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The white matter architecture of brain networks imparts a distinct signature on neuronal co-
activation patterns. Inter-regional projections promote synchrony among distant neuronal popu-
lations, giving rise to richly patterned functional networks. A variety of statistical, communication
and biophysical models have been proposed to study the relationship between brain structure and
function, but the link is not yet known. In the present report we seek to relate the structural and
functional connection profiles of individual brain areas. We apply a simple multilinear model that
incorporates information about spatial proximity, routing and diffusion between brain regions to
predict their functional connectivity. We find that structure-function relationships vary markedly
across the neocortex. Structure and function correspond closely in unimodal, primary sensory and
motor regions, but diverge in transmodal cortex, corresponding to the default mode and salience
networks. The divergence between structure and function systematically follows functional and
cytoarchitectonic hierarchies. Altogether, the present results demonstrate that structural and func-
tional networks do not align uniformly across the brain, but gradually uncouple in higher-order
polysensory areas.

INTRODUCTION

Intricate connection patterns among neural elements
form a complex hierarchical network that promotes sig-
naling and molecular transport [10, 58]. Neural ele-
ments have a pronounced tendency to form local cliques
and tightly-coupled communities with common func-
tional properties [29]; a small proportion of long-distance
projections allows signals to be sampled and integrated
from these specialized domains [5, 37, 74]. Perpetual in-
teractions via the white matter “connectome” manifest
as richly patterned neural activity and are thought to
support perception, cognition and action [52].

What is the link between structure and function in
brain networks? Relating the organization of physical
connections to patterns of functional interactions is a key
question in systems neuroscience. A number of methods
have been used to address this link, including statisti-
cal models [44, 47], communication models [14, 26, 49]
and biophysical models [8, 19, 31, 65]. The focus has
traditionally been on using whole-brain structural con-
nectivity to predict whole-brain functional connectivity,
with the assumption that a common mechanism operates
across the entire network. These methods have proven
insightful and generally yield moderate fits to empiri-
cal functional connectivity patterns, from approximately
25% to 50% of the variance explained [45].

Nevertheless, structure and function may not be re-
lated in exactly the same way across the whole brain.
Recent evidence points to a fundamental organizing prin-
ciple for macroscale functional interactions [42]. The hi-
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erarchy spans from unimodal primary areas to polysen-
sory transmodal areas, tracing a continuous sensory-fugal
gradient that culminates in the default mode network
[36, 46]. This representational gradient may reflect mi-
crostructural variations, showing significant associations
with intracortical myelination [33] and laminar differen-
tiation [56]. Altogether, this work opens the possibility
that structure and function may not be related in exactly
the same way across the whole brain, but potentially con-
verge or diverge in specific areas.

Here we address the relationship between structure and
function by focusing on connection profiles of individual
brain regions. We first reconstruct structural and func-
tional networks from diffusion MRI (dMRI) and resting-
state functional MRI (fMRI) in a cohort of 40 healthy
participants. We then apply a simple multilinear model
that uses information about a region’s geometric and
structural network embedding to predict its functional
network embedding. The method allows us to ask how
closely structure and function correspond in individual
regions and the extent to which this correspondence re-
flects affiliation with cognitive systems, cytoarchitecture
and functional hierarchies.

RESULTS

Structural and functional networks were reconstructed
as follows:

• Structural networks. Structural and functional con-
nectivity were derived from N = 40 healthy control
participants (source: Lausanne University Hospi-
tal). Structural connectivity was estimated from
diffusion spectrum imaging. Adjacency matrices

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/561985doi: bioRxiv preprint 

mailto:bratislav.misic@mcgill.ca
https://doi.org/10.1101/561985
http://creativecommons.org/licenses/by/4.0/


2

Figure 1. Node-wise structure-function relationships | Local, node-wise structure-function relationships are estimated
by fitting a multilinear regression model for each node separately. For a given node i, the response or dependent variable
is the functional connectivity between node i and node j 6= i. The predictor or independent variables are the geometric and
structural relationships between i and j, including the Euclidean distance, path length and communicability. The “observations”
are individual i, j relationships. Model parameters (regression coefficients b1, b2 and b3) are then estimated by ordinary least
squares. Goodness-of-fit for each node i is quantified by R2

i between observed and predicted functional connectivity.

were reconstructed using deterministic streamline
tractography. A group-consensus structural con-
nectivity matrix was assembled using a consistency-
and length-based procedure [4, 6, 48, 49].

