with a spanning set of the 

space formed by the stimulus features. Because neural preference can be expressed by feature 

combinations, we can track neural dynamics in geometrical terms in this space, allowing a compact 

universal description of neural trajectories by observing changes in either vector-magnitude and/or 

angle-to-rule. We find that a large fraction of cells in both regions follow the behavior during learning. 

Neurons in the dACC mainly rotate towards the policy, suggesting an increase in selectivity that 

approximates it; whereas in the Putamen we additionally find a prominent magnitude increase, 

suggesting strengthening of confidence. Moreover, magnitude increases in the striatum followed 

rotation in the dACC, and finally, the neural policy at the end of the session predicted next-day 

behavior. Using this novel framework enables tracking of neural dynamics during learning and 

suggests differential roles of confidence and policy for the different brain regions. 
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Introduction 

Learning to classify multi-cue stimuli in order to produce the correct action is an adaptive flexible 

behavior required from animals on a daily basis. Accordingly, such tasks are commonly used to 

explore learning strategies in humans 1-5, as well as clinical implications 6-9. Recent studies have 

shown that performance depends on complexity 10 and can be predicted using models that rely on 

high-order features of the stimulus with individual priors 11. Studies of learning rule-based 

classification in monkeys have ascribed a major and complementary role to the striatum and regions 

of the prefrontal-cortex (PFC) 12, 13. In paradigms that impose category boundaries on multiple stimuli, 

individual neurons in the PFC exhibit category preference to the different classes 14-21. Within the PFC, 

the anterior-cingulate-cortex (dACC) widely projects to striatal regions 22-24, and is involved in several 

cognitive functions that contribute to the learning process itself beyond the final representation of the 

rule. Neurons in the dACC represent attention, reflect actions that lead to reward, signal outcome of 

previous trials, and form and integrate representations of task structure 25-37. The striatum in turn, 

receives wide projections from the dACC and plays a role in choosing actions and supplies 

reinforcement signals which can help to establish a strategy during learning 38-46.  

Yet, less is known about how single neurons form representations as learning progresses and 

gradually becomes relevant to the final classification being imposed. This is mainly because most 

studies follow extensive training and the neural correlates relate more to the final representation, 

perception, and recognition, and less to the gradual learning process. In principle, rule-learning can 

take several forms, and previous studies used few governing rules where the animals learn to assign 

different outcome probability or value 47, 48, acquisition of arbitrary stimulus-motor associations 49-51, 

or switching contingencies between the rules 20, 52.  

Here, we examine neural dynamics during the learning process of several different rules. To do 

so, we trained two monkeys (macaca fascicularis) to perform trial-by-trial classification learning based 

on visual patterns composed of ‘bits’ of black and white squares. Each session required to learn a 

classification rule on patterns of N=3 bits. Patterns were presented in a pseudo-random non-biasing 

order (Fig.1a, Methods). Out of the 256 (2^2^3) possible rules, we chose seven rules in which the 

correct label was determined according to either single, pairwise, or triple-wise dependencies 

between the bits in the pattern (Fig.1b). These rules are unbiased, namely equally partition the set of 

8 patterns; and are independent of each other, namely learning a rule results in chance performance 

for all other rules. Additionally, we included the majority rule (also unbiased, Fig.1b). We repeated this 

set of eight rules after >4 weeks to obtain enough neurons recorded per rule. The monkeys did not 

experience any of these rules prior to recordings. In these conditions of varying the rules every few 

days, we expected the animals’ performance to vary across sessions and rule types. 
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Results 
 

Learning classification rules 

 

Both monkeys exhibited within-session learning (Fig.1c), continuous performance improvement 

in longer sessions (Fig.1d), as well as next-day retention (Fig.1e). As expected from learning eight 

different rules that change every few days but use similar cues, neither of the monkeys showed 

retention benefit over the month between rule repetitions (Fig.1f). Despite the hard task, both 

monkeys achieved learning of all rules in some sessions yet with different levels of accuracy that 

range across sessions and rules (Significant improvement in 60% and 32% of sessions with ‘easy’ 

and ‘hard’ rules. Binomial tests, see methods, Fig.1g), and with differences in overall performance as 

reflected also in learning of 2-bit and 4-bit rules (Fig.1h). These results are highly similar to the 

behavior of human subjects that exhibited similar behavioral variability across individuals, rules, and 

sessions11. 

We tested and found that error-rates following correct classification show strong dependence on 

the specific rule (Fig.S1, Kruskal-Wallis test, p < 1e-15) and that the stimulus-response association 

learning of the more salient patterns showed variability across rules and strong dependence on the 

specific rule (Fig.S2, Kruskal-Wallis test, p < 1e-4 for any segment of 10 pattern presentations). This 

was further supported by rule consistency (Fig.S3) and the ability to learn 4-bit rules (Fig.1h, 16 

patterns, 65536 possible rules). This evidence suggests that the monkeys did not use simple 

memorization or different saliency of the pattern cues, 

We conclude that both monkeys learned in a significant number of sessions with some rules being 

easier to learn than others. The complexity and richness lead to reasonable error rates when 

compared to over-training on a specific set of rules, and therefore enable examination of neural 

patterns during successful learning. 

 

Rule-based classification emerges in single neurons 

 

To examine and compare neural responses, we recorded single-units during learning of all 3-bit 

rules in the dACC (Brodmann area 24), Caudate and Putamen (Fig.2a,b), and divided the sessions 

into ‘easy’ and ‘hard’ rules based on the average success rate (Fig.1g). We found neurons that 

changed their post-stimulus spiking pattern to differentiate the two category labels (‘category-specific’ 

neurons) (Fig.2c, left and middle), whereas other stimulus-responsive neurons maintained no 

category preference (‘stimulus-specific’ neurons) (Fig.2c, right). Overall, both the dACC and the 

Putamen had significantly more category-specific neurons during the late phase of sessions of easy 

rules compared to hard rules (Fig.2d, dACC: 21% vs. 12.5%, Pu: 22% vs 8% for easy vs. hard, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/561670doi: bioRxiv preprint 

https://doi.org/10.1101/561670


binomial comparison z-test, p<0.05 for both). The same result was obtained when dividing sessions 

into high and low performance independent of the specific rule, i.e. session-based performance rather 

than a rule-based performance (Fig. S4), and similarly in each monkey separately (Fig.S4). Moreover, 

there was a monotonic relation between instantaneous performance and the proportion of neurons 

showing correct classification (Fig.2e). 

Since the category label and the actual choice are correlated during correct performance, we used 

the occurrence of error trials to distinguish them and compared the correlation between neurons’ 

activity and the correct category to the correlation with the actual choice over trials (Fig.2f, William’s 

test). In sessions of easy rules, more neurons developed significantly stronger category correlations 

in both dACC and Putamen, whereas significantly more neurons developed larger actual-choice 

correlations in the Caudate (binomial comparison z-test, p<0.05). Finally, in accordance with the 

aforementioned behavioral findings (Fig.S1-3), even under stringent conditions only very few neurons 

(3%, methods) had activity that can be attributed to memorizing of specific stimulus patterns; and 

moreover, most of these neurons were selective and sensory-specific to the all-black or all-white 

patterns (36/40, Fig. S5).  

