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Abstract 
Identification of cell type subpopulations from complex cell mixtures using single-cell RNA-sequencing (scRNA-
seq) data includes automated computational steps like data normalization, dimensionality reduction and cell 
clustering. However, assigning cell type labels to cell clusters is still conducted manually by most researchers, 
resulting in limited documentation, low reproducibility and uncontrolled vocabularies. Two bottlenecks to 
automating this task are the scarcity of reference cell type gene expression signatures and that some 
dedicated methods are available only as web servers with limited cell type gene expression signatures. In this 
study, we benchmarked four methods (CIBERSORT, GSEA, GSVA, and ORA) for the task of assigning cell 
type labels to cell clusters from scRNA-seq data. We used scRNA-seq datasets from liver, peripheral blood 
mononuclear cells and retinal neurons for which reference cell type gene expression signatures were available. 
Our results show that, in general, all four methods show a high performance in the task as evaluated by 
Receiver Operating Characteristic curve analysis (average AUC = 0.94, sd = 0.036), whereas Precision-Recall 
curve analyses show a wide variation depending on the method and dataset (average AUC = 0.53, sd = 0.24). 
CIBERSORT and GSVA were the top two performers. Additionally, GSVA was the fastest of the four methods 
and was more robust in cell type gene expression signature subsampling simulations. We provide an 
extensible framework to evaluate other methods and datasets at 
https://github.com/jdime/scRNAseq_cell_cluster_labeling. 
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Introduction 
During the last five years a number of single-cell sequencing technologies have been developed to identify cell 
subpopulations from complex cell mixtures (Bakken et al, 2017). For instance, recent advances in single-cell 
RNA-sequencing (scRNA-seq) enable simultaneous measurement of expression levels of hundreds to 
thousands of genes across hundreds to thousands of individual cells. The resulting gene expression matrices 
of genes by cells are used (see below) to identify cell subpopulations with characteristic gene expression 
profiles and other biological properties (i.e. cell types). 
 
A typical computational pipeline to process scRNA-seq data involves the following steps: i) quality control of 
sequencing reads, ii) mapping reads against a reference transcriptome, iii) normalization of mapped reads to 
correct batch effects and remove contaminants, iv) data dimensionality reduction with Principal Component 
Analysis or alternative approaches, v) clustering of cells using principal component values, vi) detection of 
genes differentially expressed between clusters, vii) visualization of cell clusters in t-SNE or alternative plots, 
and viii) assignment of cell type labels to cell clusters. A number of computational tools, including Cell Ranger 
(Zheng et al, 2017a) and Seurat (Butler et al, 2018), allow automation of steps i to vii (Innes & Bader, 2018; 
Freytag et al, 2018; Duò et al, 2018). However, assignment of cell type labels to cell clusters is still conducted 
manually by most researchers. The typical procedure involves manual inspection of the genes expressed in a 
cluster, combined with a detailed literature search to identify if any of those genes are known gene expression 
markers for cell types of interest. This manual approach has several caveats, including limited documentation 
and low reproducibility of cell type gene marker selection, use of uncontrolled and non-ontological vocabularies 
for cell type labels, and it can be time-consuming. For these reasons computational tools that allow 
researchers to systematically, reproducibly and quickly assign cell type labels to cell clusters derived from 
scRNA-seq experiments are needed. 
 