• Functional networks. Functional connectivity was
estimated in the same healthy individuals using
resting-state functional MRI (rs-fMRI). Functional
connections were defined as zero-lag Pearson cor-
relations among regional time courses. A group-
consensus functional connectivity matrix was esti-
mated as the mean connectivity of stable pair-wise
connections across individuals (see Materials and
Methods for more information on the procedure).

Initial data exploration was performed at the highest res-
olution (1000 nodes), using group consensus structural
and functional networks (see Materials and Methods for
more details). Analyses were subsequently repeated at
other resolutions and for individual participants, and in
an independently-collected dataset.

To estimate the correspondence between local struc-
ture and function, we constructed a multilinear regres-
sion model that relates node-wise structural and func-
tional connectional profiles (Fig. 1). For a given node
i, the dependent variable is the resting state functional
connectivity between node i and all other nodes in the
network j 6= i. The predictor variables are the geomet-
ric and structural relationships between i and j, includ-
ing Euclidean distance, path length and communicability.
The observations or samples are the individual i, j rela-
tionships. Model parameters (regression coefficients for
each of the 3 predictors) are then estimated via ordinary
least squares. Goodness-of-fit for each node i, represent-

ing the correspondence between structural and functional
profiles for that node, is quantified by the adjusted R2

i

between observed and predicted functional connectivity.
The use of a multilinear model to relate structure and
function is conceptually similar to the method previously
reported by Goñi and colleagues [26] (see also [7, 44]),
with the important exception that the present model fo-
cuses on connection profiles of individual regions rather
than whole-brain connectivity.

Convergent and divergent structure-function
relationships across neocortex

The correspondence between structural and functional
connection profiles is highly variable across neocortex.
Fig. 2a shows the histogram of R2 values from each of the
node-wise multilinear models. Mean R2 = 0.30 (median
R2 = 0.30), roughly concordant with previous reports
that used similar models to predict whole-network func-
tional connectivity [26]. However, the values vary consid-
erably, from R2 = 0.04 to R2 = 0.62 (inter-quartile range
= 0.18), indicating that for some regions there is a strong
correspondence between structural network embedding
and function, while for others there is little evidence of
any such correspondence.

We next examine the anatomical distribution of
structure-function R2 values. To highlight regions that
show little correspondence, node size and colour are in-
versely proportional to their R2 (Fig. 2b). The map
shows a highly organized and hemispherically symmetric
spatial arrangement. Brain regions with least structure-
function correspondence include medial parietal struc-
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Figure 2. Convergent and divergent structure-function relationships across neocortex | (a) Local structure-function
correspondence, estimated by node-wise R2 from the multilinear model. The histogram shows a wide distribution of R2

values across 1000 nodes at the highest resolution. (b) The spatial distribution of structure-function correspondence. Nodes
are coloured and sized in inverse proportion to R2; nodes with weaker structure-function correspondence are larger. High
correspondence is observed in primary sensory and motor cortices, while lower correspondence is observed in transmodal
cortex. (c) Correlation between structural and functional centrality and structure-function correspondence. Scatter plots
between node-wise R2 and structural and functional centrality, estimated by binary degree and weighted strength, respectively.
The low correlations suggest that the correspondence between structure and function does not trivially depend on the structural
or functional connectedness of a node. For the same results at other parcellation resolutions, please see Fig. S1.

tures (precuneus, posterior cingulate), lateral parietal
and temporal cortices, insular cortex and anterior cin-
gulate cortex. Conversely, primary sensory regions, in-
cluding occipital and paracentral cortices show relatively
high structure-function correspondence.

It is possible that low R2 values are observed in some
areas because they have either too many or too few direct
connections. To examine this possibility, we correlated
regional R2 values with the structural degree and func-
tional strength of each node (Fig. 2c). In both cases the
correlations were low (structural: R = 0.06, p = 0.07;
functional: R = 0.05, p = 0.14), suggesting that regional
variations in structure-function correspondence were not
trivially driven by structural or functional centrality. We
subsequently repeated these analyses for all 5 resolu-
tions of the Lausanne atlas. The results are shown in
Fig. S1 and are consistent across resolutions. We also
replicated these findings in an independently-collected
dataset at resolutions 2, 3 and 4 (Human Connectome
Project; Fig. S2). The spatial patterns of R2 values are
visually similiar (Fig. S2a) and significantly correlated
(R = 0.77, 0.72 and 0.67; Fig. S2b).

