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Abstract  
 
Primates can quickly and advantageously adopt new behaviors based on changing stimuli 

relationships. We studied acquisition of a classification task while recording single neurons in the 

dorsal-anterior-cingulate-cortex (dACC) and the Striatum. Monkeys performed trial-by-trial 

classification on a rich set of multi-cue patterns, allowing de-novo learning every few days. To 

examine neural dynamics during the learning itself, we represent each rule with a spanning set of the 

space formed by the stimuli features. Because neural preference can be expressed by feature 

combinations, we can track neural dynamics in geometrical terms in this space, allowing a compact 

description of neural trajectories by observing changes in either vector-magnitude and/or angle-to-

rule. We find that a large fraction of cells in both regions follow the behavior during learning. Neurons 

in the dACC mainly rotate towards the policy, suggesting an increase in selectivity that approximates 

the rule; whereas in the Putamen we also find a prominent magnitude increase, suggesting 

strengthening of confidence. Additionally, magnitude increases in the striatum followed rotation in the 

dACC. Finally, the neural representation at the end of the session predicted next-day behavior. The 

use of this novel framework enables tracking of neural dynamics during learning and suggests 

differential yet complementing roles for these brain regions. 
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Introduction 

Learning to classify multi-cue stimuli in order to produce the correct action is an adaptive flexible 

behavior required from animals on a daily basis. Accordingly, such tasks are commonly used to 

explore learning strategies in humans (Gluck et al., 2002; Goodman et al., 2008; Lagnado et al., 2006; 

Nosofsky et al., 1992; Shepard et al., 1961), as well as clinical implications (Meeter et al., 2008; 

Shohamy et al., 2008; Speekenbrink et al., 2010; Stuss et al., 2000). Recent studies have shown that 

performance depends on complexity (Feldman, 2000) and can be predicted using models that rely on 

high-order features of the stimulus with individual priors (Cohen and Schneidman, 2013). Studies of 

rule-based classification in monkeys have ascribed a major and complementary role to the striatum 

and regions of the prefrontal-cortex (PFC) (Balleine et al., 2007; Seger and Miller, 2010). In paradigms 

that impose category boundaries on multiple stimuli, individual neurons in the PFC exhibit category 

preference to the different classes (Cromer et al., 2010; Freedman and Assad, 2016; Freedman et 

al., 2003; Gold and Shadlen, 2007; Histed et al., 2009; Kim and Shadlen, 1999; Muhammad et al., 

2006; Wallis et al., 2001).  

Within the PFC, the anterior-cingulate-cortex (dACC) widely projects to striatal regions (Averbeck 

et al., 2014; Heilbronner et al., 2016; Ongur and Price, 2000), and is involved in several cognitive 

functions that contribute to the learning process itself beyond the final representation of the rule. 

Neurons in the dACC represent attention, reflect actions that lead to reward, signal outcome of 

previous trials, and form and integrate representations of task structure (Chudasama et al., 2012; 

Haroush and Williams, 2015; Hayden and Platt, 2010; Heilbronner and Hayden, 2016; Kolling et al., 

2016; Lee et al., 2007; Mansouri et al., 2009; Rudebeck et al., 2008; Rushworth and Behrens, 2008; 

Saez et al., 2015; Seo and Lee, 2007; Seo and Lee, 2009; Wallis and Kennerley, 2011). The striatum 

in turn, receives wide projections from the dACC and plays a role in choosing actions and supplies 

reinforcement signals which can help to establish a strategy during learning (Averbeck and Costa, 

2017; Graybiel and Grafton, 2015; Jin and Costa, 2015; Kim and Hikosaka, 2013; Lau and Glimcher, 

2008; Merchant et al., 1997; Seger, 2008; Seo et al., 2012; Williams and Eskandar, 2006).  

Less is known about how single neurons form representations as learning progresses and 

gradually becomes relevant to the final classification being imposed. This is mainly because most 

studies follow extensive training and the neural correlates relate more to the final representation, 

perception, and recognition, and less to the gradual learning process. Classically, rule-based 

classification can take several forms(Seger and Miller, 2010), and seminal studies used few governing 

principles where the animals learn to assign different outcome probability or value (Padoa-Schioppa 

and Assad, 2006; Yang and Shadlen, 2007), acquire arbitrary stimulus-motor associations (Brasted 

and Wise, 2004; Buch et al., 2006; Mitz et al., 1991), or switch contingencies between the rules 

(Buckley et al., 2009; Wallis et al., 2001).  
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Here, we examine neural dynamics in the dACC and the striatum during learning of several de-

novo classification tasks. To do so, we trained two monkeys (macaca fascicularis) to perform trial-by-

trial classification learning based on visual patterns composed of ‘bits’ of black and white squares. 

Each session required to learn a classification rule on patterns of N=3 bits. Patterns were presented 

in a pseudo-random non-biasing order (Fig.1A, Methods). Out of the 256 (2^2^3) possible rules, we 

chose seven rules in which the correct label was determined according to either single, pairwise, or 

triple-wise dependencies between the bits in the pattern (Fig.1B). These rules are unbiased, namely 

equally partition the set of 8 patterns; and are independent of each other, namely learning a rule 

results in chance performance for all other rules. Additionally, we included the majority rule (also 

unbiased, Fig.1B). We repeated this set of eight rules after >4 weeks to obtain enough neurons 

recorded per rule. The monkeys did not experience any of them prior to recordings.  

 
Results 
 
Learning classification rules 

 

Both monkeys exhibited within-session learning (Fig.1C), continuous performance improvement 

in longer sessions (Fig.1D, Pearson r(118)=0.49(0.34,0.61), p<1e-8), as well as next-day retention 

(Fig.1E, Pearson r(70)=0.58(0.4,0.71), p<1e-3). As expected from learning eight different rules that 

change every few days but use similar visual cues, neither of the monkeys showed retention benefit 

over the month between rule repetitions (Fig.1F, Pearson r(28)=0.28(-0.08,0.58), p=0.12). Despite 

the hard task, both monkeys achieved learning of all rules in some sessions yet with different levels 

of accuracy that range across sessions and rules (Binomial tests, Fig.1G, Fig. S1), and with 

differences in overall performance as reflected also in learning of 2-bit and 4-bit rules (Fig.1H). These 

results are highly similar to the behavior of human subjects that exhibited similar behavioral variability 

across individuals, rules, and sessions(Cohen and Schneidman, 2013). 

In pure stimulus-response associative learning, the correct response for each stimulus is acquired 

independently of other stimuli and independently of the general rule. Conversely, we found that 

pattern-specific error-rates following correct classification show strong dependence on the specific 

rule (Fig.S2, Kruskal-Wallis test,𝜒!(7,366) = 89, p < 1e-15), and interacted with performance on other 

patterns (Fig S3, Kruskal-Wallis test ,𝜒(7,440)! > 88, p < 1e-10). Moreover, even the stimulus-

response learning of the more salient patterns showed variability across rules and strong dependence 

on the specific rule (Fig.S4, Kruskal-Wallis test, 	24 < 𝜒!(3,36) < 33 , p < 1e-4). The rule-based 

learning was further supported by consistency across learning of different rules (Fig.S5), by the ability 

to learn 4-bit rules (Fig.1h, 16 patterns, 65536 possible rules, in one animal). Finally, we observed 

performance deterioration in pattern-specific associations following rule switch that do not require 

relearning those specific associations (Fig. S6), and that simple performance based strategy (win-
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stay, lose-switch) poorly describes answer sequences (Fig. S7, Wilcoxon’s signed rank test, p < 1e-

15). Overall, this evidence suggests that monkeys did not use only simple memorization of arbitrary 

stimulus-response associations, although it can still contribute to rule-learning here.  

