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25 Abstract – 206 words 

26 Long term surveillance of vectors and arboviruses is an integral aspect of disease prevention and 

27 control systems in countries affected by increasing risk. Yet, little effort has been made to adjust space-

28 time risk estimation by integrating disease case counts with vector surveillance data, which may result in 

29 inaccurate risk projection when several vector species are present, and little is known about their likely 

30 role in local transmission. Here, we integrate 13 years of dengue case surveillance and associated Aedes 

31 occurrence data across 462 localities in 63 districts to estimate the risk of infection in the Republic of 

32 Panama. Our space-time modelling approach detected the presence of five clusters, which varied by 

33 duration, relative risk, and spatial extent after incorporating vector species as covariates. Dengue 

34 prevalence (n = 49,910) was predicted by the presence of resident Aedes aegypti alone, while all other 

35 covariates exhibited insignificant statistical relationships with it, including the presence and absence of 

36 invasive Aedes albopictus. Furthermore, the Ae. aegypti model contained the highest number of districts 

37 with more dengue cases than would be expected given baseline population levels. This implies that 

38 arbovirus case surveillance coupled with entomological surveillance can affect cluster detection and risk 

39 estimation, improving efforts to understand outbreak dynamics at national scales.

40

41 Author Summary

42 Dengue cases have increased in tropical regions worldwide owing to climate change, 

43 urbanization, and globalization facilitating the spread of Aedes mosquito vectors. National surveillance 

44 programs monitor trends in dengue fever and inform the public about epidemiological scenarios where 

45 outbreak preventive actions are most needed. Yet, most estimations of dengue risk so far derive only 

46 from disease case data, ignoring Aedes occurrence as a key aspect of dengue transmission dynamic. 

47 Here we illustrate how incorporating vector presence and absence as a model covariate can considerably 

48 alter the characteristics of space-time cluster estimations of dengue cases. We further show that Ae. 
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49 aegypti has likely been a greater driver of dengue infection in high risk districts of Panama than Ae. 

50 albopictus, and provide a discussion of possible public health implications of both spatial and non-

51 spatial model outcomes.

52 Text Word Count: 3658

53 Introduction

54 Dengue fever, a disease transmitted to humans by Aedes mosquitoes, is endemic to 128 

55 countries, with 3.9 billion people considered at-risk [1]. Dengue fever cases have increased dramatically 

56 worldwide throughout the previous several decades [2], likely a result of climate change [3], 

57 urbanization [4], globalization [5], and the spread of the invasive Aedes albopictus [6]. As a result of 

58 both recent and historical risk, many countries employ national surveillance programs to monitor trends 

59 in dengue fever and inform local health authorities to the places and times where preventative practices 

60 are most required. However, despite the commonality of these programs and unforeseen cost of cutting 

61 them [7], surveillance budgets are often limited [8,9], restricting the scope and quality of the work. This 

62 is concerning in developing regions such as Central America, where the burden of disease is high [1] 

63 and per capita public health expenditure is among the lowest of any region of the world [10].

64 Surveillance of both viruses and vectors is an essential component of integrated disease 

65 management programs that can be used to determine risk changes in space and time, thus providing the 

66 evidence for more targeted prevention and control interventions [11]. Nevertheless, with few exceptions, 

67 it is rare for surveillance programs to concurrently monitor both arbovirus cases and vector populations 

68 in the same locations and at regular intervals. Most projections of disease risk used to justify public 

69 health actions are derived purely from disease case data, ignoring vector population dynamics, which is 

70 key aspect of the vector transmission model. This is particularly concerning when more than one vector 

71 species is present, and little is known about their likely role in local transmission, which may result in 

72 inaccurate or incomplete risk projection or case clustering models. 
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73 The Republic of Panama has been monitoring dengue cases alongside vector presence through 

74 the National Department of Epidemiology (NDE) since 1988, making it one of the most long-standing 