Structure-function relationships follow functional
and cytoarchitectonic hierarchies

The spatial distribution of R2 values suggests that
structure-function correspondence may be circumscribed
by functional systems or cytoarchitectonic attributes. To
address this question, we applied two partitions: (1) rest-
ing state networks described by Yeo and colleagues [84],
(2) cytoarchitectonic classes described by von Economo
and Koskinas [66, 77, 80]. The former groups brain re-
gions according to how similar their time courses are and
the latter groups regions according to how similar they
are in terms of cell morphology.

We first calculated the mean R2 for each network or
class. To assess the extent to which these means are de-
termined by the partition, and not trivial differences in
size, coverage or symmetry, we used a label-permuting
null model [49]. Network or class labels were randomly
re-assigned and mean R2 values were re-computed (1,000
repetitions). The network- or class-specific mean R2 was
then expressed as a z-score relative to this null distribu-
tion.

There is a gradual divergence between structure and
function moving from unimodal to transmodal cortex.
Fig. 3 shows the z-scored R2 for each resting state net-
work (red) and cytoarchitectonic class (blue). Positive
values indicate that the structure-function relationship
is stronger than expected by chance, while negative val-
ues indicate that the structure-function relationship is
weaker than expected by chance. Consistent with the
intuition developed in the previous section, statistically
significant divergence between structure and function is
observed in polysensory or transmodal cortex, namely
the default mode and ventral attention resting state net-
works, and the insular and association classes. The re-
verse is true for primary unimodal cortex, where there is
a significant convergence between structure and function.

Structure and function systematically diverge along
a macroscale functional gradient

Recent studies suggest a universal organizational prin-
ciple whereby brain regions are situated along a continu-
ous gradient or hierarchy, ranging from primary sensory
and motor regions to transmodal regions [34, 42]. It is
therefore possible that the patterns of structure-function
convergence and divergence recapitulate this hierarchy.

We first derived a macroscale functional gradient for
the present data set. The correlation-based functional
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Figure 3. Structure-function tethering across cognitive systems and cytoarchitectonic classes | Node-wise R2 values
are averaged according to their membership in resting-state networks or cytoarchitectonic classes. To determine whether the
mean value for each network or class is statistically significant, a null distribution is constructed by randomly permuting the
network or class label (10,000 repetitions). The network- or class-specific mean R2 is then expressed as a z-score relative to
this null distribution. Statistically significant networks/classes are shown in colour; non-significant networks/classes are shown
in grey. Yeo networks: vis = visual, da = dorsal attention, fp = frontoparietal, lim = limbic, sm = somatomotor, va = ventral
attention, dm = default mode. von Economo classes: ac1 = association cortex, ac2 = association cortex, pm = primary motor
cortex, ps = primary sensory cortex, pss = primary/secondary sensory, ic = insular cortex, lb = limbic regions.

network was converted to a transition probability matrix
and subjected to singular value decomposition, a method
known as diffusion map embedding [13] (see Materials
and Methods for more details). The first eigenvector of
the matrix, which we refer to as a “gradient”, spans pri-
mary unimodal cortex on one end and transmodal cortex
on the other (Fig. 4a). Critically, the map bears a strong
resemblance to the vertex-wise map originally reported
by Margulies and colleagues [42].

We then assess the relationship between structure-
function R2 for a given region, and its position along the
macroscale functional gradient. Fig. 4b shows that the
two are anti-correlated (R = −0.48, p = 4.35×10−59). In
other words, structure and function closely correspond in

unimodal cortex, but diverge as one moves up the hier-
archy. At the apex of the hierarchy (transmodal cortex),
there is much less correspondence between structural and
functional connection profiles.