In this study we used three scRNA-seq datasets from liver cells (MacParland et al, 2018), peripheral blood 
mononuclear cells (PBMCs) (Zheng et al, 2017a) and retinal neurons (Shekhar et al, 2016b) (Table 1) to 
compare four methods that can be used for assigning cell type labels to cell clusters: CIBERSORT (Newman 
et al, 2015b), GSEA (Subramanian et al, 2005), GSVA (Hänzelmann et al, 2013) and ORA (Fisher, 1935; 
Goeman & Bühlmann, 2007) (Table 2). We chose these four methods to represent different categories of 
methods, ranging from first-generation enrichment analysis (ORA) to second-generation approaches (GSEA 
and GSVA) and machine learning tools (CIBERSORT). Although ORA and GSEA were not originally 
developed to process RNA-seq data, they have been extensively used in transcriptomic studies for gene set 
enrichment analyses. GSVA was developed to analyse microarray and bulk RNA-seq data, and CIBERSORT 
was developed to estimate abundances of cell types in mixed cell populations from bulk RNA-seq data. We 
adapted all four methods to assign cell type labels to cell clusters from scRNA-seq data based on known sets 
of cell type marker genes. We evaluated these methods using two types of inputs: a matrix with the average 
expression of each gene x from all the cells in each cell cluster y (Ěxy) from scRNA-seq measurements, which 
we assume corresponds to the profile of a cell type or state, and known cell type gene expression signatures, 
represented as gene sets or continuous gene expression profiles (Figures 1A to 1C). 
 
CIBERSORT uses gene expression profiles as training data for a machine learning algorithm to estimate 
abundances of known cell types in a mixed cell population and was originally developed to identify composition 
of known immune cell types in bulk RNA-seq sample measurements. In our evaluation, we used Ěxy matrices 
instead of bulk RNA-seq data. GSEA uses a Kolmogorov–Smirnov (KS) like statistic to determine whether a 
gene set shows statistically significant, concordant differences between biological states. It was originally 
developed to analyse microarray gene expression data and has been applied to multiple genomic data types. 
GSVA transforms a gene by sample matrix to a gene set by sample matrix, and evaluates gene set enrichment 
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for each sample. Like GSEA, GSVA uses a KS like statistic but GSVA bypasses explicitly modeling 
phenotypes within the enrichment scoring step. GSVA was originally developed to process microarray and bulk 
RNA-seq measurements. ORA uses the Fisher’s exact test to detect an overrepresentation of members of a 
gene set in a subsample of highly expressed genes, compared against both the total number of gene set 
members and the total number of genes measured in the sample. 
 
Methods explicitly developed to assign cell type labels to cell clusters of scRNA-seq data have been reported 
(Crow et al, 2018; Alquicira-Hernandez et al, 2018; Alavi et al, 2018). However, to our knowledge they are in 
beta, or implemented as web-servers to process cell types for which we could not find reference cell type 
annotations (Figure 1F) that we would require to include in our evaluation. For this reason, we included only 
the four methods described above, and we provide execution and benchmark scripts that will be useful to 
extend our comparisons to other methods in the future. 
 

Methods 
Generation of cell cluster average gene expression matrices (Ěxy) 

For the liver dataset (MacParland et al, 2018) we followed the authors’ reported procedure to obtain cell 
clusters, and obtained the Ěxy matrix for each cluster using the function AverageExpression(use.raw = T) from 
Seurat v2 (Butler et al, 2018). For the PBMCs dataset (Zheng et al, 2017a), Fresh 68k PBMCs DonorA gene 
expression matrix files were obtained from 10X (Zheng et al, 2017b). Normalization, data dimensionality 
reduction, cell clustering and Ěxy matrix calculations were conducted with Seurat with the following functions: 
FilterCells(low.thresholds = 200,-Inf, high.thresholds = 0.05,10000); FindClusters(reduction.type = "pca", 
dims.use = 1:10, resolution = 0.4); AverageExpression(use.raw = T). For the retinal neurons dataset (Shekhar 
et al, 2016b) the gene expression matrix and cell cluster assignments were obtained from (Shekhar et al, 
2016a) and the Ěxy matrix calculation was conducted with AverageExpression(use.raw = T) from Seurat. 
 