75 and successful surveillance programs of its kind in Latin America.  Of the two known dengue mosquito 

76 vectors, Ae. aegypti is considered resident to Latin America and Panama since the 19th century, and the 

77 primary source of transmission [11] while Ae. albopictus, considered a secondary vector, has been 

78 spreading throughout the region ever since it got introduced in Panama in 2004 [12,13]. Widespread 

79 extirpation of Ae. aegypti by a superior ecological competitor like Ae. albopictus has occurred 

80 throughout the world in recent decades [14–16], with unknown consequences on arbovirus transmission 

81 risk. Encompassing this period of growing interspecific competition among two vector species, 

82 Panama’s surveillance system is particularly unique and potentially useful to modelling dengue 

83 transmission risk while considering Aedes species interaction. Attaining a better understanding of 

84 dengue outbreak dynamics over time may improve the capacity of public health authorities to combat 

85 the spread of other arboviruses, such as Zika Virus and Chikungunya Virus.

86 Our overall aim is to examine the influence that concurrent dengue case surveillance and Aedes 

87 species monitoring can have on cluster detection and relative risk estimation. In so doing, we describe 

88 the results of 13 years of dengue fever and Aedes surveillance data, including two competing vector 

89 species plus virus data originating from long-term cooperatively organized surveillance programs. We 

90 further assess whether dengue prevalence can be attributed to district socioeconomic attributes. We 

91 believe this is the first effort to adjust for vector presence and absence in a disease cluster detection 

92 model, which we hope sheds light on the characteristics of space-time clusters and relative risk 

93 estimation of dengue after Aedes species are used as model covariates.

94

95 Methods

96 Dengue Data
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97 We utilized dengue prevalence data collected by the National Department of Epidemiology 

98 (NDE), housed within the Panamanian Ministry of Health (MINSA). Systematic national surveillance of 

99 dengue cases in Panama have been continuous since 1988. Suspected cases are defined by a patient with 

100 a fever and one or more of the following symptoms: headache, retro orbital pain, myalgia, exanthema, 

101 rash, vomiting, malaise, leukopenia, and jaundice. A confirmed case is defined as a suspected case with 

102 a positive dengue test, conducted using either viral isolation, reverse transcription polymerase chain 

103 reaction (RT-PCR), IgM enzyme-linked immunosorbent assay platform (ELISA), or secondary IgG 

104 ELISA. RT-PCR was established as the original standard by the National Reference Laboratory at the 

105 Gorgas Memorial Institutes for Health Studies (ICGES) in 2003. Yet since 2009, MINSA established 

106 national decentralization of serological confirmation of dengue using ELISA tests, which has improved 

107 efficiency by allowing district health officials to confirm cases without needing to send samples to a 

108 single central facility in Panama City. Data is recorded at the Corregimiento, or neighborhood, scale as 

109 the number of confirmed cases in a given year at a given location. This is the lowest scale of data 

110 granularity available, and thus, we do not have patient-level detail nor temporal detail at smaller units 

111 than year. 

112

113 Vector Data

114 We utilized vector data from the Vector Control Department (VCD) at MINSA. Systematic 

115 entomological surveillance has occurred in Panama since 2000 in order to establish Aedes infestation 

116 rates, and thus, areas of potential dengue transmission risk. Surveys of both Ae. aegypti and Ae. 

117 albopictus are performed annually at the Corregimiento-scale and consist of solely larval surveillance. 

118 Each year, a random block of houses is chosen and all houses in the block are searched for containers 

119 holding Aedes larvae. The larvae are collected and allowed to mature to the fourth instar, at which point 

120 they are taxonomically identified to species based on morphological keys [17]. The number of houses 
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121 positive for Ae. aegypti, Ae. albopictus or both are recorded in the raw datasets. However, because we 

122 cannot confirm the number of houses in each block, we have transformed the data into a presence-

123 absence format in each Corregimiento rather than analyzing the number of positive houses. 