Together, these findings suggest that the modulation of single neuron activity in the recorded 

regions reflect different roles during learning: whereas the dACC and Putamen reflect more the 

learned rule, the Caudate reflected more the actual choice. We therefore focus in the following 

analyses on the dACC and the Putamen.   

 

A geometric representation to track neural dynamics during learning 

 

We next examine how the modulation of neural activity occurs dynamically and continuously 

during the learning process itself. To track representations during acquisition, we note that each 

pattern can be represented by its visual features (Fig.3a), and if we choose a complete set of 

statistically independent binary functions as features (a minimal spanning basis), we can describe 

any rule as a weighted combination of these features, i.e. each rule is a vector in this feature space. 

This choice of the basis also guarantees that a neuron’s selectivity is defined by the correlation 

between its activity to the basis features (neural-vector), and we can therefore use rolling regression 

to identify the neuron’s dynamic preference by the trajectory of its neural-vector in this space (Fig.3b).  

 
Importantly, because the neuronal dynamics (neural-vector) is described in terms of movement in 

feature space and its relation to the rule-vector that varies across sessions, this geometric framework 

allows comparing neural dynamics across sessions of different rules. Specifically, two processes can 

contribute to a higher agreement (projection) between the neural-vector and the rule-vector: by 

increasing vector magnitude (Fig.3b, left) - reflecting a confidence strengthening (being ‘louder’), or 

by rotating the vector towards the direction of the rule-vector (Fig.3b, right) - reflecting a policy change. 
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Finally, we note that choosing any other representation, i.e. another feature space, can be expressed 

as a weighted combination of the feature basis, and so our findings below do not depend on the 

specific set of features we used. 

 Reducing the high-dimensional (7-d) trajectories in feature-space to changes of angle-to-rule and 

vector-magnitude reveals several types of single-neuron dynamics. Whereas some neurons remained 

selective to a feature regardless of the performance improvement (Fig.3c), other neurons rotated 

towards the correct rule during learning (Fig.3d), and yet other neurons increased their vector 

magnitude and developed feature selectivity but with no relationship to the correct rule (Fig.3e). 

Importantly, many neurons performed a more complex path and their trajectories involved changes 

in several features in parallel (rotation and magnitude, Fig.3f, Fig. S6). The geometric representation 

of multi-feature trajectories allows interpretation for these as well – such as rotation in the orthogonal 

subspace (‘Category ⊥’, e.g. Fig.3f) and magnitude increases in building preference to a combination 

of several features, that eventually leads to significant agreement with the rule-vector (see Fig.S6 for 

further examples). 

 

Neural trajectories closely match behavior 

 

We next asked if this neural representation agrees with the behavioral changes in individual 

sessions. Because the neurons’ trajectories in the feature space reflect the change in their category 

selectivity through the geometric measures of vector angle and magnitude, we estimated the 

correlation of these measures separately with the behavioral performance curve.  We found a large 

and significant proportion of neurons in both regions for which changes in angle-to-rule were 

correlated with the behavior (Fig.4a, 32% of the dACC neurons and 37% of the Putamen neurons, 

Pearson, p<0.01). Similarly, a significant proportion of neurons changed their vector-magnitude in 

correlation with the performance (Fig.4b, 19% of the dACC neurons and 18% of the Putamen neurons, 

Pearson, p<0.01). These populations intersect such that many neurons with vector-magnitude 

changes also exhibit angle-to-rule changes (Fig. S7). Finally, we tested for the possibility of a temporal 

lag between the neural dynamics and the behavior. In all cases (for both regions and for both 

magnitude and angle changes), neurons were equally distributed between preceding change in 

behavior and slightly following it (Fig.4a,b, right-insets, Means not different than zero, p>0.1 for all, t-

tests).  

We further tested for differences in neural dynamics between regions, and quantified if there is a 

lag in either angle or magnitude changes between pairs of neurons recorded simultaneously from the 

dACC and Putamen. This revealed a wide distribution (Fig.4c), but without a specific directional lag 

(p>0.1 for all, t-tests), suggesting that information is being shared in both directions with both short 

lags (within the same trial) but also longer ones (over few trials), in agreement with the notion of 

information transfer in the underlying corticostriatal loops. 
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Representations of confidence and policy across regions 

 

The similar temporal dynamics between neural trajectories and behavior allows relating the neural 

representations to the different components of learning: increasing vector magnitude reflecting a 

confidence increase, and rotating the vector towards the rule reflecting a policy change. We find that 

in easy rules, more neurons rotated towards the rule, i.e. diminished their angle-to-rule, in both the 

dACC and the Putamen (Fig.4d,e, binomial test comparing easy vs hard rules, dACC: 40% vs 25.5%, 

Putamen: 49% vs 34%). This rotation gradually progressed along the session as performance 

improved (Fig.4d,e– right panels).  

However, a qualitative difference between the dACC and Putamen is revealed when examining 

vector-magnitude changes. In the dACC, there was no difference in number of neurons with vector-

magnitude changes between easy and hard rules (Fig.4f, binomial test. dACC: 38% vs 34%). In 

contrast, in the Putamen, significantly more neurons increased their vector-magnitude in easy rules 

(Fig.4g, binomial test. Putamen: 47% vs 31%). Compared to rotation, vector-magnitude changes in 

the Putamen became much more prominent towards the end of the session, suggesting strengthening 

(confidence) of the policy that developed earlier (compare Fig.4d,e, right-panels to Fig.4g, right-

panels).  

Together, these findings suggest that both the Putamen and dACC reflect a process of policy 

search for the correct rule, but mainly the Putamen reflects policy strengthening once it is found and 

the gain in confidence that accompanies successful learning. 

 

Differential dynamics across regions 

 

To examine more closely if the changes in neural properties relate to behavioral improvement, 

we examined the correlation between two factors: the learning curve and the change in angle-to-rule, 

namely the change between subsequent windows (rather than the overall angle-to-rule as in Fig.4a). 

We then compared the proportion of neurons that showed significant correlations in easy vs. hard 

rules and found that significantly more neurons showed a change in angle-to-rule that followed 

behavioral changes in easy than in hard rules. This was so in both the striatum and the dACC when 

we computed the correlation with a lag of 4 trials (Fig.4h), and diminished when the lag was higher (8 

trials, Fig.4h top-right) or with zero lag (Fig.4h top-left). There was no difference when the lag was 

negative i.e. when neural change precedes behavioral change. This suggests that when a search for 

answers succeeds or fails beyond average, it is followed by a neural vector rotation towards the rule. 