Generation of cell type gene expression signatures 
A gene expression signature is defined simply as a set of genes characteristically and detectably expressed in 
a cell type. These are typically identified in small scale experiments that need to be manually identified in the 
literature, or by comparing the transcriptome of a given cell type against all other available cell type gene 
expression profiles, usually from the same experiment. The liver cell type gene set signatures were manually 
curated by us (author S.A.M.) and were originally used to manually annotate cell types in the liver dataset  
(MacParland et al, 2018). We provide these gene sets at (Diaz-Mejia, 2019). For the PBMC dataset, we used a 
blood cell type gene expression profile signature compiled by the CIBERSORT developers called LM22, 
containing 547 genes and 22 cell types (Newman et al, 2015a). Reference cell type assignments to the 
PBMCs by fluorescence-activated cell sorting (FACS) were obtained from (Zheng et al, 2017c). The PBMC cell 
clusters we obtained with Seurat were mapped using cell barcode identifiers against the FACS assignments, 
and cell type names were manually matched to the LM22 signature. For the retinal neuron dataset (Shekhar et 
al, 2016b), known cell type markers reported by the authors were used as cell type gene set signatures. 
 
CIBERSORT requires as input a cell type gene expression signature in the form of gene expression profiles 
(i.e. a matrix of genes in rows and cell types in columns). For the PBMC dataset, we used two versions of the 
LM22 signature for CIBERSORT. First, we used the original LM22 signature (Newman et al, 2015b) with 
continuous valued gene expression measurements, that we called CIBERSORT ‘continuous’. Second, for each 
cell type of the LM22 signature, a value of ‘1’ was assigned to 5% of genes with highest expression values in 
their column or a value of ‘0’ otherwise, and we called this approach CIBERSORT ‘binary’. The same 5% of 
genes was used to create cell type gene set signatures as inputs for GSEA, GSVA and ORA. For the liver 
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dataset, we transformed the cell type gene set signature into a binary matrix of genes in rows and cell types in 
columns for CIBERSORT ‘binary’ analysis mode. To do this, each gene included in each cell type gene set m 
was assigned a value of ‘1’ in the column corresponding to m in the matrix, whereas other genes absent in m 
but present in other cell type gene sets were assigned a value of ‘0’. Similarly, for the retinal neuron dataset 
the ‘previously known markers’ for bipolar cell types provided in Table S2 of (Shekhar et al, 2016b) were 
transformed into a binary matrix of genes by cell types for CIBERSORT ‘binary’ analysis. 
 
Generation of subsampled cell type gene expression signatures and AUC violin plots 
Cell type gene set signatures (Figure 1B) were subsampled by randomly removing between 10 and ~99% of 
genes from each signature in increments of 10%, keeping a minimum of one gene. Each subsampling of gene 
sets was transformed into a binary matrix of genes by cell types for CIBERSORT ‘binary’ as indicated above. 
Cell type gene expression profile signatures (Figure 1C) were subsampled in two stages: first we selected the 
top 5% highest expressed genes for each cell type, then we randomly replaced the gene expression value of 
10 to 100% of those genes from each cell type, in increments of 10%, by the minimum value of the cell type 
column. This resulted in subsampled gene expression profile signatures with identical size to the original profile 
signatures, but with values of the top highly expressed genes randomly replaced by the minimum score of 
each cell type. For percentage values between 10 to 100%, 1,000 subsampling replicates were generated for 
each cell type gene expression signature, and each replicate was processed as indicated by Figures 1D to 1G. 
Violin plots were used to show the resulting ROC and PR AUC distributions. 
 
Transformation of tested methods’ enrichment metrics for ROC and PR analyses 
The enrichment scores (ES) from CIBERSORT and GSVA were directly used as ranks for the benchmark 
comparisons against gold standard references, whereas the P-values from GSEA and ORA were first -log 10 
transformed and the resulting values were used as ranks for the benchmark analyses. For ORA, the universe 
of genes used was the intersection of genes present in the cell type gene expression signature and the Ěxy 
matrix of each dataset. All methods were implemented locally using Java, R and Perl (Table 2) using the 
following libraries and programs: for CIBERSORT we used CIBERSORT.jar and R(Rserve), for GSEA we used 
gsea-3.0.jar, for GSVA we used R(GSVA) and R(GSA), and for ORA we used R(fisher.test). 
 