124

125 Data Analysis

126 We conducted our analyses on dengue and vector data from 2005-2017, encompassing the period 

127 in Panama when both Ae. aegypti and Ae. albopictus have been interacting.  Overall, data was collapsed 

128 from the original Corregimiento scale to the district scale. This is due to unreliable human population 

129 estimates at scales smaller than the district. Population levels were required to compute prevalence rate 

130 (x1000; PR), which was used as the dependent variable in the statistical analysis, rather than pure 

131 number of cases, which does not consider the total number of potential virus hosts. Human population 

132 data was gathered from the National Institute of Statistics and Census (INEC), which conducts a national 

133 census every 10 years. We also gathered three socioeconomic metrics from INEC to use as covariates: 

134 percentage of households with dirt floors, percentage of households without clean water, and percentage 

135 of households without sanitary services. These covariates were chosen due to their relationship to 

136 standing water, which may act as potential Aedes breeding habitat. Because the national census is only 

137 conducted every ten years, we used the population levels from 2010 to calculate PR for data from 2005-

138 2017. While this is not ideal, and incurs inherent error in the year to year accuracy of the PR estimate, 

139 there is no more frequent population estimate available. This is an unfortunately common situation, 

140 especially in Central America, where no country conducts national population assessments more 

141 frequently than every 10 years. The three socioeconomic variables are at their 2010 levels as well, 

142 sourced from the same census as population. 

143 We conducted two sets of analyses, non-spatial and spatial. The purpose of the spatial analyses 

144 was exploratory, assessing the relationship between vector and virus in space and time. This was 
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145 conducted first, to establish a baseline understanding of how the addition of vector surveillance data 

146 affects the estimation of the size and relative risk of case clusters. We followed the spatial modeling 

147 with non-spatial statistical modelling, which served to test the hypotheses established by the spatial 

148 models. Thus, the non-spatial models essentially serve to identify the significant covariates that can be 

149 adjusted for in the spatial model

150 For the spatial analyses, we utilize discrete Poisson space-time modelling STSS [18], which 

151 systematically moves cylindrical search windows across the geographic and temporal space to detect 

152 space-time clusters.  Essentially, STSS determines if the observed disease cases in a particular region 

153 and time period exceed the expected cases under baseline conditions. In vector-borne disease research, 

154 STSS have been used to examine outbreaks of dengue [19–21], chikungunya [22], malaria [23,24], 

155 Chagas [25], and West Nile [26,27], for example. STSS have also been used to examine the co-

156 circulation of dengue and chikungunya in Colombia [28].  

157 The cylinders are centered on the centroids of the Panamanian districts while the base of a 

158 cylinder is defined as the spatial scan, and the height of a cylinder represents the temporal scan.  The 

159 number of observed and expected dengue cases are computed for each cylinder.  Conceptually, a vast 

160 number of cylinders of various space-time dimensions are generated until an upper bound is reached, 

161 while each cylinder is a potential cluster.  For this study, the maximum spatial scan was set to 25% of 

162 the total population in Panama, while the maximum temporal scan was set to 4 years.  A Poisson-based 

163 likelihood ratio is calculated for each cylinder, which is proportional to (𝑛/𝜇)𝑛[(𝑁 ‒ 𝑛)/(𝑁 ‒ 𝜇)]𝑁 ‒ 𝑛

164 [29]. For the parameters, μ is the expected number of dengue cases in a cylinder, and n is the total 

165 observed dengue cases in the cylinder.  The expected number of dengue cases is computed by 

166 multiplying the fraction of population that lives within the cylinder (p) by the total number of cases in 

167 Panama (C) divided by the total population (P), that is: E[c] = p*C/P -     The cylinder with the highest 

168 likelihood ratio is the most likely space-time cluster.  To evaluate the statistical significance of the 
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169 candidate space-time clusters, 999 Monte Carlo simulations are performed under the null hypothesis that 

170 there are no significant clusters.  Subsequently, we report secondary space-time clusters with a p-value 

171 less than 0.05.