We conclude that both monkeys learned in a significant number of sessions with some rules being 

easier to learn than others. The complexity and richness lead to reasonable error rates and reflect a 

more natural success rate, compared to over-trained animals, and therefore allows comparison of 

neural responses from successful learning to unsuccessful trials, rules and sessions.  

 

Single neurons represent the classification rule 

 

To examine and compare neural responses, we recorded single-units during learning of all 3-bit 

rules in the dACC (Brodmann area 24), Caudate and Putamen (Fig.2A,B, 543,115,114 neurons 

recorded in dACC, Caudate, and Putamen in 3-bit rule sessions). We divided the sessions into easy 

and hard rules based on the average success rate (Fig.1G). We first identified neurons that changed 

their post-stimulus spiking pattern to differentiate between the two category labels (category-specific, 

Fig.2C, left and middle), whereas other stimulus-responsive neurons maintained no category 

preference (stimulus-specific, Fig.2C, right). Overall, both the dACC and the Putamen had 

significantly more category-specific neurons during the late phase of sessions of easy rules compared 

to hard rules (Fig.2D, dACC: 21% vs. 12.5%, Pu: 22% vs 8% for easy vs. hard, binomial comparison 

z-test, dACC: z=2.43, p<0.01, Pu: z=2.12, p<0.02). The same was obtained when dividing sessions 

into high and low performance independent of the specific rule, namely session-based performance 

rather than rule-based performance (Fig. S8, dACC: z=2.046, p<0.021, Pu: z=1.79, p<0.04), and this 

was the case in each monkey separately (Fig.S8). Moreover, there was a monotonic relation between 

instantaneous performance and the proportion of neurons showing correct classification (Fig.2E). 

Since the category label and the actual choice are correlated during correct performance, we used 

the occurrence of error trials to distinguish them and compared the correlation between neurons’ 

activity and the correct category to the correlation with the actual choice over trials (Fig.2F, William’s 

test). In sessions of easy rules, more neurons developed category correlations in the dACC and 

Putamen, whereas significantly more neurons developed actual-choice correlations in the Caudate 

(binomial comparison z-test, dACC: z = 2.88, p<0.003, Cd: z=1.72, p<0.05, Pu: z=2, p<0.03). Finally, 

in accordance with the aforementioned behavioral findings (Fig.S1-7), even under lenient conditions, 

only very few neurons (3%, p>0.1, Binomial tests) exhibited activity that can be attributed to 

memorizing of a specific stimulus-response, and moreover, most of these neurons were selective and 

sensory-specific to the all-black or all-white patterns (36/40, Fig. S9).  

Together, these findings suggest that the modulation of single neuron activity in the recorded 

regions reflect different roles during learning. Whereas the dACC and Putamen reflect more the 
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learned classification, the Caudate reflect more the actual choice. We therefore focus in the following 

analyses on the dACC and the Putamen.   

 

A geometric representation to track neural dynamics during learning 

 

We next examine how the modulation of neural activity occurs dynamically and continuously 

during the learning process itself. To track representations during acquisition, we note that each 

pattern can be represented by its visual features (Fig.3A), and if we choose a complete set of 

statistically independent binary functions as features (a minimal spanning basis), we can describe 

any rule as a weighted combination of these features. In other words, each rule is a vector in this 

feature space. This choice of the basis also guarantees that a neuron’s selectivity is defined by the 

correlation between its activity and the features (neural-vector). In turn, this allows the use of rolling 

regression to identify the neuron’s dynamic preference, depicted by the trajectory of its neural-vector 

in this space (Fig. S10, Fig.3B).  

Importantly, because the neural-vector is described in terms of movement in features’ space and 

its relation to the rule-vector that varies in different sessions, this geometric framework allows 

comparing neural dynamics across sessions of different rules. Specifically, the projection of the 

neural-vector onto the rule-vector is equivalent to the correlation between neural activity and the 

categories determined by the rule (see methods). To increase its category representation, a neuron 

can employ two distinct processes that contribute to a higher agreement (projection) between the 

neural-vector and the rule-vector: increasing vector magnitude (Fig.3B, left) – reflecting a confidence 

strengthening (being ‘louder’), or by rotating towards the direction of the rule-vector (Fig.3B, right) - 

reflecting a policy change. We note that choosing any other representation, by another feature space, 

can be expressed as a weighted combination of the feature basis, and so our findings do not depend 

on the specific set of features we used. 

 Representing the high-dimensional trajectories in the feature-space (7-d) by changes in angle-

to-rule and vector-magnitude reveals several types of single-neuron dynamics. Whereas some 

neurons remained selective to a feature regardless of the performance improvement (Fig.3C), other 

neurons rotated towards the correct rule during learning (Fig.3D. Fig. S11), and yet other neurons 

increased their vector magnitude and developed feature selectivity but with no relationship to the 

correct rule (Fig.3E). Interestingly but somewhat expected, many neurons performed a more complex 

path and their trajectories involved changes in several features in parallel (rotation and magnitude, 

Fig.3F, Fig. S12). The geometric representation allows interpretation for these complex paths as well 

– such as rotation in the orthogonal subspace (‘Category ⊥’, e.g. Fig.3F), and magnitude increases 

in building preference to a combination of several features, that eventually leads to significant 

agreement with the rule-vector (see Fig.S12 for further examples). 
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Neural trajectories closely match behavior 

 

Next, we asked if this neural representation agrees with the behavioral changes in individual 

sessions. We computed the correlation between the behavioral performance and the neural-vector, 

separately for angle and magnitude.  There was a large and significant proportion of neurons in both 

regions for which changes in angle-to-rule were correlated with the behavior (Fig.4A, 32% of the 

dACC neurons and 37% of the Putamen neurons, Pearson, p<0.01). Similarly, a significant proportion 

of neurons changed their vector-magnitude in correlation with performance (Fig.4B, 19% of the dACC 

neurons and 18% of the Putamen neurons, Pearson, p<0.01). These populations intersect such that 

many neurons with vector-magnitude changes also exhibit angle-to-rule changes (Fig. S13).  

We tested for the possibility of a temporal lag between the neural dynamics and the behavior. In 

all cases, for both regions and for both magnitude and angle changes, neurons were equally 

distributed between preceding change in behavior and slightly following it (Fig.4A,B, right-insets, 

means not different than zero, p>0.1 for all, Wilcoxon’s signed rank tests). Importantly, because 

neurons were recorded simultaneously in both regions, we could test if there is a lag in canges of 

either angle or magnitude between pairs of neurons recorded from the dACC and Putamen within the 

same session. This revealed a wide distribution (Fig.4C), but without a specific directional lag (p>0.1 

for all, Wilcoxon’s signed rank tests), suggesting that information is being shared in both directions 

with both short lags (within the same trial) but also longer ones (over few trials). This is in close 

agreement with previous findings of information transfer in corticostriatal loops during learning. 