Method computing time benchmark 
We implemented wrapper scripts to execute each of the four methods tested, including a stopwatch to time the 
cell type prediction task. Other tasks, such as input and output preparation, were excluded from computing 
time values reported in Table 2. All computing time measurements were made using a 3.1-GHz Intel Core i5 
CPU with 2 cores and 16GB RAM. 
 

Results 
We benchmarked the performance and computing time of four cell type labeling methods: CIBERSORT, 
GSVA, GSEA and ORA (Table 2) using average gene expression profiles of scRNA-seq cell clusters and 
known cell type gene expression signatures. We used three scRNA-seq datasets: liver cells (MacParland et al, 
2018), PBMCs (Zheng et al, 2017a) and retinal neurons (Shekhar et al, 2016b) (Table 1). Each method used 
two inputs: an Ěxy matrix with the average gene expression for each cell cluster (Figure 1A) and a cell type 
gene expression signature, represented as either a gene set or a gene expression profile. Three of the four 
methods tested (GSVA, GSEA and ORA) used cell type gene set signatures (Figure 1B), whereas 
CIBERSORT used cell type gene expression profiles either with continuous or binarized values (Figure 1C). 
Each method produced a matrix of cell type predictions (Figure 1D and E) which was compared to manually 
annotated cell type references (Figure 1F) to conduct Receiver Operating Characteristic (ROC) and Precision-
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Recall (PR) curve analyses (Figure 1G). The robustness of each method was assessed by randomly 
subsampling 10% to 100% of the genes from the cell type gene expression signatures and repeating the cell 
type detection and ROC and PR curve analyses for each subsample (Figure 1H). 
 
In general, we observed that all four methods showed high ROC AUC values for all three analysed scRNA-seq 
datasets. An average ROC AUC = 0.97 was found for the liver dataset (Figure 2A), average ROC AUC = 0.92 
for the PBMC dataset (Figure 2B) and average ROC AUC = 0.94 for the retinal neuron dataset (Figure 2C). 
Since CIBERSORT takes as input a cell type gene expression signature in the form of gene expression profiles 
(Figure 1C), and the only available signatures for the liver and retinal neuron datasets were in the form of gene 
sets, we transformed the gene sets into binary matrices and used them as inputs for CIBERSORT (Methods). 
Interestingly, the binary matrix approach, which we called CIBERSORT ‘binary’, produced the highest 
performance among all tested methods for the liver (ROC AUC = 1, Figure 2A) and retinal neurons datasets 
(ROC AUC = 0.95, Figure 2C). The CIBERSORT ‘binary’ approach performance was almost identical to that of 
the original LM22 cell type gene expression signature with continuous values, which we called CIBERSORT 
‘continuous’, for the PBMC dataset (ROC AUC = 0.91 and 0.92, Figure 2B). GSVA was the top performer 
using the PBMC dataset (ROC AUC = 0.95, Figure 2B), closely followed by GSEA (ROC AUC = 0.94) and the 
two versions of CIBERSORT (‘binary’ ROC AUC = 0.92 and ‘continuous’ ROC AUC = 0.91), while ORA’s 
performance was slightly lower (ROC AUC = 0.86) (Figure 2B). 
 
The analysis of ROC AUC robustness showed that, in general, all methods’ performance decayed as a 
function of removing genes from cell type gene expression signatures. However, GSVA tolerated removal of up 
to 90% of the genes from the PBMC signature to maintain ROC AUC’s >= 0.8. ORA tolerated removal of up to 
60% of genes at the same ROC AUC cutoff (Figure 3B), whereas GSEA and the two versions of CIBERSORT 
gave ROC AUC’s < 0.8 when >= 30% of the genes were removed from the PBMC cell type signatures. For the 
liver dataset, GSVA and GSEA tolerated removal of up to 60% of genes from the liver signature to maintain 
ROC AUC’s >= 0.8, whereas CIBERSORT ‘binary’ and ORA tolerated removal of up to 50% of the genes at 
the same ROC AUC cutoff (Figure 3A). For the retinal neuron dataset, GSVA and ORA tolerated removal of up 
to 50% of the genes from the signature to maintain ROC AUC’s >= 0.8, whereas GSEA and CIBERSORT 
‘binary’ tolerated removal of 30% and 20%, respectively, for the same ROC AUC cutoff (Figure 3C). 