172 For this study, we ran four STSS models: (1) dengue cases only; (2) dengue cases controlled for 

173 the presence and absence of Ae. aegypti and/or Ae. albopictus (i.e. absence of both species, Ae. aegypti 

174 presence, A. albopictus presence, and presence of both species); (3) dengue cases controlled for Ae. 

175 aegypti presence/absence only; and (4) dengue cases controlled for Ae. albopictus presence/absence 

176 only. For the covariate adjusted models, the expected number of dengue cases is defined the same way 

177 for the non-adjusted model, but includes covariate category i. That is: E[c] =   In other words, ∑
𝑖𝑝𝑖

∗
𝐶𝑖

𝑃𝑖
.

178 the adjusted STSS searchers for clusters “above and beyond that which is expected due to these 

179 covariates” (47).  For each model, we also report the relative risk of prevalence in each district that 

180 belongs to a space-time cluster, which is defined as  , where c is the total (𝑐/𝑒)/[(𝐶 ‒ 𝑐)/(𝐶 ‒ 𝑒)]

181 observed dengue cases in a particular district; e is the expected cases in a district; and C is the total 

182 observed dengue cases in the country of Panama. Clusters with a relative risk > 1 indicates that there 

183 were more observed dengue cases than expected under baseline conditions. We created all maps in 

184 ArcGIS [30]. 

185 In the non-spatial analyses we used generalized linear models (GLM; Mccullagh & Nelder, 

186 1972) with a log linkage to determine if dengue PR could be predicted by the presence of Ae. albopictus 

187 alone, Ae. aegypti alone, the presence of both species, and the three socioeconomic attributes of the 

188 district. In addition, we tested whether the presence of Ae. aegypti was negatively associated with the 

189 occurrence of Ae. albopictus, which has been proposed by previous studies describing a pattern of 

190 spatial displacement. GLMs are robust and capable of being applied to data without homogeneous 

191 variance or normality. They have been utilized in a variety of studies on the public health implications of 

192 Aedes mosquito ecology [32–34].  
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193

194 Results

195 From 2005-2017, there were a total of 49,910 cases of dengue fever in Panama, with 2009 and 

196 2014 being the most severe at 6,941 and 7,423 cases respectively. These two years represented 28% of 

197 the total dengue cases during the 13-year period. Additionally, at the start of the sample period, Ae. 

198 albopictus was only present in 1 district, yet by 2017 had been found in 53 districts. It exhibited a 

199 slightly increasing trajectory throughout time and has been present in the same number of districts as Ae. 

200 aegypti since 2016. Surveillance of Ae. aegypti indicated fluctuating presence throughout the sample 

201 period, with presence ranging from 48-57 districts (Fig 1).

202

203 Fig 1. Number of districts containing each Aedes species from 2005-2017. 

204

205 The results of our space-time modelling detected the presence of five clusters in each of the four 

206 models, varying by cluster center and duration (Figs 2-5; Table 1). Incorporating covariates into the 

207 models had considerable effects on the duration, relative risk (RR), and spatial extent of clusters (Table 

208 2). The model adjusting for the presence of Ae. aegypti encompassed the greatest spatial range and 

209 highest number of districts with a RR > 1, while the model adjusting for the presence of Ae. albopictus 

210 encompassed the smallest spatial range and the lowest number of districts with a RR > 1.  The duration 

211 of the space-time clusters is notably different when adding the vector surveillance data to the model, 

212 however, the one exception is cluster 1 for each model (most likely cluster).  For example, the duration 

213 of cluster 2 was 2015-2017 for the no covariate and Ae. aegypti model; while the Ae. albopictus and 