Alternative predictors and individual participants

As a final step, we ask two important questions. First,
how sensitive are the overall results to choice of predic-
tors? Thus far, we focused on two canonical network met-
rics, one related to shortest path routing and the other
related to diffusion. The relative contribution of each
variable, estimated using stepwise regression, is shown in

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/561985doi: bioRxiv preprint 

https://doi.org/10.1101/561985
http://creativecommons.org/licenses/by/4.0/


5

Figure 4. Structure-function divergence across large-scale functional network gradients | Large-scale functional
network gradients were identified by applying diffusion map embedding to the normalized graph Laplacian of the correlation
matrix. (a) The first gradient runs from primary, unimodal cortex to transmodal cortex and resembles the vertex-wise map
originally reported by Margulies and colleagues [42]. (b) Node-wise structure-function R2 values are anti-correlated with
positions along this gradient, suggesting that structure and function closely correspond in unimodal cortex but diverge in
transmodal cortex.

Fig. S3. Though theoretically driven, the choice of these
two measures is arbitrary and there exist several other
network-theoretic statistics that also capture the poten-
tial for two nodes to exchange signals with each other
[3], including alternative forms of diffusion [26, 51, 53],
contagion [49], parallel exchange via path ensembles [2]
and navigation [67].

We therefore repeated the analysis shown above using
a multilinear model with a greater number of predictors
(Euclidean distance, path length and communicability as
before, and adding search information, path transitivity
[26, 62, 69, 73]). We note two key results. First, the
overall model fit does not change appreciably, with the
mean R2 = 0.33 (median R2 = 0.33, and standard devia-
tion = 0.12). This is unsurprising, given the well-known
multicolinearity among graph measures [55]. More im-
portantly, the spatial distribution of R2 values is highly
correlated those produced by a multilinear model with
fewer predictors (R = 0.98, p < 10−5), suggesting little
practical benefit for including additional predictors.

The second question is to what extent can compara-
ble effects be observed in individual participants? In an
effort to amplify the signal to noise ratio we initially per-
formed all analyses on group-representative structural
and functional networks, and it is unclear whether the
systematic divergence between structure and function is
robust across individuals. We therefore fit a multilin-
ear model to each individual participant and estimated
regional R2 values as before. We then correlated the
individual-level R2 pattern with the group-level R2 pat-
tern. The individual-to-group correlation R is moder-
ate (mean R = 0.33, median R = 0.32, 95% CI [0.07
0.50]). but statistically significant (p < 0.05 in 39/40
participants), suggesting considerable consistency across
individuals.

DISCUSSION

The present report demonstrates variation in the ex-
tent to which structure and function correspond in hu-
man cortical networks. The relationship between struc-
tural and functional connection profiles appears to follow
an overarching cognitive-representational and cytoarchi-
tectural hierarchy, becoming increasingly untethered as
one moves towards transmodal cortex at the apex.

Localized structure-function relationships

Our results contribute to a growing effort to under-
stand structure and function from a more localized per-
spective. There is a rich literature on predicting func-
tion from structure at the whole-network level, includ-
ing direct edge-to-edge comparisons [30, 68], multivari-
ate statistical models [44, 47], network-theoretic models
[1, 14, 26, 49, 67] and biophysical models [8, 19, 65]. We
find that the relationship may not be uniform through-
out the whole network, but may instead vary across brain
regions. This is consistent with the notion that individ-
ual areas possess distinct connectional [57, 71] and spec-
tral activation “fingerprints” [38]. High-density precision
mapping studies suggest that functional organization and
regional boundaries may also be highly individualized
[27, 40].

For the present analysis we chose two predictors that
cover the extremes of a putative communication spec-
trum [3], one reflecting routing of information and one
reflecting diffusion. The extent to which signaling is
centralized or decentralized is an exciting open question
[28, 67]. For instance, individual areas may broadcast
information differently from one another, while large-
scale systems may utilize different forwarding protocols
or frequency channels [23]. Our results open the possibil-
ity that communication mechanisms may be multiplexed,
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with multiple protocols operating in parallel [26].
It is noteworthy that simple Euclidean distance was

a powerful predictor. The probability of structural con-
nectivity [32, 60], and the magnitude of functional con-
nectivity between areas both decrease with spatial sep-
aration [50, 64]. Indeed, many topological attributes of
brain networks can be accounted for by simple generative
mechanisms that minimize interareal wiring cost [61, 70]
(but see also [4, 79]). Our results are consistent with this
notion, showing that the spatial embedding of brain re-
gions is the most informative predictor of their functional
interactions.