 
When benchmarking the four methods compared in this study, we classified each cell cluster positively into a 
single cell type and negatively into the remaining cell types of their corresponding dataset signature. This 
produced a skewed distribution with few positive predictions and several negative predictions. To ameliorate 
this imbalance, we used PR curve analyses in addition to ROC curve analyses. In general, the PR AUC’s were 
smaller than the ROC AUC’s (Figure 2, top vs. bottom panels). Some methods clearly separated from the rest 
using PR curve analyses. For instance, GSEA showed the lowest PR AUC values for both the liver and retinal 
neurons datasets (PR AUC’s = 0.51 and 0.28), compared with CIBERSORT (PR AUCs = 0.98 and 0.5), ORA 
(PR AUC’s = 0.90 and 0.53), and GSVA (PR AUC = 0.89 and 0.56) (Figures 1D and 1F). GSEA also displayed 
the lowest AUC in the ROC curve analyses for the liver and retinal neurons datasets, and the performance 
differences between GSEA and the other methods were more pronounced using PR curve analyses. In 
contrast, the two versions of CIBERSORT for the PBMC dataset ranked very close to the other three methods 
using ROC curve analyses (all ROC AUC’s were > 0.9, Figure 2B), but they were relatively low using PR curve 
analyses (CIBERSORT ‘continuous’ PR AUC = 0.22 and CIBERSORT ‘binary’ PR AUC = 0.24), compared 
with GSVA (PR AUC = 0.56), ORA (PR AUC = 0.42) and GSEA (PR AUC = 0.34) (Figure 2E). 
 
The PR AUC robustness analysis showed that all methods’ performance decayed as a function of removing 
genes from cell type gene expression signatures. Interestingly, using the liver dataset all four methods showed 
higher PR AUC’s than for the PBMC and retinal neuron datasets (Figure 4A vs. 4B and 4C). In particular, 
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GSVA and ORA tolerated removal of up to 60% of genes from the liver dataset signatures to maintain PR 
AUC’s >= 0.5. CIBERSORT ‘binary’ tolerated removal of 50% of genes for the same PR AUC cutoff (Figure 
4A), whereas GSEA PR AUC’s were < 0.5 using either the full PBMC cell type signature or any subsampling of 
it. For the retinal neuron dataset, CIBERSORT ‘binary’, GSVA and ORA tolerated removal of up to 20% of the 
genes from the signature to maintain average PR AUC >= 0.5, whereas for GSEA the average was < 0.5 at 
any fraction of genes in the signature. For the PBMC dataset, GSVA was the only method showing PR AUC > 
0.5 with the full signature (Figure 2E) and it tolerated removal of up to 20% of genes from the signature to 
maintain average PR AUC > 0.5 (Figure 4B). 

 
As shown in Table 2, the computing times of method implementations varied from 0.73s for GSVA processing 
the retinal neurons dataset, up to 700 s for CIBERSORT ‘continuous’ processing the PBMC dataset. For all 
three datasets, GSVA was the fastest method to process cell type classification tasks. ORA ranked second 
with computing times between 3 and 5 times longer than GSVA. GSEA showed computing times between 77 
and 134 times longer than GSVA, and CIBERSORT showed computing times between 37 and 777 times 
longer than GSVA. The size of the cell type gene expression signatures used for CIBERSORT influenced the 
speed of the classification task. For CIBERSORT ‘continuous’ we used the original LM22 signature, which 
contained 547 genes for the PBMC dataset, whereas the thresholded binary matrix used for CIBERSORT 
‘binary’ had 248 genes, and it took 169s, or 24% ot the time that took CIBERSORT ‘continuous’ for the same 
task. For comparison, we created a second ‘continuous’ signature by restricting the original LM22 signature to 
the 248 genes present in the thresholded binary matrix. This ‘reduced continuous’ signature approach showed 
a performance (ROC AUC = 0.92, PR AUC = 0.32) which was similar to the full CIBERSORT ‘continuous’ 
(ROC AUC = 0.92, PR AUC = 0.24) and ‘binary’ modes (ROC AUC = 0.91, PR AUC = 0.22), and the 
computing time was reduced substantially to 189s, or 27% of the time that took CIBERSORT ‘continuous’ for 
the same task. 
 