214 Aedes (both) model reported a duration of only 1 year, which occurred six years earlier (2009).  

215 Furthermore, cluster 2 was found in different geographic locations for the Aedes (both) and Ae. 

216 albopictus models.  This variation in duration of the clusters between the four models is a result of 
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217 adjusting for the presence of Aedes during the 13-year study period.  In other words, the start, end, and 

218 duration of the clusters is substantially affected by the presence of one or more Aedes species.  The 

219 relative risk may be higher if Aedes was found in a district during the entire duration of a space-time 

220 cluster.  During the 13 years of our study period combined with the 63 districts containing data (13 * 63 

221 = 819), Ae. aegypti was present 690 times, Ae. albopictus was present 245 times, while both Aedes 

222 species were found in a district 224 times.  As a result, the difference in species presence during the 

223 study period partly explains why the clusters for the Ae. albopictus model contained 19 less districts 

224 than the Ae. aegypti model, and 10 less districts that the model adjusting for both species. 

225

226 Table 1. Space-time dengue fever clusters.

Cluster Center of Cluster
Duration 

(years)
p-value Observed Expected

Relative 

Risk
Districts

Cluster 

Population

No covariates

1 Balboa 2013-2015 p<0.01 5,846 1,270.83 5.1 5 368,341

2 Santa Maria 2015-2017 p<0.01 2,013 482.25 4.3 3 139,778

3 Colon 2009 p<0.01 1,402 237.54 6 1 206,553

4 Changuinola 2005-2007 p<0.01 1,734 394.85 4.5 2 114,445

5 Capira 2014 p<0.01 1,914 721.3 2.7 9 627,220

Adjusting for Aedes presence & absence

1 Balboa 2013-2015 p<0.01 5,846 1,670.20 3.8 5 368,341

2 Baru 2009 p<0.01 2,019 408.4 5.1 11 492,942

3 Colon 2009 p<0.01 1,402 188.2 7.4 1 206,553

4 Calobre 2015-2017 p<0.01 2,120 511.5 4.1 4 162,315

5 Arraijan 2005-2006 p<0.01 1,923 608 3.2 1 220,779

Adjusting for Ae. albopictus presence & absence

1 Balboa 2013-2015 p<0.01 5,846 1,636.70 3.9 5 368,341

2 Colon 2009 p<0.01 1,402 178.4 8 1 206,553

3 Changuinola 2005-2007 p<0.01 1,734 296.5 6 2 114,445

4 Santa Maria 2015-2017 p<0.01 2,013 445 4.6 3 139,778

5 Arraijan 2005-2006 p<0.01 1,923 591.4 3.3 1 220,779

Adjusting for Ae. aegypti presence & absence
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1 Balboa 2013-2015 p<0.01 5,846 1,318.90 4.9 5 368,341

2 Colobre 2015-2017 p<0.01 2,019 544.6 4 4 162,315

3 Colon 2009 p<0.01 1,402 247.2 5.8 1 206,553

4 Baru 2009 p<0.01 2,120 535.3 3.9 11 492,942

5 Capira 2014 p<0.01 1,923 745.9 3.1 10 652,859

227

228 Table 2. Characteristics of each space-time model
Model Total number of 

districts

RR 0-1 (# of 

districts)

RR > 1 (# of 

districts)

Highest RR Most observed cases

No covariates 20 9 11 Bocas Del Toro (5.2) San Miguelito (13,109)

Both Aedes species 22 12 10 Santiago (2.9) San Miguelito (13,109)

Only Ae. albopictus 12 4 8 Bocas del Toro (6.2) San Miguelito (13,109)

Only Ae. aegypti 31 17 14 San Miguelito (3.3) San Miguelito (13,109)

229

230 Fig 2. Space-time clusters of dengue fever without adjusting for Aedes presence and absence in 
231 Panama (A); Relative risk for districts belonging to a significant space-time cluster (B). Map 
232 created using ArcGIS [30] and data from The Panamanian Ministry of Health.