 

Representations of confidence and policy across regions 

 

The similar temporal dynamics between neural trajectories and behavior allows relating the neural 

representations to the different components of learning: increasing vector magnitude reflecting a 

confidence increase, and rotating the vector towards the rule reflecting a policy change. We find that 

in easy rules, more neurons rotated towards the rule (diminished their angle-to-rule), in both the dACC 

and the Putamen (Fig.4D,E, binomial z-test comparing easy to hard rules, dACC: 40% vs 25.5%, 

Putamen: 49% vs 34%, dACC: z=3.32, p<0.001, Pu: z=1.68, p<0.05). This rotation gradually 

progressed along the session as performance improved (Fig.4D,E– right panels, Fig. S14).  

However, a qualitative difference between the dACC and Putamen is revealed when examining 

vector-magnitude changes. In the dACC, there was no difference in the number of neurons with 

vector-magnitude changes between easy and hard rules (Fig.4F, binomial z-test. dACC: 38% vs 34%, 

p>0.1). In contrast, in the Putamen, significantly more neurons increased their vector-magnitude in 

easy rules (Fig.4G, binomial z-test. Putamen: 47% vs 31%,z=1.82, p<0.04). These changes became 

much more prominent towards the end of the session, suggesting strengthening (confidence) of the 

policy that developed earlier (compare Fig.4D,E, right-panels to Fig.4G, right-panels; results remain 
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similar when re-labelling the Majority rule as easy for monkey-G and hard for Monkey-D, since it is 

the only rule on which the monkeys’ behavior did not completely agree, Fig. S15).  

In contrast to the angle and magnitude, both the dACC and Putamen similarly represented the 

actual-choice in easy compared to hard rules (Fig.S16E,F), reinforcing the above findings that the 

dynamics represent learning. As validation and in agreement with Fig. 2F, Caudate neurons 

represented the actual-choice differentially in easy rules (Fig.S16D), but not for angle-to-rule and 

vector-magnitude (Fig.S16A-C)      

Together, these findings suggest that both the Putamen and dACC reflect a process of policy 

search for the correct rule, but mainly the Putamen reflects strengthening and confidence gain that 

accompanies successful learning.  

 

Differential dynamics across regions 

 

To examine more closely if the changes in neural properties relate to behavioral performance, 

we examined the correlation between the learning curve and the change in angle-to-rule, namely the 

change in subsequent windows (rather than the overall angle-to-rule as in Fig.4A). We then compared 

the proportion of neurons that showed significant correlations in easy vs. hard rules and found that 

more neurons showed a change in angle-to-rule that followed behavioral changes in easy than in 

hard rules. This was so in both the striatum and the dACC when we computed the correlation with a 

lag of 4 trials (Fig.4H, binomial z-test. dACC: z=2.24, p<0.02, Pu: z=2.03, p<0.03), and diminished 

when the lag was higher (8 trials, Fig.4H top-right) or with zero lag (Fig.4H top-left). There was no 

difference when the lag was negative, namely when neural change precedes behavioral change. This 

suggests that when a search for answers succeeds or fails beyond average, it is followed by a neural 

-vector rotation towards the rule. The fact that the rotation was directed towards the daily rule indicates 

that it is not reward alone but instead due to success/failure. 

We exploited the simultaneous recordings to test if the two properties, magnitude and rotation, 

have differential dynamics between regions. We took the vector-magnitude and the rotation-to-rule 

for each neuron and computed the optimal lag (as in Fig.4C) between the two properties for all 

simultaneously recorded neurons. Only the lags between vector-magnitude in Putamen and angle-

to-rule in dACC was biased, with the Putamen magnitude following dACC rotation (Fig.4I, Wilcoxon’s 

signed-rank test, z=-2.81, p<0.005; mean lag -2.8±0.96 trials; Fig.S17, all other comparisons were 

not different than zero, p>0.1 for all, Wilcoxon’s signed-rank tests). This was driven mainly by neural 

pairs recorded during easy rules (Fig.4J, Wilcoxon’s signed-rank test, z=-2.64,  p<0.01, Mean lag -

3.56±1.36 trials). 
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Together, the results suggest that once a strip of successful responses occur, the neural-vector 

in both regions rotate towards the rule, and the rotation in the dACC is followed by magnitude 

extension in the striatum, likely strengthening the new policy. 

 

Neural vectors predict next-day (overnight) behavior  

 

If the neural trajectories indeed reflect learning and changes in behavioral policy during a session, 

then the neural-vector at the end of a session represents the acquired policy and might predict early 

performance in the next-day daily session (a putative overnight retention process). 

To examine this, we projected each neuron’s neural-vector at the end of a session onto the rule-

vector of the following day, and computed the correlation between these projections and the early 

next-day’s performance. In Putamen neurons, neural-vectors predicted next-day success rates 

(Fig.4K, Pearson’s r(99) = 0.24 (0.05,0.42), p<0.015; (as control, we reversed the days and found no 

correlation). Namely, the closer the neural-vector at the end of the day to the next-day rule, the better 

is the initial performance.  

We further tested if these neural priors could also bias learning of new rules in sessions when the 

next-day rule change. We repeated this analysis only for pairs of days when the rule changed in the 

second day, and again found a significant correlation for Putamen neurons (Fig.4L, Pearson’s r(39) 

= 0.35 (0.05,0.59) , p<0.025; no correlation when reversing days as control). In other words, the closer 

the neural-vector at the end of a day to the rule-vector of the next day, the better will be the animal 

initial performance.  

Together, these findings further strengthen the link between the neural geometric representation 

and the behavior, establish that the neural projection is a valid representation for the learned rule, 

and further demonstrate that it can bias future behavior. 

 

 
Discussion 
 

We recorded and analyzed dynamic changes in neural representation while monkeys learned to 

classify multi-cue patterns based on a rich set of potential rules. In these natural conditions of varying 

eight different rules, the animals’ performance varied across sessions and rule types as previously 

shown in humans (Cohen and Schneidman, 2013). Nevertheless, we find that neurons in both the 

striatum and the dACC change their firing pattern to eventually represent the learned rule. To address 

the main challenge of characterizing single-unit dynamics during de-novo learning of rules, we 

developed an approach that represents each rule in the space formed by a set of features. Because 

this set of features is a minimal spanning basis, other cartesian coordinates that allow a vector 

representation are equivalent to it, making the findings generalizable and independent of the specific 
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chosen features. We could therefore represent each neuron activity by two universal traits – its angle 

to the rule direction and its magnitude. These two measures have a natural interpretation, the rotating 

angle reflects learning-related policy or strategy changes, and the magnitude increase reflect 

strengthening or neural confidence (we do not claim a direct link to cognitive confidence). We suggest 

this has the benefit of denoting via these two geometric traits all rules that can be formalized by any 

high-dimensional stimuli space, and hence compare the dynamics of learning across tasks and rules. 

Using this framework, we found that in both regions there is a large number of neurons that were 

dynamically synchronized with the behavior, either in their angle or in their magnitude. This suggests 

that this neural representation indeed captures the learning process (Brasted and Wise, 2004) and 

reorganizes to adapt to the new conditions (Golub et al., 2018). The representation revealed a 

dissociation in functionality: neurons in the dACC rotated to decrease their angle-to-rule, namely 

changed their strategy; whereas neurons in the Putamen changed their activity to reflect both strategy 

and confidence, by magnitude-increase of the neural-vector that likely reflects strengthening and 

reinforcement of the correct strategy (Graybiel and Grafton, 2015). In line with this interpretation and 

the role of the striatum in reinforcement, we find that rotation changes in the dACC were followed by 

magnitude extensions in the striatum, and even more so in successful learning.  