Discussion 
The size and volume of scRNA-seq datasets are continually increasing, and several methods are available to 
normalize scRNA-seq measurements and cluster cells. In contrast, cell type labeling of cell clusters is still 
conducted manually by most researchers. This is in part due to a scarcity of reference cell type gene 
expression signatures and also because most methods to address this challenge are only available via web 
servers with limited number of cell types (Crow et al, 2018; Alquicira-Hernandez et al, 2018; Alavi et al, 2018), 
making it difficult for users to adapt them for their needs. In this study we used three scRNA-seq datasets to 
benchmark four methods that can address these challenges. Although three of the four tested methods 
(GSEA, GSVA and ORA) were not explicitly developed to identify cell types, their extensive use in gene set 
enrichment tasks and their wide portability motivated us to test them as cell type classifiers. CIBERSORT is 
implemented both as a webserver and a local distribution can be licensed by developers, allowing use to 
benchmark it with relatively low programmatic effort. 
 
In general, our results show that for the three scRNA-seq datasets tested (liver, PBMCs and retinal neurons) 
all four tested methods achieved good performance by ROC curve analyses. However, ROC curves tend to 
overestimate methods’ performance when the ratio of positive to negative predictions is highly skewed. For this 
reason, we decided to also conduct PR curve analyses. GSVA was consistently one of the top performers by 
both ROC and PR curve analyses for the three datasets, and its performance was more robust in analyses 
where we subsampled genes from cell type gene expression signatures. This is particularly important at this 
stage of the scRNA-seq field, as only limited information on cell type gene expression signatures is available. 
Interestingly, despite its relative simplicity, ORA showed a performance comparable to GSVA. CIBERSORT’s 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/562082doi: bioRxiv preprint 

https://doi.org/10.1101/562082
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

performance was good, particularly for the liver dataset by both ROC and PR analyses, albeit lower than that 
of GSVA or ORA in the PBMC dataset, and it was comparable using the retinal neuron dataset. CIBERSORT’s 
computing times were orders of magnitude higher those of GSVA and ORA. Our results showed that 
CIBERSORT ‘binary’ performed as well as CIBERSORT ‘continuous’ by both ROC and PR curve analyses and 
used only one quarter of the computing time. In the present implementation, GSEA performed worse than the 
other three methods, particularly in the PR curve analyses. 
 
The size of current publicly available scRNA-seq datasets is currently typically on the order of thousands of 
cells clustered into dozens of cell clusters. In our tests, each of the four tested methods completed the cell type 
prediction tasks in seconds or minutes. However, bigger datasets from the Human Cell Atlas (Rozenblatt-
Rosen et al, 2017) and other sources are expected to have millions of cells (e.g. 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons) grouped into 
thousands of clusters, for which the fastest method implementations will be preferred. In this sense, we found 
that GSVA is the best option since its computing time for the tested datasets was fastest (one to two orders of 
magnitude faster than GSEA and CIBERSORT). ORA also offers a good option for cell cluster labeling as its 
ROC and PR curve benchmarks were comparable to GSVA and its computing times were only 3 to 5 times 
longer than those of GSVA. One extra requirement for ORA compared with the other three methods is that the 
Ěxy matrix profiles need to be thresholded. In this study we used an arbitrary cutoff, based on the overall 
distribution of gene expression values, but future analyses could evaluate iterative thresholding. 
 