233

234 Fig 3. Space-time clusters of dengue that adjusts for both Aedes species presence and absence in 
235 Panama (A); Relative risk for districts belonging to a significant space-time cluster (B).  Map 
236 created using ArcGIS [30] and data from The Panamanian Ministry of Health.

237

238 Fig 4. Space-time clusters of dengue fever that adjusts for Ae. albopictus presence and absence in 
239 Panama (A); Relative risk for districts belonging to a significant space-time cluster (B).  Map 
240 created using ArcGIS [30] and data from The Panamanian Ministry of Health.

241

242 Fig 5. Space-time clusters of dengue fever that adjusts for Ae. aegypti presence and absence in 
243 Panama (A); Relative risk for districts belonging to a significant space-time cluster (B).  Map 
244 created using ArcGIS [30] and data from The Panamanian Ministry of Health.

245    

246 The results of our GLM indicate that dengue PR can be predicted by the presence of Ae. aegypti 

247 alone, with all other covariates exhibiting insignificant statistical relationships to PR (P > 0.05), with 

248 covariate selection employed. Thus, controlling for all other factors, districts with a presence of solely 
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249 Ae. aegypti exhibited an increase in adjusted PR of 1.0933 (P = 0.001). Additionally, the presence of Ae. 

250 albopictus did not predict the presence of Ae. aegypti (P > 0.05).  

251

252 Discussion

253 Our non-spatial statistical testing complements the space-time models, highlighting the likely 

254 role of Ae. aegypti in dengue transmission dynamics across Panama as well as the need to incorporate 

255 vector data into systematic dengue risk projections. In the model where Ae. aegypti presence and 

256 absence was accounted for, more than double the number of districts were contained in clusters than the 

257 model where Ae. albopictus presence and absence was accounted for. The Ae. aegypti model also 

258 contained the highest number of districts with a relative risk > 1, indicating more dengue cases than 

259 would be expected given baseline population levels. Findings are further supported by our determination 

260 that Ae. aegypti is the only predictor of dengue PR in the non-spatial model, which holds important 

261 implications for the understanding of dengue transmission dynamics in the changing landscape of vector 

262 ecology. As an invasive species that has systematically replaced Ae. aegypti throughout numerous 

263 regions in its endemic range [14], Ae. albopictus has been spreading throughout Panama for the previous 

264 13 years [12,13]. Our results illustrate that it has not been a key driver of dengue prevalence throughout 

265 its time occurring in the country, but that more importantly, there is reason to believe that dengue rates 

266 may decrease as the species further proliferates, extirpating Ae. aegypti from its resident range within 

267 Panama. Globally, while Ae. albopictus has been implicated in several small outbreaks [35], the majority 

268 of dengue serotypes are thought to be transmitted by Ae. aegypti, due to its preference for both 

269 urbanized habitat [16,36] and human hosts [37,38]. 

270 Perhaps curious is the lack of association found with the other covariates, which included the 

271 presence and absence of Ae. albopictus, coexistence of both species, and the three socioeconomic 

272 variables. There have been a number of studies addressing the vector status and potential of Ae. 
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273 albopictus. While it is biologically capable of transmitting dengue fever [6], outbreaks that can be 

274 directly attributed to this species are rare [35,39–41]. The lack of contribution of socioeconomic 

275 variables is also interesting, given socioeconomic conditions have been found to influence vector 

276 distribution [42–44]. However, no clear connection has been found between dengue risk and particular 

277 socioeconomic conditions [45], thus supporting our results. Overall, based on our findings, we suggest 

278 that vector surveillance results be incorporated into vector control planning. Specifically, focusing on 

279 regions where Ae. aegypti still maintains a stronghold may be an effective way of combating dengue 

280 outbreaks. Balboa, for example, was identified as a cluster in all four models and had a steady presence 

281 of Ae. aegypti throughout the sample period as well as increasing presence of Ae. albopictus since 2006. 