Although we cannot distinguish if this is due to success/failure itself or to the amount of provided 

reward, the fact that the rotation was towards the rule suggests it is not reward alone. 
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In addition, we exploited the simultaneous recordings to test if the two properties, magnitude and 

rotation, have differential dynamics between regions. We took the vector-magnitude and the rotation-

to-rule of each neuron and computed the optimal lag (as in Fig.4c) between the two properties for all 

simultaneously recorded neurons. According to our hypothesis and in line with previous suggestions, 

only one distribution of lags was different than zero, that of vector-magnitude in Putamen neurons 

and angle-to-rule in dACC neurons, with the Putamen magnitude following dACC rotation (Fig.4i, 

p<0.004, t-test; Mean lag -2.8±0.96 trials; Fig.S8, all other comparisons were not different than zero, 

p>0.1 for all, t-tests). Moreover, this was driven mainly by neural pairs recorded in easy rules (Fig.4j, 

p<0.01, t-test, Mean lag -3.56±1.36 trials). 

Together, the results suggest that once a strip of successful responses occur, the neural vector 

in both regions rotate towards the rule, and that rotation in the dACC is followed by magnitude 

extension in the striatum. 

 

Neural vectors predict next-day (overnight) behavior  

 

If the neural trajectories indeed reflect learning and changes in behavioral policy during a session, 

then the neural-vector at the end of a session represents the acquired behavior policy and might 

predict early performance in the next daily session (i.e. an overnight retention process). 

To examine this, we projected each neuron’s activity vector at the end of a session on the rule of 

the following day, and computed the correlation between these projections and the early next-day’s 

performance. In Putamen neurons only, this revealed a significant correlation between similarity of 

neural vectors to the next day’s rule and next-day early success rates (Fig.4k, Pearson’s r = 0.24, 

p<0.02). Namely, the closer the neural vector at the end of the day to the next-day rule, the better will 

be the initial performance. There was no correlation when we reversed the days as control.  

Because the above included the retention benefit of the learned rule when the next-day’s rule was 

identical, we further tested if such priors could also bias learning of new rules in sessions when the 

next-day rule change. We again projected the neural vector onto the actual next-day’s rule and 

estimated its correlation with the early performance in the next day, but this time only for pairs of days 

when the rule changed in the second day. There was a significant correlation here as well for Putamen 

neurons only (Fig.4l, Pearson’s r = 0.35, p<0.03), between the projection of neural activity from the 

preceding day onto the subsequent rule and performance on that rule early in learning. There was no 

correlation when we reversed the days as control.  

Together, these findings link between the geometric representation and the behavior and 

demonstrate that the neural projection is indeed a valid representation for the learned rule, and further 

suggest that it can bias future behavior. 
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Discussion 
 

We recorded and analyzed dynamic changes in neural representation while monkeys learned to 

classify multi-cue patterns based on a rich set of potential rules. In these natural conditions of varying 

eight different rules, the animals’ performance varied across sessions and rule types as previously 

shown in humans 11. Nevertheless, we found that neurons in both the striatum and the dACC change 

their firing pattern to eventually represent the learned rule. To address the main challenge of 

characterizing single-unit dynamics during de-novo learning of rules, we developed an approach that 

represents each rule in the space formed by a set of features. Because this set of features is a minimal 

spanning basis, other cartesian coordinates that allow a vector representation are equivalent to it, 

making the findings generalizable and independent of the specific chosen features. We could 

therefore summarize each neuron activity by two universal traits – its angle to the rule direction and 

its magnitude. These two measures have a natural interpretation, the rotating angle reflects learning-

related policy or strategy change, and the magnitude increase reflect strengthening or confidence 

(neural confidence, we do not quantify here cognitive confidence). Further, this has the benefit of 

denoting all rules that can be formalized by any high-dimensional stimuli space with the same two 

traits, and hence compare the dynamics of learning across tasks and rules. 

Using this framework, we found that in both regions there is a large number of neurons that were 

dynamically synchronized with the behavior, either in their angle or in their magnitude. This suggests 

that this neural representation indeed captures the learning process 50 and reorganizes to adapt to 

the new conditions 53. Importantly, this representation revealed a dissociation in functionality: neurons 

in the dACC rotated to decrease their angle-to-rule, namely changed their strategy; whereas neurons 

in the Putamen changed their activity to reflect both strategy and confidence, by magnitude-increase 

of the neural-vector that likely reflects strengthening and reinforcement of the correct strategy once 

identified during learning 39. In line with this interpretation and the role of the striatum in reinforcement, 

we found that rotation changes in the dACC were followed by magnitude extensions in the striatum, 

and more so in easy rules.  

In addition, apart from representations of the learned rule, we could also identify neurons with 

stable or changing correlations in the subspace of the features 54-56, and these were observed during 

both successful and unsuccessful learning sessions. The exact role of these neurons is yet to be 

determined, but it seems likely that they reflect a trial-and-error search process during learning or 

retention of other previously learned rules.  

In contrast to the Putamen and the dACC, Caudate neurons showed stronger reflection of the 

monkeys’ instantaneous choice than of the categorization rule. Because in visuomotor associations 

the dorsal striatum likely represent actions’ value 38 and follows the choice representation in lateral 

PFC 42, yet the role of lateral PFC in category learning and generalization is still under debate 57, our 
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observations can support the notion that in rule learning Caudate activity reflects value-based action 

selection 40, 46, 58, 59. Future studies are required to clarify the caudate specific role in rule-learning. 

Finally, neurons in the Putamen were related to overnight retention, and their representation at the 

end of a day predicted next-day behavior. Because we imposed a hard task and learning usually 

continued over few sessions, this demonstrates that the striatum represents the policy that is used 

for retention, either within the striatum or by transfer to other regions (e.g. as in consolidation 

processes). This suggestion is in line with studies showing that the striatum maintains intermediate 

representations, potentially via sustained activity 60, to allow learning that combines reinforcement 

and memory under spaced conditions61, 62.  

Our results can further suggest how abnormalities in the cingulate-striatal network can result in 

maladaptive learning processes that lead to applying incorrect rules, and in extreme cases lead to 

psychopathologies63-66. Overall, we present a new computational framework to examine dynamics of 

neural changes, and suggest complementing roles for the dACC and Striatum in learning and 

retention of classification rules.  
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Figure 1. Monkeys learn classifications with varying complexity.  

a. Behavioral paradigm: pressing and holding the middle button initiates a new trial. After the pattern 

appears on the screen the monkey has 30s to classify it with the left or the right button. A fluid reward 

follows a correct choice and a short timeout after an incorrect choice. 

b. A scheme of the rule-based classification. Shown are: one-bit-rule ’1’ (i.e. decision is based only 

on the identity of the first bit), two-bit-rule ‘12’ (decision is based on a XOR of bits ‘1’ and ‘2’), and the 

Majority-rule (decision is based on summing bits). In each panel the two categories are represented 

by full and empty circles in the space defined by the individual bits.  
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c. Learning curves. Shown are individual learning curves from 3 example days each with a different 

rule (monkey G – two left examples, monkey D – right example). The curves are shown next to the 

underlying truth table of the rule where patterns are stacked by category.  