Functional and cytoarchitectonic hierarchies

More generally, our findings contribute to an emerg-
ing literature that emphasizes macroscopic spatial gra-
dients as a primary organizing principle [34, 36, 39, 46].
Smooth variation across cortex has been observed in gene
expression [11], cytoarchitecture [24], myeloarchitecture
[33], cortical thickness [81], structural connectivity [9]
and functional connectivity [42]. The increasing com-
plexity of cortical microcircuitry along this hierarchical
gradient, ranging from primary sensory to transmodal
cortex, is thought to engender increasingly integrative
internal representations and functions.

Our findings suggest that a consequence of hierarchi-
cal microscale organization is a gradual decoupling of
macroscale structure and function. In primary sensory
areas we find a close correspondence between structural
and functional connection profiles, but at the apex of
the hierarchy - corresponding to the default mode and
salience networks - the two diverge considerably. The
polyfunctional hubs that occupy this end of the gradient
are thus more likely to participate in multiple networks
and explore a wider dynamic repertoire [78, 86]. How the
correspondence between node-level structure and func-
tion relates to individual differences in behaviour is an
exciting question for future work [43].

Why do structural and functional networks come un-
tethered? One explanation could be that static network-
theoretic metrics do not adequately capture the dynamic
mechanisms that give rise to functional interactions. For
instance, we have previously suggested that the net-
work embedding of polysensory association areas places
them in an optimal position to simultaneously receive
signals originating from multiple sources across the net-
work [49, 83]. Thus, extensive mixing of diverse signals
at top of the hierarchy may engender less predictable
functional relationships and wider discrepancy between
structure and function.

An alternative explanation is that the increasing com-
plexity of local microcircuitry contributes to the overall
signal variance in transmodal cortex. In particular, the
shifts in structure-function relationships mirror patterns
of laminar differentiation [46, 56]. In primary areas with
strong differentiation there is a strong correspondence

between structure function, while in transmodal cortex
- with weaker laminar differentiation - the structure-
function relationship is also weaker. In a recent modeling
study, Wang and colleagues allowed microscale-related
parameters of a biophysical model to differ between brain
regions [82]. The best-fitting model was characterized
by strong recurrent connections and excitatatory subcor-
tical input in sensorimotor regions; conversely, default
network regions had weak recurrent connections and ex-
citatory subcortical inputs [82]. Complementary results
were reported by Demirtaş and colleagues, who found
that biophysical models could be fitted to functional con-
nectivity much better if they were informed by hierarchi-
cal heterogeneity, estimated from T1w/T2w ratios [20].
Thus, a richer local cytoarchitecture in transmodal cortex
- supporting increasingly autonomous and spontaneous
dynamics - may potentially render macroscale structural
metrics overall less effective in predicting functional in-
teractions [16].

Methodological considerations

The present results are subject to several important
methodological limitations and considerations. First,
structural connectivity is estimated using streamline
tractography on diffusion weighted imaging, a method
known to be susceptible to systematic false positives and
false negatives [17, 41, 85]. In addition, previous re-
ports have found evidence that functional connectivity
may also be more variable in heteromodal or transmodal
cortex [54]. Although the current results are derived us-
ing high-resolution diffusion spectrum imaging and in a
group-consensus networks, it is nevertheless possible that
there is systematic underrepresentation or mischaracter-
ization of structural or functional connectivity in trans-
modal cortex, manifesting as a lower correspondence be-
tween structural and functional connectivity.

A second concern is that our results are based on par-
cellated data, a methodological approach that assumes
that brain regions can be mapped to identical spatial lo-
cations in every participant. Recent evidence from preci-
sion mapping studies, using repeated measurements in
single individuals, suggests that functional boundaries
can systematically vary across individuals and that this
is particularly true in higher-order, transmodal cortex
[27, 40].

Finally, it is important to acknowledge that the present
multilinear model(s) violate a basic assumption of regres-
sion models, namely that the observations (regional con-
nection profiles) are not independent. Each observation
represents a dyadic (i, j) relationship that is drawn from
a graph that represents the brain, a system we know to
be spatially contiguous and assume to be connected. The
expected effect is that parameter estimates and goodness-
of-fit metrics will therefore be biased. For this reason,
we only use structure-function R2 as a relative metric
to compare the correspondence of structure and function
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across a set of nodes, each of which is estimated under
the same conditions.