One of the limitations of this study is that we included only three scRNA-seq datasets (liver, PBMCs and retinal 
neurons). This was due to the lack of reference cell type annotations needed for the ROC and PR curve 
analyses. As more scRNA-seq datasets become available and authors provide gold standard annotations of 
their cell types, those annotations could be used as references to benchmark methods with other scRNA-seq 
datasets. This is exemplified by the LM22 signature, which was constructed by (Newman et al, 2015b) from 
microarray gene expression measurements to predict cell types from bulk RNA-seq data, and we have shown 
here that LM22 could also be used to detect cell types from scRNA-seq data. Thus, in the future, we envision 
that methods to detect differentially expressed genes can be used as part of pipelines to produce cell type 
gene expression signatures. As with any classification task, researchers would need to control for circularity 
between training, test and validation cell-annotation data and also will need to evaluate generalizability. 
 
One of the challenges that we faced while adapting the LM22 signature to detect cell types in the scRNA-seq 
cell clusters from (Zheng et al, 2017a) was that, even though both datasets correspond to PBMCs, the 
granularity of their cell type labels was different. For instance, the LM22 signature contains six T-cell types, 
including three CD4+ (naïve, memory resting, and memory activated), follicular helper, regulatory and gamma 
delta, whereas the (Zheng et al, 2017a) dataset contained labels for four T-cell related cell types: CD4+/CD25 
T Regulatory, CD4+/CD45RO+ Memory, CD4+/CD45RA+/CD25- Naive T and CD4+ T Helper2. Thus, even 
though these two datasets both classify PBMCs, they cannot be easily related one-to-one. This could be 
addressed with an ontology analogous to the Gene Ontology (Ashburner et al, 2000) but dedicated to cell type 
annotations (Bard et al, 2005; Bakken et al, 2017). Fortunately, the Cell Ontology is being developed for this 
purpose (https://www.jcvi.org/cl-cell-ontology). This is particularly important as an increasing number of 
signatures are expected to arise from initiatives like the Human Cell Atlas (Rozenblatt-Rosen et al, 2017). 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/562082doi: bioRxiv preprint 

https://doi.org/10.1101/562082
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Data and Software Availability 
We provide our R and Perl scripts used to run and benchmark cell type labeling methods to help researchers 
to reproduce our analyses, or to test other scRNA-seq datasets or cell type labeling method implementations, 
at Github: https://github.com/jdime/scRNAseq_cell_cluster_labeling. 
 
The three scRNA-seq datasets from liver cells liver cells (MacParland et al, 2018), PBMCs (Zheng et al, 
2017a) and retinal neurons (Shekhar et al, 2016b), were deposited at Zenodo: “Evaluation of methods to 
assign cell type labels to cell clusters from single-cell RNA-sequencing data” at 
http://doi.org/10.5281/zenodo.2575050 
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Figure Legends 
Figure 1. Schematic of a process to benchmark automated cell type detection methods 
Two inputs are needed by automated cell type detection methods (panels A to C). A. a matrix with the average 
expression of each gene x for each cell cluster y (Ěxy). B. and C. cell type gene marker signatures can be 
provided as either gene sets (lists of gene identifiers, panel B) or numeric gene expression profiles (panel C). 
Gene sets can be manually compiled from literature and are used for methods like GSEA, GSVA or ORA. 
Whereas gene-expression profiles are measurements from microarrays, bulk- or scRNA-seq experiments, and 
are used by methods like CIBERSORT. D. and E. Automated cell type detection methods produce a matrix of 
cell type likelihoods for each cell cluster. F. Some authors of scRNA-seq studies assign cell type labels 
manually to cell clusters using empirical expertise or orthogonal experiments such as fluorescence activated 
cell sorting. These assignments can be used as references to benchmark automated cell type detections. G. 
Top cell type predictions (red rectangles in panel E) are contrasted against annotation references (panel F) to 
assess the performance of cell type detection methods by Receiver Operating Characteristic (ROC) curve and 
Precision-Recall (PR) curve analyses. H. Robustness of cell type detection methods can be analysed by 
gradually subsampling gene markers from cell type gene expression signatures (panels B or C) and repeating 
procedures of panels D to G to obtain distributions of the area under the curve (AUC) for ROC (ROC AUC) and 
PR (PR AUC) curves, which are shown as violin plots. We hypothesized that some detection methods may be 
more robust than others to the proportion of gene markers subsampled from cell type gene expression 
signatures. 
 