In addition, apart from representations of the learned rule, we could also identify neurons with 

stable or changing correlations in the subspace of the features (Chen et al., 2001; Genovesio et al., 

2005; Sadtler et al., 2014). Interestingly, such changes were observed during both successful and 

unsuccessful learning. Although the exact role of these neurons is yet to be determined, they likely 

reflect a trial-and-error search or retention of previously learned rules. This means that even if some 

tasks are not learned successfully, some neurons still approximate the rule during the learning, yet at 

the end the overall population does not. 

In contrast to the Putamen and the dACC, Caudate neurons showed stronger reflection of the 

monkeys’ instantaneous actual-choice. Because in visuomotor associations the dorsal striatum 

represents actions’ value (Lau and Glimcher, 2008) and follows the choice representation in lateral 

PFC (Seo et al., 2012), yet the role of lateral PFC in category learning and generalization is still under 

debate (Minamimoto et al., 2010); our observations can support the notion that in rule learning 

Caudate activity reflects value-based action selection (Desrochers et al., 2015; Kim and Hikosaka, 

2013; Williams and Eskandar, 2006; Yanike and Ferrera, 2014). Finally, neurons in the Putamen were 

related to overnight retention, and their representation at the end of a day predicted next-day behavior. 

Because we imposed a complex-hard task and learning usually continued over few sessions, this 

demonstrates that the striatum represents the policy that is used for retention, either within the 

striatum or by transfer to other regions (e.g. as in consolidation processes). This suggestion is in line 

with studies showing that the striatum maintains intermediate representations, potentially via 

sustained activity (Deffains et al., 2016), to allow learning that combines reinforcement and memory 

under spaced conditions(Doll et al., 2015; Wimmer et al., 2018).  
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Our results can further suggest how abnormalities in the cingulate-striatal network can result in 

maladaptive learning processes that lead to applying incorrect rules, and in extreme cases lead to 

psychopathologies(Averbeck and Chafee, 2016; Hyman et al., 2006; Lee, 2013; Salzman and Fusi, 

2010). Overall, we present here a new computational framework to examine dynamics of neural 

changes, and suggest complementing roles for the dACC and Striatum in learning and retention of 

classification rules.  
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Figure 1. Monkeys learn classifications with varying complexity.  

A. Behavioral paradigm: pressing and holding the middle button initiates a new trial. After the pattern 

appears on the screen the monkey has 30s to classify it with the left or the right button. A fluid reward 

follows a correct choice and a short timeout after an incorrect choice. 

B. A scheme of the rule-based classification. Shown are: one-bit-rule ’1’ (i.e. decision is based only 

on the identity of the first bit), two-bit-rule ‘12’ (decision is based on a XOR of bits ‘1’ and ‘2’), and the 

Majority-rule (decision is based on summing bits). In each panel the two categories are represented 

by full and empty circles in the space defined by the individual bits.  
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C. Learning curves. Shown are individual learning curves from 3 example days each with a different 

rule (monkey G – two left examples, monkey D – right example). The curves are shown next to the 

underlying truth table of the rule where patterns are stacked by category.  

D. Continuous longer learning within-session is beneficial. Shown is the location within the session of 

the maximum performance plotted against the maximum performance (best 30 consecutive trials), for 

all sessions. 

E. Overnight retention. Shown are two examples of learning curves in consecutive days with vertical 

lines separating the sessions. Over all sessions, there was a significant correlation between 

performance at the end of a session and performance at the beginning of the subsequent session 

with the same rule (monkey D: light blue, r=0.48, p<0.001; monkey G: dark blue, r=0.61, p<0.001; 

Both: r=0.48, p<0.001). 

F. No retention between rule repetitions with >4 weeks separation. The use of eight different rules 

that use the same cues/stimuli over 4-5 weeks means it is virtually impossible to memorize the 

different rules. Shown are two examples of three sessions (scales of gray) that repeated the same 

rule but with >4 weeks between repetitions. Over all sessions, there was no relationship between 

performance at the end of learning a rule and performance at the beginning of next repetition of the 

same rule (monkey D: light blue, r=0.23, p>0.5; monkey G: dark blue, r=0.21, p>0.3; Both: r=0.12, 

p>0.2).  

G. Performance in all 3-bit rules, average performance in the last quarter of each session for all rules 

and all sessions, for both monkeys (D: light blue; G: dark blue). In addition, for each rule, shown is 

the mean and SE averaged over animals and sessions, and classified into ‘easy’ and ‘hard’ rules (in 

‘easy’ rules performance is significantly above chance-level on average). Inset show maximal 

performance in each rule comparing the monkeys. Truth tables for all rules are shown below. 

H. Performance in 2-bit and in 4-bit rules (neural activity was recorded only during 3-bit rules). 
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Figure 2.  Neurons represent learning of classification.  

A. Recording locations projected on a coronal MRI section. Recording locations span ~12mm in the 

anterior-posterior axis (hence some locations seem to be outside the regions of interest). Red 

marks borderline of the dACC, Yellow for Caudate and cyan for Putamen.  

B. 3-D reconstruction of all recording locations. Gray plane is the midline, anterior-posterior zero is 

at the anterior-commissure and depth is measured from the dura surface.  

C. Rule-learning in neurons. Spiking patterns are divided by the category label (orange and black 

rasters and PSTHs). Spike times are aligned to the stimulus onset (dashed line). The order of trials 

is top to bottom. Trials are divided into the first half (upper row) and second half (bottom row) of the 
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sessions. The two left neurons differentiated between categories in the second half significantly 

more than in the first half, whereas the right neuron did not learn to differentiate categories. 

D. Fraction of single-units whose firing correlated with the rule at the end of learning (Mean and 

SE). Sessions are divided according to easy vs. hard rules, with more neurons signaling correct 

classification in easy rules in the dACC and the Putamen (p<0.05 for both, binomial tests).  

E. Instantaneous performance parallels neural-based categorization. The fraction of neural 

segments with significant category correlation increases with the mean performance (calculated by 

rolling regression windows of 40 trials in steps of 4 trials). 

F. Proportion of neurons with stronger correlation to the rule (bottom) and with stronger correlation 

to the actual choice (top), over both successful and error trials (William’s test), and comparing easy 

vs. hard rules. The dACC and the Putamen are significantly correlated more with the rule and not 

with the actual choice, whereas caudate neurons are significantly correlated with the choice only 

and not with the rule (significant comparisons are p<0.05, binomial tests).  
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Figure 3.  A geometrical representation reveals single-neuron dynamics during learning. 

A. The 7 features that form a linear basis (minimal and spanning) for the space in which all 3-bit 

rules reside. Shown is an example for the representation of the pattern 𝒙33⃗ =non= (−𝟏, 𝟏,−𝟏) by its 
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parity features of: first order, {𝒙𝒊}𝒊#𝟏𝟑 , second order, 9𝑿𝑶𝑹𝒊𝒋 = 𝒙𝒊 ∙ 𝒙𝒋>𝒊'𝒋#𝟏
𝟑 , and third order, 𝑷𝟏𝟐𝟑 =

𝒙𝟏 ∙ 𝒙𝟐 ∙ 𝒙𝟑 and the representation of the majority rule as a combination of these features. 