d. Continuous longer learning within-session is beneficial. Shown is the location within the session of 

the maximum performance plotted against the maximum performance (best 30 consecutive trials), for 

all sessions. 

e. Overnight retention. Shown are two examples of learning curves in consecutive days with vertical 

lines separating the sessions. Over all sessions, there was a significant correlation between 

performance at the end of a session and performance at the beginning of the subsequent session 

with the same rule (monkey D: light blue, r=0.48, p<0.001; monkey G: dark blue, r=0.61, p<0.001; 

Both: r=0.48, p<0.001). 

f. No retention between rule repetitions with >4 weeks separation. The use of eight different rules that 

use the same cues/stimuli over 4-5 weeks means it is virtually impossible to memorize the different 

rules. Shown are two examples of three sessions (scales of gray) that repeated the same rule but 

with >4 weeks between repetitions. Over all sessions, there was no relationship between performance 

at the end of learning a rule and performance at the beginning of next repetition of the same rule 

(monkey D: light blue, r=0.23, p>0.5; monkey G: dark blue, r=0.21, p>0.3; Both: r=0.12, p>0.2).  

g. Performance in all 3-bit rules, average performance in the last quarter of each session for all rules 

and all sessions, for both monkeys (D: light blue; G: dark blue). In addition, for each rule, shown is 

the mean and SE averaged over animals and sessions, and classified into ‘easy’ and ‘hard’ rules (in 

‘easy’ rules performance is significantly above chance-level on average). Inset show maximal 

performance in each rule comparing the monkeys. Truth tables for all rules are shown below. 

h. Performance in 2-bit and in 4-bit rules (neural activity was recorded only during 3-bit rules). 
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Figure 2.  Neurons represent learning of classification.  

a. Recording locations projected on a coronal MRI section. Recording locations span ~12mm in the 

anterior-posterior axis (hence some locations seem to be outside the regions of interest). Red 

marks borderline of the dACC, Yellow for Caudate and cyan for Putamen.  

b. 3-D reconstruction of all recording locations. Gray plane is the midline, anterior-posterior zero is 

at the anterior-commissure and depth is measured from the dura surface.  

c. Rule-learning in neurons. Spiking patterns are divided by the category label (orange and black 

rasters and PSTHs). Spike times are aligned to the stimulus onset (dashed line). The order of trials 

is top to bottom. Trials are divided into the first half (upper row) and second half (bottom row) of the 
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sessions. The two left neurons differentiated between categories in the second half significantly 

more than in the first half, whereas the right neuron did not learn to differentiate categories. 

d. Fraction of single-units whose firing correlated with the rule at the end of learning (Mean and SE). 

Sessions are divided according to easy vs. hard rules, with more neurons signaling correct 

classification in easy rules in the dACC and the Putamen (p<0.05 for both, binomial tests).  

e. Instantaneous performance parallels neural-based categorization. The fraction of neural 

segments with significant category correlation increases with the mean performance (calculated by 

rolling regression windows of 40 trials in steps of 4 trials). 

f. Proportion of neurons with stronger correlation to the rule (bottom) and with stronger correlation to 

the actual choice (top), over both successful and error trials (William’s test), and comparing easy vs. 

hard rules. The dACC and the Putamen are significantly correlated more with the rule and not with 

the actual choice, whereas caudate neurons are significantly correlated with the choice only and not 

with the rule (significant comparisons are p<0.05, binomial tests).  
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Figure 3.  A geometrical representation reveals single-neuron dynamics during learning. 

a. The 7 features that form a linear basis (minimal and spanning) for the space in which all 3-bit 

rules reside. Shown is an example for the representation of the pattern 𝒙##⃗ =non= (−𝟏,𝟏,−𝟏) by its 
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parity features of: first order, {𝒙𝒊}𝒊.𝟏𝟑 , second order, 0𝑿𝑶𝑹𝒊𝒋 = 𝒙𝒊 ∙ 𝒙𝒋6𝒊7𝒋.𝟏
𝟑 , and third order, 𝑷𝟏𝟐𝟑 =

𝒙𝟏 ∙ 𝒙𝟐 ∙ 𝒙𝟑 and the representation of the majority rule as a combination of these features. 

b. In this feature space, the change in a neuron’s response modulate its projection on the vector 

that represents the rule (the black arrow). An increase in the projection can result from two 

processes: a trajectory change that increases the neural-vector magnitude (left) or neural-vector 

rotation towards the direction of the rule-vector (right), or of course both. The trajectory is color 

coded for time and red curves depict its projections on the axes. Insets separate the dynamics of 

vector-magnitude (top) and angle-to-rule (bottom). For presentation purposes only, the neural 

trajectory is plotted in the space of the three main principle axes (PCA), yet for all analyses the 

neural-vectors were computed in the full 7D space. 

c-f. Examples of single-neuron neural-vector dynamics. Each row is a neuron and shows, from left 

to right:  

1. Rasters aligned to stimulus onset with trials advancing from top to bottom and divided by the sign 

of the preferred feature at the second half of the session. PSTHs for the top raster (orange) and for 

the bottom one (black).  

2. Top: the behavioral learning curve (20 trials running average). Bottom: the regression correlation 

coefficients (blue-red color-bar) for each feature in the basis (y-axis) along all trials (x-axis). Red 

arrow marks the feature that defined the correct label in the specific session.   

3. The norm projections of correlation vectors (red) on the category (x-axis) and its orthogonal 

subspace (Category ⊥, z-axis) over time (y-axis). The blue surface connects (0,0) to the smoothed 

dynamics to visualize rotation and extension.  

4. The correlations’ vector magnitude (top) and angle to category (bottom) plotted over time. Red: 

raw data. Blue: smoothed data.  

5. The high dimensional (7D) neural trajectory projected on the three main principle axes (PCA) and 

curve fitted, color-coded for time progress in the session (light à dark blue). The black arrow is the 

rule vector in that session and the red curves are the projections of the trajectory on the axes 

(principal components). 

c. A neuron that does not change its selectivity during learning 

d. A neuron that rotates towards the correct category by learning the right feature 

e. A neuron that extends its vector towards a ‘wrong’ feature. 

f. A neuron that exhibits a complex relationship of vector extension and rotation.  
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Figure 4.  Neural dynamics match learning behavior and varies across regions. 

a. Change in angle-to-rule (𝐜𝐨𝐬(∠𝑹𝒖𝒍𝒆)) during a session overlaid with the performance behavior 

(black), showing a highly similar temporal pattern. Three dACC neurons (upper row, red) and three 

Putamen neurons (lower row, cyan), all with significant correlation between neural dynamics and 
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performance (p<0.01 for all, Pearson).  