282 This district is relatively rural with approximately 2400 people spread across 400km2 area. It is possible 

283 that vector control efforts in Balboa are not as frequent or efficacious as in the more populated regions, 

284 yet this hypothesis would require field testing to confirm. Another district, San Miguelito in 

285 metropolitan Panama City, contained the most observed cases during our study period, despite being 

286 only 49.9km2.  This district can be characterized by high density housing and residents of relatively low 

287 socioeconomic status. The staggering number of cases should be a cause for concern, yet its small 

288 geographic area may facilitate public health interventions such as vector control and community 

289 education.  Overall, now that the identification of high risk districts at the national scale has been 

290 completed and informed by vector presence, the subsequent step of illustrating the comparative 

291 characteristics of each district relative to dengue transmission risk can be undertaken. Understanding 

292 what caused Balboa and San Miguelito to experience such high relative risk, for example, is the next 

293 task necessary for adjusting public health interventions to effectively address the needs and conditions of 

294 each district.

295 Despite the longevity of our data and thoroughness of the surveillance efforts, there are clear 

296 considerations and limitations of our work which we would like to see addressed in future studies. First, 
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297 it is possible that the reported cases of dengue in certain districts are travel cases (seeking treatment in a 

298 district different than actual residence), therefore, adjusting for the presence of Aedes can shed light on 

299 the districts where an individual is more likely to get infected with dengue, not necessarily where all 

300 total cases were recorded. The lack of population data for more than one year across such a lengthy 

301 period is a considerable shortcoming of this work. While the frequency of a census in Panama is on par 

302 with much of Latin America, this greatly impacts our ability to determine accurate prevalence rates year 

303 to year. Since linear interpolation is often inaccurate for non-linear trends like population growth rate, 

304 we would like to see more frequent population assessments conducted in regions where dengue is an 

305 ongoing risk, and while we understand that resources may not easily allow for this, the role of national 

306 census efforts in public health is often under-appreciated. Second, the cylindrical shape of the clusters 

307 does not represent the true shape of the clusters, while it is possible to use irregular search windows [46–

308 48]. Third, the STSS reports the relative risk for the entire study period, while relative risk will likely 

309 vary temporally. A final core limitation is the vector surveillance methods employed. Values are 

310 reported as the number of houses containing larvae of each respective species. No information is given 

311 on the number of houses surveyed, and thus we were forced to transform the data into presence and 

312 absence. Had the total number of surveyed houses been reported, we would have been able to compute 

313 each district’s infestation rate, which would have provided a scaled and more nuanced independent 

314 variable to compare to dengue PR. 

315 Overall, it is key to recognize that adding vector surveillance data as a covariate changes the 

316 location, duration, and relative risk of dengue case clusters. Although unadjusted cluster analysis is a 

317 valuable tool for public health officials to identify high risk areas of vector-borne disease, our study 

318 illustrates the role that incorporating relevant covariates can play in altering the model output. While this 

319 has been demonstrated in cancer [49,50], this is the first use of covariates in space-time cluster detection 

320 modelling of neglected tropical disease. With this comes potential to expand into other classes of 
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321 covariates. For example, in addition to vector surveillance data, we support the incorporation of 

322 additional covariates such as vector genetic background, climate, vegetation, and land cover to dengue 

323 cluster models. Furthermore, the differences reported for the clusters of dengue after adjusting for vector 

324 presence merit further small-area studies to determine local-scale characteristics that may assist in 

325 targeted intervention campaigns. Vector surveillance clearly provides valuable information in the 

326 determination of virus case clusters, and thus should be conducted alongside virus surveillance so that it 

327 may be included in modelling efforts. We intend for this exploratory study to inspire future 

328 investigations into the vector status of Ae. albopictus as well as the role of vector surveillance in public 

329 health planning efforts. We hope Panama’s robust dengue surveillance program can stand as a model for 

330 practitioners elsewhere, where current surveillance may be less thorough. 
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