B. A schematic demonstrating that in this feature space, the change in a neuron’s response 

modulate its projection on the vector that represents the rule (the black arrow). An increase in the 

projection can result from two processes: a trajectory change that increases the neural-vector 

magnitude (left) or neural-vector rotation towards the direction of the rule-vector (right), or of course 

both. The trajectory is color coded for time and red curves depict its projections on the axes. Insets 

separate the dynamics of vector-magnitude (top) and angle-to-rule (bottom). For presentation 

purposes only, the neural trajectory is plotted in the space of the three main principle axes (PCA), 

yet for all analyses the neural-vectors were computed in the full 7D space. 

C-F. Examples of single-neuron neural-vector dynamics. Each row is a neuron and shows, from left 

to right:  

1. Rasters aligned to stimulus onset with trials advancing from top to bottom and divided by the sign 

of the preferred feature at the second half of the session. PSTHs for the top raster (orange) and for 

the bottom one (black).  

2. Top: the behavioral learning curve (20 trials running average). Bottom: the regression correlation 

coefficients (blue-red color-bar) for each feature in the basis (y-axis) along all trials (x-axis). Red 

arrow marks the feature that defined the correct label in the specific session.   

3. The norm projections of correlation vectors (red) on the category (x-axis) and its orthogonal 

subspace (Category ⊥, z-axis) over time (y-axis). The blue surface connects (0,0) to the smoothed 

dynamics to visualize rotation and extension.  

4. The correlations’ vector magnitude (top) and angle to category (bottom) plotted over time. Red: 

raw data. Blue: smoothed data.  

5. The high dimensional (7D) neural trajectory projected on the three main principle axes (PCA) and 

curve fitted, color-coded for time progress in the session (light à dark blue). The black arrow is the 

rule vector in that session and the red curves are the projections of the trajectory on the axes 

(principal components). 

C. A neuron that does not change its selectivity during learning 

D. A neuron that rotates towards the correct category by learning the right feature 

E. A neuron that extends its vector towards a ‘wrong’ feature. 

F. A neuron that exhibits a complex relationship of vector extension and rotation.  
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Figure 4.  Neural dynamics match learning behavior and varies across regions. 

A. Change in angle-to-rule (𝐜𝐨𝐬(∠𝑹𝒖𝒍𝒆)) during a session overlaid with the performance behavior 

(black), showing a highly similar temporal pattern. Three dACC neurons (upper row, red) and three 

Putamen neurons (lower row, cyan), all with significant correlation between neural dynamics and 
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performance (p<0.01 for all, Pearson).  

Right panels show histograms of correlation coefficients for all neurons, with shaded area mark 

neurons exhibiting significant correlations at p<0.01. Both regions contained a highly significant 

number of neurons with dynamics similar to behavior (p<0.01 for both, 𝜒!). Insets show the 

distribution of trial lags between neural dynamics and behavior, with the mean lag not different than 

zero (p>0.1, t-tests). 

B. Same as in (a) for dynamics in vector magnitude (|𝑪𝑪|). 

C. The distribution of trial lags between neural dynamics of dACC neurons and of Putamen 

neurons, for all simultaneously recorded pairs in both regions (p>0.1 for all, t-tests). Shown are the 

neural lags when taking into account only angle (upper), magnitude (middle), and combined 

projection on the rule-vector (bottom). 

D,E. Proportion of neurons that significantly decreased their angle-to-rule during the session was 

different in easy rules vs. hard rules in both the dACC (d) and the Putamen (e) (p<0.05 in both, 

binomial z-test). Right panels show the population-average angle change (bottom, SE in shaded 

color) and the normalized cumulative change (top). Sessions were time-warped for averaging. Gray 

bars indicate significant difference between easy and hard rules (p<0.05, bootstrap).  

F,G. Same as in (d,e) for change in vector magnitude. However, in contrast to rotation in the both 

regions, only the Putamen showed significant increase in the vector-magnitude in easy vs. hard 

rules. 

H. Local shifts in angle-to-rule follow the behavior in more neurons when comparing easy to hard 

rules in both regions, but only in a lag of 4 trials (main panel) and not in zero or 8 trials lag (top 

insets). 

I. Distribution of optimal lags for all simultaneously recorded pairs of neurons, between change in 

vector magnitude of the putamen neuron and angle-to-rule of the dACC neuron. The mean is 

significantly below zero, indicating that changes in angle in dACC neurons preceded changes in 

magnitude in Putamen neurons. All other combinations were not significant (Fig.S8). 

J. Same as in (I) but separately for easy and hard rules.  

K. Neural projection at the end of a session predicts next day performance. The projection of each 

Putamen neuron’s activity at the end of the session (neural-vector) onto the next-day rule (rule-

vector), against the mean performance in the beginning of the next-day session (the neural-vector is 

averaged over the last 25% of the session and performance is averaged over the first 25% of the 

next day session), showing a positive correlation (r=0.24, p<0.02, black regression line). 

L. Similar to (K) but when the rule changed overnight, and the neural-vector at the end of the 

session is projected onto the next-day rule, showing a positive correlation (r=0.35, p<0.03) 
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Methods 

 

All surgical and experimental procedures were approved and conducted in accordance with the 

regulations of the Weizmann Institute Animal Care and Use Committee, following National Institutes 

of Health regulations and with accreditation from the Association for Assessment and Accreditation 

of Laboratory Animal Care International. 

Animal training 
Two male monkeys (Monkeys G and D, macaca fascicularis, 4-6kg) participated in the 

experiment. Before data collection, each monkey went through a training phase that acquainted it 

with all the task components and their sequence in a learning session. Both monkeys were trained 

similarly. They first learned rules with 2-bit patterns to understand the concept of the task. Then, 

immediately before the surgery, they experienced three rules with 3-bit patterns so that they would 

not be surprised when they see 3-bits for the first time during recordings. Importantly, these were 3 

different rules than the 8 rules tested during recordings and shown in the manuscript (there are 256 

possible for assigning 8 patterns into 2 categories). Other than that, no training was done. Therefore, 

in the recording sessions the monkeys were familiar with the concept of patterns and classification 

(Fig.1A). However, the monkeys did not experience any of the rules reported in this manuscript before 

the electrophysiological recordings began.  

Experiment sessions 

 The monkeys learned to classify binary patterns of N=3 squares. In each session, the entire set 

of 2N possible patterns was presented. The order of patterns was generated by concatenating full sets 

of randomly ordered 2N patterns. This process ensured that all patterns appear with the same 

temporal frequency and that no choice of behavioral rule, apart from the correct one, is beneficial in 

large portions of the session. For compactness we refer to the rules by their constituent squares. So, 

for example, in rule ‘3’ the label is determined by the color of the 3rd square and in rule ‘12’ the label 

is determined by the XOR of squares 1 and 2. See Fig.1 and main text for the list of rules used in this 

study and during recordings. Each classification rule was replaced every few days and repeated after 

about a month and after a full cycle of the 8 rules was presented. 

 

Neural recordings 
A craniotomy was performed under deep anesthesia and aseptic conditions and a recording 

chamber (27x27mm) was implanted above the midline and anterior commissure to allow daily 

electrodes insertion. The chamber’s positioning was done according to MRI calculated coordinates 

with respect to the identified bone structure around the ear canals and eye sockets. Still images were 

taken during the surgery to record the location of the chamber, the head holder and the screws on 

the skull for easier extraction process.  
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After surgery the monkeys were treated with analgesics (Buprenorphine) and antibiotics 

(Rocephin, Baytril). The monkeys were allowed to recover for 1-2 weeks before the first head 

restraining in the setup. The fluid consumption regime was gradually reinstated starting two weeks 

after surgery.  