METHODS

Data acquisition

We performed all analyses in two datasets. The
main (discovery) dataset was collected at the Depart-
ment of Radiology, University Hospital Center and Uni-
versity of Lausanne, (LAU; N=40). We also included a
replication cohort from the Human Connectome Project
(HCP; N=215) [76]. Structural connectivity was recon-
structed from diffusion-weighted imaging: diffusion spec-
trum imaging (DSI) for LAU, high angular resolution
diffusion imaging (HARDI) for HCP. Although dataset
LAU had fewer participants, we selected it as the discov-
ery dataset because of the quality of the DSI sequence.
Below we describe the acquisition, processing and con-
nectome reconstruction procedure for each dataset in
more detail.

LAU. A total of N = 40 healthy young adults (16
females, 25.3 ± 4.9 years old) were scanned at the De-
partment of Radiology, University Hospital Center and
University of Lausanne. The scans were performed in
3-Tesla MRI scanner (Trio, Siemens Medical, Germany)
using a 32-channel head-coil. The protocol included (1)
a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence sensitive to white/gray matter con-
trast (1 mm in-plane resolution, 1.2 mm slice thickness),
(2) a diffusion spectrum imaging (DSI) sequence (128
diffusion-weighted volumes and a single b0 volume, max-
imum b-value 8000 s/mm

2
, 2.2×2.2×3.0 mm voxel size),

and (3) a gradient echo EPI sequence sensitive to BOLD
contrast (3.3 mm in-plane resolution and slice thickness
with a 0.3 mm gap, TR 1920 ms, resulting in 280 images
per participant). Participants were not subject to any
overt task demands during the fMRI scan.

HCP. A total of N = 215 healthy young adults (112
females, 29.7± 3.4 years old) were scanned as part of the
HCP Q3 release [25, 76]. MRI data were acquired on the
HCP’s custom 3-Tesla Siemens Skyra with a 32-channel
head coil. The protocol included (1) a 3D-MPRAGE
sequence, (2) a high angular resolution diffusion imaging
(HARDI) sequence, and (3) a multi-band accelerated 2D-
BOLD EPI sequence sensitive to BOLD contrast. For
more details regarding the acquisition protocol see [25,
76].

Structural network reconstruction

Grey matter was parcellated into 68 cortical nodes
according to the Desikan-Killiany atlas [21]. These re-
gions of interest were then further divided into four addi-
tional, increasingly finer-grained resolutions, comprising
114, 219, 448 and 1000 approximately equally-sized nodes

[12]. Structural connectivity was estimated for individ-
ual participants using deterministic streamline tractogra-
phy. The procedure was implemented in the Connectome
Mapping Toolkit [15], initiating 32 streamline propaga-
tions per diffusion direction for each white matter voxel.

To mitigate concerns about inconsistencies in recon-
struction of individual participant connectomes [35, 72],
as well as the sensitive dependence of network measures
on false positives and false negatives [85], we adopted a
group-consensus approach [6, 17, 61]. In constructing a
consensus adjacency matrix, we sought to preserve (a)
the density and (b) the edge length distribution of the
individual participants matrices [4, 6, 49].

We first collated the extant edges in the individual par-
ticipant matrices and binned them according to length.
The number of bins was determined heuristically, as the
square root of the mean binary density across partici-
pants. The most frequently occurring edges were then
selected for each bin. If the mean number of edges across
participants in a particular bin is equal to k, we selected
the k edges of that length that occur most frequently
across participants. To ensure that inter-hemispheric
edges are not under-represented, we carried out this pro-
cedure separately for inter- and intra-hemispheric edges.
The binary densities for the final whole-brain matrices
were 28.1%, 20.3%, 12.0%, 5.9% and 2.4% for resolutions
1 to 5, respectively.

Functional network reconstruction

Functional MRI data were pre-processed using proce-
dures designed to facilitate subsequent network explo-
ration [59]. FMRI volumes were corrected for physiolog-
ical variables, including regression of white matter, cere-
brospinal fluid, as well as motion (three translations and
three rotations, estimated by rigid body co-registration).
BOLD time series were then subjected to a lowpass filter
(temporal Gaussian filter with full width half maximum
equal to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion scrubbing was performed as described by
Power and colleagues [59]. The data were parcellated ac-
cording to the same atlas used for structural networks
[12].