Right panels show histograms of correlation coefficients for all neurons, with shaded area mark 

neurons exhibiting significant correlations at p<0.01. Both regions contained a highly significant 

number of neurons with dynamics similar to behavior (p<0.01 for both, 𝜒B). Insets show the 

distribution of trial lags between neural dynamics and behavior, with the mean lag not different than 

zero (p>0.1, t-tests). 

b. Same as in (a) for dynamics in vector magnitude (|𝑪𝑪|). 

c. The distribution of trial lags between neural dynamics of dACC neurons and of Putamen neurons, 

for all simultaneously recorded pairs in both regions (p>0.1 for all, t-tests). Shown are the neural 

lags when taking into account only angle (upper), magnitude (middle), and combined projection on 

the rule-vector (bottom). 

d,e. Proportion of neurons that significantly decreased their angle-to-rule during the session was 

different in easy rules vs. hard rules in both the dACC (d) and the Putamen (e) (p<0.05 in both, 

binomial test). Right panels show the average angle change (bottom, SE in shaded color) and the 

normalized cumulative change (top). Sessions were time-warped for averaging. Gray bars indicate 

significant difference between easy and hard rules (p<0.05, bootstrap).  

f,g. Same as in (d,e) for change in vector magnitude. However, in contrast to rotation in the both 

regions, only the Putamen showed significant increase in the vector-magnitude in easy vs. hard 

rules. 

h. Local shifts in angle-to-rule follow the behavior in more neurons when comparing easy to hard 

rules in both regions, but only in a lag of 4 trials (main panel) and not in zero or 8 trials lag (top 

insets). 

i. Distribution of optimal lags for all simultaneously recorded pairs of neurons, between change in 

vector magnitude of the putamen neuron and angle-to-rule of the dACC neuron. The mean is 

significantly below zero, indicating that changes in angle in dACC neurons preceded changes in 

magnitude in Putamen neurons. All other combinations were not significant (Fig.S8). 

j. Same as in (i) but separately for easy and hard rules.  

k. Neural projection at the end of a session predicts next day performance. The projection of each 

Putamen neuron’s activity at the end of the session (neural-vector) onto the next-day rule (rule-

vector), against the mean performance in the beginning of the next-day session (the neural-vector is 

averaged over the last 25% of the session and performance is averaged over the first 25% of the 

next day session), showing a positive correlation (r=0.24, p<0.02, black regression line). 

l. Similar to (h) but when the rule changed overnight, and the neural-vector at the end of the session 

is projected onto the next-day rule, showing a positive correlation (r=0.35, p<0.03) 
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Materials and Methods 

 

All surgical and experimental procedures were approved and conducted in accordance with the 

regulations of the Weizmann Institute Animal Care and Use Committee, following National Institutes 

of Health regulations and with accreditation from the Association for Assessment and Accreditation 

of Laboratory Animal Care International. 
Two male monkeys (Monkeys G and D, macaca fascicularis, 4-6kg) participated in the 

experiment. Before data collection, each monkey went through a training phase that acquainted it 

with all the task components and their sequence in a learning session. Therefore, in the recording 

sessions the monkeys were familiar with the concept of patterns and classification (Fig.1a). However, 

the monkeys did not experience any of the rules reported in this manuscript before the 

electrophysiological recordings began. Each classification rule was replaced every few days and 

repeated after about a month and after a full cycle of the 8 rules was presented. 

 The monkeys learned to classify binary patterns of N=3 squares. In each session, the entire set 

of 2N possible patterns was presented. The order of patterns was generated by concatenating full sets 

of randomly ordered 2N patterns. This process ensured that all patterns appear with the same 

temporal frequency and that no choice of behavioral rule, apart from the correct one, is beneficial in 

large portions of the session. For compactness we refer to the rules by their constituent squares. So, 

for example, in rule ‘3’ the label is determined by the color of the 3rd square and in rule ‘12’ the label 

is determined by the XOR of squares 1 and 2. See Fig.1 and main text for the list of rules used in this 

study and during recordings. 

 

Neural recordings 
A craniotomy was performed under deep anesthesia and aseptic conditions and a recording 

chamber (27x27mm) was implanted above the midline and anterior commissure to allow daily 

electrodes insertion. The chamber’s positioning was done according to MRI calculated coordinates 

with respect to the identified bone structure around the ear canals and eye sockets. Still images were 

taken during the surgery to record the location of the chamber, the head holder and the screws on 

the skull for easier extraction process.  

After surgery the monkeys were treated with analgesics (Buprenorphine) and antibiotics 

(Rocephin, Baytril). The monkeys were allowed to recover for 1-2 weeks before the first head 

restraining in the setup. The fluid consumption regime was gradually reinstated starting two weeks 

after surgery.  

MRI-Based Electrode Positioning: Anatomical MRI scans were acquired before, during, and after the 

recording period. Images were acquired on a 3-Tesla MRI scanner: (MAGNETOM Trio, Siemens) 

with a CP knee coil (Siemens). A T1-weighted, three-dimensional gradient-echo (MPRAGE) pulse 
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sequence was acquired with a repetition time of 2,500 ms, an inversion time of 1,100 ms, an echo 

time of 3.36 ms, an 8 flip angle, and two averages. Images were acquired in the sagittal plane, 192 x 

192 matrix, and 0.63 mm resolution. The first scan was performed before surgery and used to align 

and refine anatomical maps for each individual animal (relative location of the dACC and the Striatum, 

and anatomical markers such as the interaural line and the anterior commissure; confirmed using 

atlas). We used this scan to guide the positioning of the chamber on the skull at the surgery. After 

surgery, we performed another scan with 2-4 electrodes directed toward the dACC, Putamen and 

caudate. The regions’ depth was calculated from the dura surface and the plane of the top of the 

chamber. We assessed estimation of electrode tip locations and comparison to the MRI image with 

<1mm accuracy (mean=0.5mm). 

Mapping recording regions: During the first week of electrode insertions we performed a mapping 

procedure to identify the depth of cell bodies in prominent recording regions. During that week no 

behavior recordings were made and the fluid restriction was gradually reinstated.  

Additionally, with every electrode insertion during the experiment we recorded the depths of cell 

bodies and were able to reconstruct the boundaries of our regions of interest. 

Electrophysiology: 

The monkeys were seated in a dark room and each day, up to six microelectrodes (0.6–1.2 MΩ 

glass coated tungsten, Alpha Omega) were lowered inside a metal guide (Gauge 25xxtw, outer 

diameter: 0.51 mm, inner diameter: 0.41 mm, Cadence) into the brain using a head-tower and 

electrode-positioning-system (Alpha-Omega). The guide was lowered to penetrate and cross the dura 

and stopped once in the superficial layer of the cortex. The electrodes were then moved independently 

further into either the dACC, Caudate or Putamen. Electrode signals were pre-amplified, 0.3 Hz–6 

kHz band-pass filtered, and sampled at 44 kHz; and online spike sorting was performed using a 

template-based algorithm (Alpha Lab SNR, Alpha Omega). We allowed 15-30 minutes for the tissue 

and signal to stabilize before starting acquisition and behavioral protocol. At the end of the recording 

period, offline spike sorting was further performed for all sessions to improve unit isolation (offline 

sorter, Plexon).  