MRI-Based Electrode Positioning: Anatomical MRI scans were acquired before, during, and after the 

recording period. Images were acquired on a 3-Tesla MRI scanner: (MAGNETOM Trio, Siemens) 

with a CP knee coil (Siemens). A T1-weighted, three-dimensional gradient-echo (MPRAGE) pulse 

sequence was acquired with a repetition time of 2,500 ms, an inversion time of 1,100 ms, an echo 

time of 3.36 ms, an 8 flip angle, and two averages. Images were acquired in the sagittal plane, 192 x 

192 matrix, and 0.63 mm resolution. The first scan was performed before surgery and used to align 

and refine anatomical maps for each individual animal (relative location of the dACC and the Striatum, 

and anatomical markers such as the interaural line and the anterior commissure; confirmed using 

atlas). We used this scan to guide the positioning of the chamber on the skull at the surgery. After 

surgery, we performed another scan with 2-4 electrodes directed toward the dACC, Putamen and 

caudate. The regions’ depth was calculated from the dura surface and the plane of the top of the 

chamber. We assessed estimation of electrode tip locations and comparison to the MRI image with 

<1mm accuracy (mean=0.5mm). 

Mapping recording regions: During the first week of electrode insertions we performed a mapping 

procedure to identify the depth of cell bodies in prominent recording regions. During that week no 

behavior recordings were made and the fluid restriction was gradually reinstated.  

Additionally, with every electrode insertion during the experiment we recorded the depths of cell 

bodies and were able to reconstruct the boundaries of our regions of interest. 

Electrophysiology: 

The monkeys were seated in a dark room and each day, up to six microelectrodes (0.6–1.2 MΩ 

glass coated tungsten, Alpha Omega) were lowered inside a metal guide (Gauge 25xxtw, outer 

diameter: 0.51 mm, inner diameter: 0.41 mm, Cadence) into the brain using a head-tower and 

electrode-positioning-system (Alpha-Omega). The guide was lowered to penetrate and cross the dura 

and stopped once in the superficial layer of the cortex. The electrodes were then moved independently 

further into either the dACC, Caudate or Putamen. Electrode signals were pre-amplified, 0.3 Hz–6 

kHz band-pass filtered, and sampled at 44 kHz; and online spike sorting was performed using a 

template-based algorithm (Alpha Lab SNR, Alpha Omega). We allowed 15-30 minutes for the tissue 

and signal to stabilize before starting acquisition and behavioral protocol. At the end of the recording 

period, offline spike sorting was further performed for all sessions to improve unit isolation (offline 

sorter, Plexon).  

 
Data Analysis – Behavior 
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Performance: 

Each learning session results in a series of correct and incorrect answers, {𝑦)})#*:, ∈ {0,1},, T 

being the number of trials. To measure learning behavior and account for erratic tendencies we took 

the following steps: 

1) To avoid the behavioral decline that may bias performance at the end of the sessions we 

disregarded up to the last 10% of the session if it contained only wrong answers. On average we 

ended up ignoring ~1% or 2-3 trials in each session.  

2) We define performance at the end of the session by averaging correct and incorrect answers 

in the last quarter of the session, 𝑃-./ = 〈𝑦)〉)∈1!",→,3
. The confidence level for rejecting the null 

hypothesis of chance performance follows the regularized incomplete beta function, 𝐼*45 P
,
6
− 𝑘, 1 +

𝑘S, where ,
6
 is the number of trials in the last quarter of the session and 𝑘 is the number of correct 

answers during that segment (Fig. S1).  

3) Identically to 𝑃-./, we define 𝑃7)89) as the mean performance during the first quarter of the 

session. 

4) In Fig. 1D, we define maximal performance as the best mean performance in 30 consecutive 

trials, 𝑃:8; = max
<=,4!>

〈𝑦)〉)∈[<→<@!>]. 

5) In Fig.S2, Fig. S3, Fig. S4, and Fig. S6 we use pattern-specific performance. The order of 

pattern presentation, randomized batches containing all 2^N patterns, guaranteed that the sequences 

of pattern-specific presentations were perfectly-interleaved – allowing for the comparison of pattern-

specific errors conditions on prior presentations of the same pattern (Fig. S2) or other patterns (Fig. 

S3). Similarly, the comparisons of pattern-specific learning curves is temporally-aligned between rules 

(Fig. S4) and with the general performance (Fig. S6).   

 
Easy and hard rules: 

We label rules according to the monkeys’ ability or inability to recurrently achieve high 

performance in learning those rules. Thus, given that a subset of rules is labeled ‘easy’ and another 

subset is labeled ‘hard’, we computed the amount of variance, within the set of 𝑃-./ ’s that the labeling 

explains. The R2 value is: 𝑅! = 1 −
∑ CD#$%

& 4E&F
'

&

∑ GD#$%
& 4EH

'
&

 where, 𝜇 = 〈𝑃-./〉 is the mean end-performance of all 

the sessions and 𝜇I  are the mean end performances of sessions of either ‘easy’ or ‘hard’ rules 

(Fig.1G). We also labeled individual sessions as ‘high’ or ‘low’ performance independent of the rules 

to make sure our results are robust (Fig.S8). 

 

Rule repetition effects 
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Each classification rule was used for 1-5 consecutive days and repeated after about a month. We 

compare the monkeys’ performance at the end of a session (𝑃-./(𝑛) with ‘n’ standing for the n’th 

session of the rule) to the mean performance in the first quarter of the following session of the same 

rule, 𝑃7)89)(𝑛 + 1). The comparison is made by calculating the Pearson correlation between the 𝑃-./ ’s 

and 𝑃7)89)’s. 

We examined two distinct cases: 

1. Taking sessions only from consecutive days, we calculate the correlation, 𝜌8J9K77, of the across-

days learning (Fig. 1E). 

2. Taking only sessions from the end of a consecutive sequence and the beginning of the following 

sequence, we calculate the correlation, 𝜌9-J8LL , of the monkeys’ ability to recall rules they 

encountered a month before (Fig. 1F). 

 

Testing for pattern-specific memorization: 

We first consider a memorization scheme in which subjects perfectly learn a list of correct pattern-

label pairs but do not generalize. The acquisition of such memorized patterns can be an all-or-none 

event, which means that after a certain pattern-label pair was memorized it will dictate choice 

behavior. Alternatively, we consider a gradual probabilistic association strengthening process for the 

observed patterns, which leaves room for errors. Our data rules out the case of all-or-none 

memorization: Fig. S2 and Fig. S4 demonstrate that our subjects frequently made mistakes on specific 

patterns even after they were labeled correctly in previous presentations.  

We can also rule out memorization of the types mentioned above as the sole mechanism. Relying 

on memorization alone would mean that all rules on patterns of three bits would be learned in the 

same rate. Fig S2 clearly shows that this is not the case, and that rule identity plays a key role. Even 

finer memorization aspects, such as pattern-specific acquisition rates, can also be ruled out from our 

data. Fig.S4 shows that subjects learned the labeling of the same pattern under different rules at 

different rates. Finally, pattern-response pairs can be influencing each other during learning. Fig. S3 

complements Fig. S2. showing that the rule identity impacts this influence as well.     