A group-average functional connectivity matrix was
constructed from the fMRI BOLD time series by concate-
nating the regional time series from all participants and
estimating a single correlation matrix. To threshold this
matrix, we sampled at random 276 points from the con-
catenated times series and re-calculated a full correlation
matrix from these points (1,000 repetitions). From these
bootstrapped samples, we estimated confidence intervals
for the correlation magnitude between every pair of brain
regions. Pairs whose correlation was consistently positive
or negative across the 1000 samples were retained (along
with the sign and weight of the correlation) as putative
functional connections.
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Multilinear model

A multiple regression model was used to predict the
functional connection profile of every node using a set of
geometric and structural connection profile predictors of
the same node (Fig. 1). The predictors were (1) the Eu-
clidean distance between node centroids, (2) path length
between nodes and (3) communicability between nodes.
Path length and communicability were both estimated
from the binarized structural connectome. Path length
refers to the shortest contiguous sequence of edges be-
tween two nodes. Communicability (Cij) between two
nodes i and j is defined as the weighted sum of all paths
and walks between those nodes [22]. For a binary adja-
cency matrix A, communicability is defined as

Cij =
∞∑

n=0

[An]ij
n!

= [eA]ij (1)

with walks of length n normalized by n!, ensuring that
shorter, more direct walks contribute more than longer
walks. Both metrics were implemented in the Brain Con-
nectivity Toolbox (https://sites.google.com/site/
bctnet/) [63].

The regression model was then constructed for each
node i

FCi = b0 + b1EUi + b2PLi + b3COi (2)

where the response variable FCi is the set of functional
connections between i and all other nodes, and the pre-
dictor variables are the Euclidean distance (EUi), struc-
tural path length (PLi) and structural communicability
(COi) between i and all other nodes in the network. The
regression coefficients b1, b2 and b3, as well as the inter-
cept b0 were then solved by ordinary least squares (func-
tion fitlm.m in MATLAB 2016a).

Diffusion map embedding

Diffusion map embedding is a nonlinear dimensionality
reduction algorithm [13]. The algorithm seeks to project
a set of embeddings into a lower-dimensional Euclidean
space. Briefly, the similarity matrix among a set of points
(in our case, the correlation matrix representing func-
tional connectivity) is treated as a graph, and the goal
of the procedure is to identify points that are proximal
to one another on the graph. In other words, two points
are close together if there are many relatively short paths
connecting them. A diffusion operator, representing an
ergodic Markov chain on the network, is formed by tak-
ing the normalized graph Laplacian of the matrix. The
new coordinate space is described by the eigenvectors
of the diffusion operator. In keeping with previous re-
ports that applied the method to functional networks,
we set the diffusion rate α = 0.5 [18, 42], which approx-
imates the Fokker-Planck diffusion. The procedure was
implemented using the Dimensionality Reduction Tool-
box (https://lvdmaaten.github.io/drtoolbox/) [75].
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Figure S1. Stability of main results across five parcellations | The results shown in Fig. 2 are repeated for five anatomical
parcellations provided by Cammoun and colleagues [12], featuring 68, 114, 219, 448 and 1000 cortical nodes. (a) Histograms
of node-wise R2 values from the structure-function multilinear model. (b) Spatial distributions of R2 values. (c) Correlations
between node structural degree and R2 values. (d) Correlations between node functional strength and R2 values.
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Figure S2. Replication dataset | To determine whether the results are replicable, we fit the multilinear model in an
independently-collected dataset. (a) The spatial distribution of R2 at 3 different parcellation resolutions. Nodes with smaller
structure-function R2 values are indicated by larger circles and colder colours. (b) The correlation between node-wise R2 in the
discovery dataset (Lausanne dataset; LAU; N = 40) and the validation dataset (Human Connectome Project dataset; HCP;
N = 215).

Figure S3. Variable importance | To assess the contribution of individual independent variables in the multilinear model,
we first estimate the structure-function R2 with all variables, as well as the R2 when individual variables are removed. The
contribution of a variable is quantified as the decrease in model fit (∆R2) following removal. Node-wise ∆R2 is displayed for
communicability, path length and Euclidean distance. All values were negative, so absolute values are shown for simplicity.
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