 
Data Analysis – Behavior 
 
Performance: 

Each learning session results in a series of correct and incorrect answers, {𝑦F}F.G:I ∈ {0,1}I, T 

being the number of trials. To measure learning behavior and account for erratic tendencies we took 

the following steps: 

1) To avoid the behavioral decline that may bias performance at the end of the sessions we 

disregarded up to the last 10% of the session if it contained only wrong answers. On average we 

ended up ignoring ~1% or 2-3 trials in each session.  
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2) We define performance at the end of the session by averaging correct and incorrect answers 

in the last quarter of the session, 𝑃NOP = 〈𝑦F〉F∈STUI→IW
. The confidence level for rejecting the null 

hypothesis of chance performance follows the regularized incomplete beta function, 𝐼GYZ [
I
\
− 𝑘, 1 +

𝑘_, where I
\
 is the number of trials in the last quarter of the session and 𝑘 is the number of correct 

answers during that segment.  

3) Identically to 𝑃NOP, we define 𝑃 FabF as the mean performance during the first quarter of the 

session. 

4) In Fig. 1d, we define maximal performance as the best mean performance in 30 consecutive 

trials, 𝑃cad = max
hiIYBj

〈𝑦F〉F∈[h→hlBj]. 

 
Easy and hard rules: 

We label rules according to the monkeys’ ability or inability to recurrently achieve high 

performance in learning those rules. Thus, given that a subset of rules is labeled ‘easy’ and another 

subset is labeled ‘hard’, we computed the amount of variance, within the set of 𝑃NOP’s that the labeling 

explains. The R2 value is: 𝑅B = 1 −
∑ [pqrs

t Yut_
v

t

∑ wpqrs
t Yux

v
t

 where, 𝜇 = 〈𝑃NOP〉 is the mean end-performance of all 

the sessions and 𝜇z  are the mean end performances of sessions of either ‘easy’ or ‘hard’ rules 

(Fig.1g). We also labeled individual sessions as ‘high’ or ‘low’ performance independent of the rules 

to make sure our results are robust (Fig.S4). 

 

Rule repetition effects 

Each classification rule was used for 1-5 consecutive days and repeated after about a month. We 

compare the monkeys’ performance at the end of a session (𝑃NOP(𝑛) with ‘n’ standing for the n’th 

session of the rule) to the mean performance in the first quarter of the following session of the same 

rule, 𝑃 FabF(𝑛 + 1). The comparison is made by calculating the Pearson correlation between the 𝑃NOP’s 

and 𝑃 FabF’s. 

We examined two distinct cases: 

1. Taking sessions only from consecutive days, we calculate the correlation, 𝜌a}b~``, of the across-

days learning (Fig. 1e). 

2. Taking only sessions from the end of a consecutive sequence and the beginning of the following 

sequence, we calculate the correlation, 𝜌bN}a�� , of the monkeys’ ability to recall rules they 

encountered a month before (Fig. 1f). 

 

Testing for pattern-specific memorization: 
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We first consider a memorization scheme in which subjects perfectly learn a list of correct pattern-

label pairs but do not generalize. The acquisition of such memorized patterns can be an all-or-none 

event, which means that after a certain pattern-label pair was memorized it will dictate choice 

behavior. Alternatively, we consider a gradual probabilistic association strengthening process for the 

observed patterns, which leaves room for errors. Our data rules out the case of all-or-none 

memorization: Fig. S1 and Fig. S2 demonstrate that our subjects frequently made mistakes on specific 

patterns even after they were labeled correctly in previous presentations.  

We can also rule out memorization of the types mentioned above as the sole mechanism. Relying 

on memorization alone would mean that all rules on patterns of three bits would be learned in the 

same rate. Fig S1 clearly shows that this is not the case, and that rule identity plays a key role. Even 

finer memorization aspects, such as pattern-specific acquisition rates, can also be ruled out from our 

data. Fig.S2 shows that subjects learned the labeling of the same pattern under different rules at 

different rates.  

 
Behavior stability tests: 

Feature based behavior stability 

We want to summarize how consistent were the monkeys in a single number for each session 

(Fig.S3a). This is done with answers from the last 1/4 of each session. We define as a consistency 

measure the mean (across patterns) distance of the logistic classifier (fitted to answers in the last 1/4 

session) from the chance (0.5) answer.  

Namely, if the monkeys adopt a feature based consistent policy at the last quarter of each session, 

then we can fit their sequence of answers with: 

𝑃(𝑦 = 1|𝑥; �⃗�, 𝛾) = G
GlNdZwY�Y∑ ����(d)� 	x

                                                                      [Eq 1]  

where 𝑥 are the presented patterns, 𝑓u(𝑥) are the features, and �⃗�, 𝛾 are fitted to maximize the 

likelihood of the answers. 

A key reason to fit this classifier and not to make the consistency estimation per pattern is that 

there are much fewer pattern presentation per pattern and in any way calculating per pattern imposes 

the assumption that the monkeys can tell all patterns apart from each other. The classifier's way 

doesn't make any assumption beyond a features based behavior policy. 

The consistency measure is thus the mean distance from 0.5. or,  

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = G
�
∑ |𝑃(𝑦 = 1|𝑥; �⃗�, 𝛾) − 0.5|d                                                              [Eq 2]  

The chance level for a completely unbiased classifier is 
∑ �r�	Y�.��⋅[

O
�_

�
r��

∑ [O�_
�
r��

= 0.1367 

Across sessions stability 
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Next, we want to check if the monkeys were stable across sessions. Namely, regardless of 

performance, how similar is the features-based behavior at the last quarter of different sessions. Or, 

how similar is the behavior when learning the same rule in different sessions. 

To avoid cross interference between the within-trial variability (the inconsistency that drives 𝑃(𝑦|𝑥) 

in Eq. 1 close to 0.5) and the across-trial variability (The inconsistency that separates the logistic 

classifiers that are fitted to different sessions) we threshold the classifiers, 𝑦(𝑥) = [𝑃(𝑦|𝑥) > 0.5] , and 

for each rule compare all pairs of sessions. Fig.S3b shows the mean (and SE in errorbars) of the 

across session similarity score: 

𝑆b �N =
G

¡¢£t¤¥
∑ G

�
∑ S𝑦z(𝑥) ⋅ 𝑦¦(𝑥) + w1 − 𝑦z(𝑥)x ⋅ [1 − 𝑦¦(𝑥)_Wdz7¦                               [Eq 3] 

where 𝑖, 𝑗 are different sessions of the same rule and 𝑁Zazb` is the number of pairs of sessions with 

the same rule. 