To hone in the general rule-based behavior we add Fig. S6 to show specific cases of pattern 

specific performance deterioration accompanying general performance increase. The examples in 

Fig. S6. Specifically highlight learning sessions in which a pattern-specific performance was high at 

the end of one session and decreased following a rule switch. Importantly, the rule switch did not 

require changing the learned response to the specific pattern (as 4 out of 8 patterns did not change 

response category in the rule switch). The pattern-specific performance deterioration during a general 

performance improvement is not expected in learning by stimulus-response association and is a 

hallmark of rule-based behavior. 

 
Behavior stability tests: 
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Feature based behavior stability 

We want to summarize how consistent were the monkeys in a single number for each session 

(Fig.S5A). This is done with answers from the last 1/4 of each session. We define as a consistency 

measure the mean (across patterns) distance of the logistic classifier (fitted to answers in the last 1/4 

session) from the chance (0.5) answer.  

Namely, if the monkeys adopt a feature based consistent policy at the last quarter of each session, 

then we can fit their sequence of answers with: 

𝑃(𝑦 = 1|𝑥; 𝛼⃗, 𝛾) = *
*@-;5G4M4∑ N(O((;)( 	H

                                                                      [Eq 1]  

where 𝑥 are the presented patterns, 𝑓E(𝑥) are the features, and 𝛼⃗, 𝛾 are fitted to maximize the 

likelihood of the answers. 

A key reason to fit this classifier and not to make the consistency estimation per pattern is that 

there are much fewer pattern presentation per pattern and in any way calculating per pattern imposes 

the assumption that the monkeys can tell all patterns apart from each other. The classifier's way 

doesn't make any assumption beyond a features based behavior policy. 

The consistency measure is thus the mean distance from 0.5. or,  

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = *
S
∑ |𝑃(𝑦 = 1|𝑥; 𝛼⃗, 𝛾) − 0.5|;                                                              [Eq 2]  

The chance level for a completely unbiased classifier is 
∑ T$)	4U.WT⋅C

.
SF

)
$*+

∑ C.SF
)
$*+

= 0.1367 

Across sessions stability 

Next, we want to check if the monkeys were stable across sessions. Namely, regardless of 

performance, how similar is the features-based behavior at the last quarter of different sessions. Or, 

how similar is the behavior when learning the same rule in different sessions. 

To avoid cross interference between the within-trial variability (the inconsistency that drives 𝑃(𝑦|𝑥) 

in Eq. 1 close to 0.5) and the across-trial variability (The inconsistency that separates the logistic 

classifiers that are fitted to different sessions) we threshold the classifiers, 𝑦(𝑥) = [𝑃(𝑦|𝑥) > 0.5] , and 

for each rule compare all pairs of sessions. Fig.S5B shows the mean (and SE in errorbars) of the 

across session similarity score: 

𝑆9YL- =
*

Z,-&./
∑ *

S
∑ m𝑦I(𝑥) ⋅ 𝑦[(𝑥) + o1 − 𝑦I(𝑥)p ⋅ P1 − 𝑦[(𝑥)Sq;I'[                               [Eq 3] 

where 𝑖, 𝑗 are different sessions of the same rule and 𝑁58I97 is the number of pairs of sessions with 

the same rule. 

Behavior similarity across rules  

To estimate how similar is the monkeys’ behavior to the rules they learn we repeat the calculation 

in Eq. 3 but replace one of the classifiers (𝑦[) and subtract 0.5 to shift the mean expected overlap to 

0. The, above chance level, results are presented in Fig.S5C. 
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Testing for performance-based strategy 

Animal behavior could potentially obey a local performance-based strategy called winàstay, 

loseàswitch. This strategy is observed in animal studies and suggests that animal will repeat a choice 

that led to reward and switch a choice that didn’t. To test if the monkeys significantly relied on such a 

strategy we simulated answer sequences following this strategy for all the learning sessions in our 

experiments. We than compared the true answers, given by the monkeys, to the simulated 

sequences. Any above-chance (50%) agreement would indicate that the monkey might be using this 

strategy. However, we find that the agreement with the win-stay, lose-switch strategy is below chance 

for nearly all sessions. Fig. S7 shows distributions of per-session agreement for simulations initiated 

in the left or right choice (the only free parameter). 93.5% of sessions had below-chance agreement 

and the median agreement was significantly lower than chance (Wilcoxon signed rank test. p<1e-15) 

 
Data Analysis – Neural activity 
 

Single-neuron responses 

We expect the learning-relevant cognitive mechanisms to be influenced by both trial-by-trial 

variations, such as changing behavior and stimulus identity, and by slower processes, namely 

learning. Studying the learning related dynamics, we are interested in the single unit neural activity 

that correlates to such inherently variable computational primitives. Namely, we seek a measure of 

the spiking activity that communicates the variations across trials. Accordingly, for every neuron we 

examine the spikes in the 500ms following the stimulus onset and bin them into 5x100ms segments 

to obtain sensitivity to temporal effects in addition to the spike count. The result is a 5-vector of spike 

counts from each trial, 𝑉3⃗ (𝑡 = 1…𝑇) ∈ ℝW × ℕ. In this representation, the component of largest across-

trials variance is 𝑣∗3333⃗ = 𝑎𝑟𝑔 max
‖_̂⃗ ‖#*,_̂⃗ ∈ℝ0

𝑉𝑎𝑟o𝑉3⃗ ∙ 𝑣⃗p. We then project each 5-dimensional vector on this 

principle component and get a single number from each trial, 𝑟(𝑡) = o𝑉3⃗ (𝑡) − 〈𝑉3⃗ 〉p ∙ 𝑣∗3333⃗ . This number 

scores the spiking patterns of the neuron with respect to its most prominent fluctuations or change. 

Importantly, several unrelated processes may contribute to the across-trials variability and in choosing 

the projection, 𝑟(𝑡), as the representation of stimulus neural response, we tune to the largest source 

of variability, regardless of its nature (Fig. S10A-C).  

 

Pattern-specific neurons  

We devised a criterion for exemplar preference based on a neuron’s firing rate in the 500mSec 

after the pattern presentation. We build a table of all responses of the neuron to each of the patterns. 

Next, we compare the sets of responses to each pair of patterns using a rank-sum test for equal 

medians and treat the distribution of responses as different using a threshold at p<0.05.  A neuron is 
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pattern-specific if the distribution of responses to only one pattern is different from all the others 

(Fig.S9) 

 
Feature-based representation of the rule and neural responses  

For a pattern, 𝑥, we chose a basis of features that are polynomials of the variables 𝑥*, 𝑥!, 𝑥c that 

take the values ±1. Features, 𝑓I[d(𝑥) = 𝑥*I ⋅ 𝑥!
[ ⋅ 𝑥cd differ in the polynomial degrees (𝑖, 𝑗, 𝑘 = 0,1) and 

satisfy, when averaging across all patterns, 〈𝑓〉 = 0, 〈𝑓!〉 = 1.  

Lemma 1: Different features in this base are statistically independent.  

Proof 1: Let 𝑓* and 𝑓! be features in this set and without losing generality assume that they differ 

in the polynomial degree of 𝑥* s.t. 𝑓! doesn’t contain 𝑥*. Since ∀I , 𝑃(𝑥I = 1) = 0.5 we get that 𝑃(𝑓* =

1|𝑓!) = 𝑃(𝑥* = 1) = 0.5 = 𝑃(𝑓* = 1).  

Lemma 2: Correlation projections factor in this basis  

Proof 2: Let 𝒇 be a vector in features space, 𝒇 = ∑ 𝑎e𝑓ee∈{I,[,d} 	such that ∑ 𝑎e!e = 1. This means 

that 〈𝒇〉 = 0 and 〈𝒇!〉 = 1 (because 〈𝑓e ⋅ 𝑓h〉 = 0, ∀eih ). Which leads to 𝑉𝑎𝑟(𝒇) = 1. So, if 𝑛 is some 

random variable (say, the neural projection) the correlation 𝐶(𝒇, 𝑛) = 〈G𝒇4𝒇lH	⋅(.4.l)〉

no89(𝒇)⋅o89(.)
=

∑ 𝑎e
〈(O14O1lll)	⋅(.4.l)〉
no89(O1)⋅o89(.)

= ∑ 𝑎e ⋅ 𝐶(𝑓e , 𝑛)ee . 

This means that if we measure the correlations to the features separately, then the unit vector, 𝒂, 

that maximizes ∑ 𝑎e𝐶(𝑓e , 𝑛)e  will give us the preferred feature. Also, if 𝒂 is a rule that we chose in 

advance, e.g. the one being learned, then the projection ∑ 𝑎e𝐶(𝑓e , 𝑛)e  is indeed the rule-correlation 

(Fig.3B, Fig. S10C,D).  

 
Dynamics of representations 

To study the dynamics of task related neural correlates we divided each session to partially 

overlapping windows (40 trials segments with 4 trials jumps). For each neuron, calculating the 

correlation between its spiking patterns, 𝑟(𝑡), following stimulus onset, and the stimulus features, 

𝑓(𝑥⃗), (as well as to the correct category and the monkey’s future answer) yields a set of correlation 

coefficients, 𝐶𝐶I(𝑡) = 𝑐𝑜𝑟𝑟 P𝑟(𝜏 ∈ 𝑤)), 𝑓Io𝑥⃗(𝜏 ∈ 𝑤))pS, for each regression window 𝑤) . These rolling 

regression coefficients were used to calculate the following measures: 

 

Comparing representation between conditions 

To judge whether neurons show rule selectivity during a certain segment of the session (Fig.2D) 

we test the fraction of regression windows within that segment, that exhibit significant rule correlation 

(Pearson, p<0.05). This test is done comparatively between sessions of different conditions, and we 

set a criterion of 10% to declare a neuron as showing rule selectivity during the segment. If there are 
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more than 5 neurons meeting each condition (2 conditions, e.g. easy and hard rules) we use the 

binomial comparison z statistic, 𝑧 = 5p245p'

q5p(*45p)∙C 2$2
@ 2
$'
F
 with 𝑝̂*,𝑝̂!  the measured success rate in two 

populations of sizes 𝑛*, 𝑛! and 𝑝̂ = .25p2@.'5p'
.2@.'

. 

 

Comparing rule vs. answer representations 

Since these correlations have a mutual component (the spiking pattern) and interrelate via the 

performance level, we compare with William’s t-statistic for correlated correlations, 𝑡 =

(s2'4s2!)∙[(.4c)∙(*@s'!)/!u!]
2
'

q*@($4!)∙(72'872!)
'∙(247'!)'

)($42)9!

, where 𝐶*! is the category correlation, 𝐶*c is the answer correlation, and 𝐶!c 

is the correlation between answers and categories. 𝑛 is the number of trials and 𝐷c is the determinant 

of the sample correlations matrix. The statistic is compared to the t – distribution with 𝑛 − 3 degrees 

of freedom (Fig.2F).  

 

Relating neural representation to behavioral performance 

To relate any regression measure and performance within a group of neurons we take the 

following steps: 

1. For every 40-trials-long regression window we calculate the mean performance. 

2. Given a performance level, we collect all the regression windows with performance within 0.15 of 

that level and calculate the mean and standard error of the measures of interest (Fig. 2E). 

 

Angle-to-rule and vector-magnitude 

Given a basis of visual features there is a unique spanning of the classification rule in each 

session. For each regression window we define the angle-to-rule as the angle between the vector of 

correlation coefficients to visual features and the vector that represents the rule. Similarly, we define 

the features’ correlation magnitude as the norm (L2) of the correlation coefficients vector.  

When presenting the learning related dependence of these geometrical variables over time, we 

smooth them with 10 percent of the running windows in a session (Fig.3, Fig.4D-G insets, Fig.S14- 

S16) 

 

Correlation to rule and answer 

In Fig. S14 and Fig. S16. we present similar analyses of representation dynamics (as in Fig. 4D-G) 

but instead of the geometric measures we show correlations to the categories determined by the rule 

(annotated as ‘C’ in Fig. S14) and correlations with the monkeys physical answers (their right or left 

choices in each trial, annotated by ‘A’ in Fig. S16)   
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Session-length standardization 

Several calculations require the comparison or grouping of segments from relative session 

fractions and/or location. To enable this, we standardized the regression measures from each session 

to a fixed length of 100 bins. This means that all rolling regressions were stretched to the same length, 

because a hundred regression windows would only come from 436 trials in a session. 

 

Cells that reduce angle-to-rule or increase vector-magnitude 

To quantify neurons that decreased angle-to-rule or increased the vector-magnitude (Fig.4D-G), 

we compare regression windows in the first 15%-segment of the sessions to regression windows in 

the last 15%-segment of each session with a 1-tailed t-test. The fractions of cells that passed the test 

are compared with a 2-tailed binomial z test.  

 

Fractional change in neural-vector, angle and magnitude 

We calculate the fractional difference from their average baseline values in the initial fraction of 

regression windows (Fig.4). The resulting traces are smoothed with a 10% window and significant 

difference between sessions of easy and hard rules is determined with bootstrapping – shuffling the 

easy/hard label 10,000 times and checking if the correct labeling surpasses the required confidence 

level (95%). 

 

Optimal lags between time series 

Given two time series, e.g. the angle-to-rule of a dACC neuron and the simultaneously-recorded 

vector-magnitude of a Putamen neuron, we find the shift that maximizes their Pearson correlation. 

Only pairs with significant correlation in the optimal lag contribute (as in Fig.4I,J). 

  

Relating the neural-vector to next-day behavior 

To examine if the learning-related change in the neural-vectors indicate a real shift in the monkeys’ 

preferred policy (Fig.4K,L), we tested if the neurons’ preferred feature combination (i.e. their neural-

vector) predicts the monkeys’ behavior early in the following day. For each neuron we averaged the 

neural-vector in the late fraction of the rolling regression windows. Then, as a measure of similarity, 

we calculated the projection of the neural-vector on the subsequent day’s rule. In Fig.4K we calculate 

the Pearson correlations between these neural projections and the mean performance in the early 

fraction of the next day’s session across the neural population. In Fig.4L we repeat the same 

calculation but only take cases in which the rule was changed between the current and next day.    

 

Code and Data availability 

Custom code for behavioral and electrophysiological tests is available from the corresponding author 

upon reasonable request. 
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All data supporting the findings of this study are available from the corresponding author upon 

reasonable request. 
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