Behavior similarity across rules  

To estimate how similar is the monkeys’ behavior to the rules they learn we repeat the calculation 

in Eq. 3 but replace one of the classifiers (𝑦¦) and subtract 0.5 to shift the mean expected overlap to 

0. The, above chance level, results are presented in Fig.S3c. 

 

Data Analysis – Neural activity 
 

Single-neuron responses 

We expect the learning-relevant cognitive mechanisms to be influenced by both trial-by-trial 

variations, such as changing behavior and stimulus identity, and by slower processes, namely 

learning. Studying the learning related dynamics, we are interested in the single unit neural activity 

that correlates to such inherently variable computational primitives. Namely, we seek a measure of 

the spiking activity that communicates the variations across trials. Accordingly, for every neuron we 

examine the spikes in the 500ms following the stimulus onset and bin them into 5x100ms segments 

to obtain sensitivity to temporal effects in addition to the spike count. The result is a 5-vector of spike 

counts from each trial, 𝑉#⃗ (𝑡 = 1…𝑇) ∈ ℝ� × ℕ. In this representation, the component of largest across-

trials variance is 𝑣∗####⃗ = 𝑎𝑟𝑔 max
‖µ#⃗ ‖.G,µ#⃗ ∈ℝ¶

𝑉𝑎𝑟w𝑉#⃗ ∙ �⃗�x. We then project each 5-dimensional vector on this 

principle component and get a single number from each trial, 𝑟(𝑡) = w𝑉#⃗ (𝑡) − 〈𝑉#⃗ 〉x ∙ 𝑣∗####⃗ . This number 

scores the spiking patterns of the neuron with respect to its most prominent fluctuations or change. 

Importantly, several unrelated processes may contribute to the across-trials variability and in choosing 

the projection, 𝑟(𝑡), as the representation of stimulus neural response, we tune to the largest source 

of variability, regardless of its nature.  

 

Pattern-specific neurons  
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We devised a criterion for exemplar preference based on a neuron’s firing rate in the 500mSec 

after the pattern presentation. We build a table of all responses of the neuron to each of the patterns. 

Next, we compare the sets of responses to each pair of patterns using a rank-sum test for equal 

medians and treat the distribution of responses as different using a threshold at p<0.05.  A neuron is 

pattern-specific if the distribution of responses to only one pattern is different from all the others 

(Fig.S5) 

 
Feature-based representation of the rule and neural responses  

For a pattern, �⃗�, we chose a basis of features that are polynomials of the variables 𝑥G, 𝑥B, 𝑥· that 

take the values ±1. Features, 𝑓z¦¸(𝑥) = 𝑥Gz ⋅ 𝑥B
¦ ⋅ 𝑥·¸ differ in the polynomial degrees (𝑖, 𝑗, 𝑘 = 0,1) and 

satisfy, when averaging across all patterns, 〈𝑓〉 = 0, 〈𝑓B〉 = 1.  

Lemma 1: Different features in this base are statistically independent.  

Proof 1: Let 𝑓G and 𝑓B be features in this set and without losing generality assume that they differ 

in the polynomial degree of 𝑥G s.t. 𝑓B doesn’t contain 𝑥G. Since ∀z, 𝑃(𝑥z = 1) = 0.5 we get that 𝑃(𝑓G =

1|𝑓B) = 𝑃(𝑥G = 1) = 0.5 = 𝑃(𝑓G = 1).  

Lemma 2: Correlation projections factor in this basis  

Proof 2: Let 𝒇 be a vector in features space, 𝒇 = ∑ 𝑎»𝑓»»∈{z,¦,¸} 	such that ∑ 𝑎»B» = 1. This means 

that 〈𝒇〉 = 0 and 〈𝒇B〉 = 1 (because 〈𝑓» ⋅ 𝑓¼〉 = 0, ∀»½¼ ). Which leads to 𝑉𝑎𝑟(𝒇) = 1. So, if 𝑛 is some 

random variable (say, the neural projection) the correlation 𝐶(𝒇, 𝑛) =
〈w𝒇Y𝒇¾x	⋅(OYO¾)〉

¿Àab(𝒇)⋅Àab(O)
=

∑ 𝑎»
〈(�ÁY�Á¾¾¾)	⋅(OYO¾)〉
¿Àab(�Á)⋅Àab(O)

= ∑ 𝑎» ⋅ 𝐶(𝑓», 𝑛)»» . 

This means that if we measure the correlations to the features separately, then the unit vector, 𝒂, 

that maximizes ∑ 𝑎»𝐶(𝑓», 𝑛)»  will give us the preferred feature. Also, if 𝒂 is a rule that we chose in 

advance, e.g. the one being learned, then the projection ∑ 𝑎»𝐶(𝑓», 𝑛)»  is indeed the rule-correlation 

(Fig.3b).  

 
Dynamics of representations 

To study the dynamics of task related neural correlates we divided each session to partially 

overlapping windows (40 trials segments with 4 trials jumps). For each neuron, calculating the 

correlation between its spiking patterns, 𝑟(𝑡), following stimulus onset, and the stimulus features, 

𝑓(�⃗�), (as well as to the correct category and the monkey’s future answer) yields a set of correlation 

coefficients, 𝐶𝐶z(𝑡) = 𝑐𝑜𝑟𝑟 [𝑟(𝜏 ∈ 𝑤F), 𝑓zw�⃗�(𝜏 ∈ 𝑤F)x_, for each regression window 𝑤F . These rolling 

regression coefficients were used to calculate the following measures: 

 

Comparing representation between conditions 
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To judge whether neurons show rule selectivity during a certain segment of the session (Fig.2d) 

we test the fraction of regression windows within that segment, that exhibit significant rule correlation 

(Pearson, p<0.05). This test is done comparatively between sessions of different conditions, and we 

set a criterion of 10% to declare a neuron as showing rule selectivity during the segment. If there are 

more than 5 neurons meeting each condition (2 conditions, e.g. easy and hard rules) we use the 

binomial comparison z statistic, 𝑧 = ZÆÇYZÆv

ÈZÆ(GYZÆ)∙[ ÇrÇ
l Ç
rv
_
 with �̂�G,�̂�B  the measured success rate in two 

populations of sizes 𝑛G, 𝑛B and �̂� = OÇZÆÇYOvZÆv
OÇlOv

. 

 

Comparing rule vs. answer representations 

Since these correlations have a mutual component (the spiking pattern) and interrelate via the 

performance level, we compare with William’s t-statistic for correlated correlations, 𝑡 =

(ËÇvYËÇT)∙[(OY·)∙(GlËvT)/BÍT]
Ç
v

ÈGl(rÎT)∙(ÏÇvÐÏÇT)
v∙(ÇÎÏvT)v

�(rÎÇ)ÑT

, where 𝐶GB is the category correlation, 𝐶G· is the answer correlation, and 𝐶B· 

is the correlation between answers and categories. 𝑛 is the number of trials and 𝐷· is the determinant 

of the sample correlations matrix. The statistic is compared to the t – distribution with 𝑛 − 3 degrees 

of freedom (Fig.2f).  

 

Relating neural representation to behavioral performance 

To relate any regression measure and performance within a group of neurons we take the 

following steps: 

1. For every 40-trials-long regression window we calculate the mean performance. 

2. Given a performance level, we collect all the regression windows with performance within 0.15 of 

that level and calculate the mean and standard error of the measures of interest. 

 

Angle-to-rule and vector-magnitude 

Given a basis of visual features there is a unique spanning of the classification rule in each 

session. For each regression window we define the angle-to-rule as the angle between the vector of 

correlation coefficients to visual features and the vector that represents the rule. Similarly, we define 

the features’ correlation magnitude as the norm (L2) of the correlation coefficients vector.  

When presenting the learning related dependence of these geometrical variables over time, we 

smooth them with 10 percent of the running windows in a session (Fig.3, Fig.4d-g insets) 

 

Session-length standardization 

Several calculations require the comparison or grouping of segments from relative session 

fractions and/or location. To enable this, we standardized the regression measures from each session 
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to a fixed length of 100 bins. This means that all rolling regressions were stretched to the same length, 

because a hundred regression windows would only come from 436 trials in a session. 

 

Cells that reduce angle-to-rule or increase vector-magnitude 

To quantify neurons that decreased angle-to-rule or increased the vector-magnitude (Fig.4d-g), 

we compare regression windows in the first 15%-segment of the sessions to regression windows in 

the last 15%-segment of each session with a 1-tailed t-test. The fractions of cells that passed the test 

are compared with a 1-tailed binomial test.  

 

Fractional change in neural-vector, angle and magnitude 

We calculate the fractional difference from their average baseline values in the initial fraction of 

regression windows (Fig.4). The resulting traces are smoothed with a 10% window and significant 

difference between sessions of easy and hard rules is determined with bootstrapping – shuffling the 

easy/hard label 10,000 times and checking if the correct labeling surpasses the required confidence 

level (95%). 

 

Optimal lags between time series 

Given two time series, e.g. the angle-to-rule of a dACC neuron and the simultaneously-recorded 

vector-magnitude of a Putamen neuron, we find the shift that maximizes their Pearson correlation. 

Only pairs with significant correlation in the optimal lag contribute (as in Fig.4i,j). 

  

Relating the neural-vector to next-day behavior 

To examine if the learning-related change in the neural-vectors indicate a real shift in the monkeys’ 

preferred policy (Fig.4h,i), we tested if the neurons’ preferred feature combination (i.e. their neural-

vector) predicts the monkeys’ behavior early in the following day. For each neuron we averaged the 

neural-vector in the late fraction of the rolling regression windows. Then, as a measure of similarity, 

we calculated the projection of the neural-vector on the subsequent day’s rule. In Fig.4h we calculate 

the Pearson correlations between these neural projections and the mean performance in the early 

fraction of the next day’s session across the neural population. In Fig.4i we repeat the same 

calculation but only take cases in which the rule was changed between the current and next day.    
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Fig.S1. Error probability after making a correct classification. For each rule (x-axis) we plot the 

probability of making an error (y-axis) after choosing correctly in the previous presentation of the same 

pattern. Error bars depict SE (red). The relatively low probability and the strong dependence on the 

specific rule suggests the monkeys did not memorize specific patterns after a successful classification. 

Kruskal-Wallis test across all repetitions and patterns validates the effect of the rule on the occurrence 

of errors after correct classifications (𝝌𝟐(7)=88.97, p < 1e-15). Pairwise binomial z-test shows that all 

the error rates in easier rules are smaller than error rates in harder rules. 
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Fig.S2. Acquisition rates for the salient pattern. The most salient pattern, ‘000’, was labeled ’right’ 

and ’left’ equally in our set of rules (4+4 rules). Shown are the learning curves (colored lines + 

sigmoidal fits), the proportion of correct labeling (y-axis, smoothed across days with a running window 

of 4 presentations) along the pattern presentations (x-axis). The two panels are for the 4 rules in which 

000 is labeled ’left’ (a) and for the 4 it was labeled ’right’ (b). There was variability across rules in how 

this most visually salient pattern was learned, showing that patterns that draw more attention are not 

learned faster or similarly across different rules, and therefore suggesting against simple 

memorization process. Kruskal-Wallis test across all segments of 10 pattern presentations validates 

the effect of the rule on the performance in panels a,b. (p < 1e-4 in all segments). 
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Fig.S3. Behavior consistency. a. The within-session consistency scores (y-axis, methods) for all 

sessions with a single rule (x-axis). The chance level is marked by the magenta line. Statistical 

significance (t-test, p<0.05) of above chance mean is marked by asterisks. b. The between-session 

pairwise consistency score (y-axis, SE in error bars) across sessions with a single rule (x-axis). The 

chance level is marked by the magenta line. c. The classifier, fitted to the last ¼ of each session in 

which a certain rule was taught (x-axis), is compared to the set of rules (y-axis, methods). The color 

scale is from the chance level (CL) to the maximal possible value (0.5). 

Please see methods for full description of the measures   
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Fig.S4. Robustness of rule-representation in single-units. Similar presentation to Fig.2d: The 

fractions of neurons that exhibited significant rule correlation during the last third of the session (bars, 

y-axis. SE in error-bars) are plotted for the 3 regions (x-axis). Apart from grouping both monkeys (top) 

we also separate to neurons from monkey G (middle) and D (bottom). a. Separating sessions by the 

rule-group. Easy rules in light green and hard rules in dark green. b. Separating sessions by 

performance in each session separately (i.e. independent of the rule). Significant differences by 

binomial test (*=p<0.05, **=p<0.1). 
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Fig.S5. Pattern selective neurons. The percent of neurons that were selective for a single pattern 

(bars, y-axis) is plotted for all patterns (x-axis). a. monkey G. b. monkey D. Gray bars indicate the 

percent of rule correlated neurons.  
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Fig.S6. Examples of learning related neural dynamics. Same format as in Fig.3, showing neurons 

with stable feature selectivity, high dimensional rotation, magnitude stretching, and complex 

trajectories.  
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Fig.S7. Significant correlations between geometric neural correlates and learning curves 
partially overlap. a. Enumeration of the significant (Pearson, p<0.05) correlations to all variable 

combinations in the different regions (x-axis). The colored bars show the fraction of units with 

significant correlations between the learning curve and both angle-to-rule and correlations vector-

magnitudes (yellow), only angle-to-rule (purple), or only vector-magnitudes (turquoise). b. For each 

neuron we compare the magnitude correlation (y-axis) to the angle-to-rule correlation (x-axis). Color-

coding as in panel (a). 
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Fig.S8. Optimal lags between neural-vector properties (magnitude and angle) between dACC 
and Striatal pairs. 
For all simultaneously recorded pairs, we computed the optimal lag between the vector-magnitude 

and the angle-to-rule, for all four possible combinations. Only lags between vector-magnitude in 

Putamen neurons and angle-to-rule in dACC neurons were significantly different than zero (top-

right, also shown in main Fig.4i,j) with the Putamen magnitude following dACC rotation (p<0.004, t-

test; Mean lag -0.7±0.24 regression steps; all other comparisons were not different than zero, p>0.1 

for all, t-tests). 
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