Figure 2. Performance analysis of automated cell type detection methods using scRNA-seq data 
ROC and PR curve analyses of four automated cell type detection methods (CIBERSORT, GSEA, GSVA and 
ORA) (Table 2) using three scRNA-seq datasets (Table 1). ROC curve analyses for datasets from: A. human 
liver cells, B. human PBMCs, and C. mouse retinal neurons. PR curve analyses for the same datasets: D. 
human liver cells, E. human PBMCs, and F. mouse retinal neurons. The ROC AUC and PR AUC are shown for 
each method using each dataset. For the PBMCs dataset, two analyses were conducted with CIBERSORT, 
one using the original LM22 cell type gene expression signature with continuous gene expression values, that 
we called CIBERSORT ‘continuous’ (CIBER(c)), and another where the LM22 profiles were thresholded and 
binarized, that we called CIBERSORT ‘binary’ (CIBER(b), see Methods). The same thresholded signature was 
used to create cell type gene sets for GSEA, GSVA and ORA (Methods). For the liver and retinal neuron 
datasets only gene set signatures were available and they were transformed into binary matrices for 
CIBERSORT ‘binary’ (CIBER(b)). 
 
Figure 3. ROC AUC robustness analysis of automated cell type detection methods 
The cell type gene expression signatures used for ROC curve analyses in Figure 2 were randomly subsampled 
1,000 times, keeping 10 to 100% of genes from the original signatures. Automated cell type detection was 
repeated for each subsample and violin plots representing the distribution of resulting ROC AUC’s are shown 
for datasets from: A. human liver cells, B. human PBMCs, and C. mouse retinal neurons. For the PBMC 
dataset, two analyses were conducted with either the original LM22 cell type gene expression signature with 
continuous gene expression values (CIBER(c)) or with a thresholded and binarized version (CIBER(b)). For the 
liver and retinal neuron datasets only binary matrices for CIBER(b) were used. 
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Figure 4. PR AUC robustness analysis of automated cell type detection methods 
The same procedure described in Figure 3 for ROC AUC’s was used here for PR AUC’s. Please see Figure 3 
legend for details. 
 

Table Legends 
Table 1. scRNA-seq datasets used in this study 
Details of the three datasets used in this study 
 
Table 2. Cell cluster labeling methods compared in this study 
Details of the four methods compared in this study, and their computing times to classify cell clusters of 
indicated datasets. (b) refers to CIBERSORT ‘binary’ analysis mode, (c) refers to CIBERSORT ‘continuous’ 
analysis mode. 
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Tables 
 
Table 1. scRNA-seq datasets used in this study 

Dataset 
Name 

Description of scRNA-seq 
dataset 

Number of 
genes in 
Ěxy 

Number 
of cells 

Number 
of cell 

clusters 

Number of 
cell type 

signatures 

Reference 

Liver 10X Chromium sample 
from liver cells from five 
human donors 

20,007 8,444 20 10 (MacParland 
et al, 2018) 

PBMCs 10X Chromium sample 
from peripheral blood 
mononuclear cells from a 
human donor 

17,786 68,579 12 22 (Zheng et al, 
2017a) 

Retinal 
neurons 

Drop-seq sample from 
retinal bipolar neurons from 
healthy mice 

13,166 27,499 18 15 (Shekhar et 
al, 2016b) 

 
 
 
Table 2. Cell cluster labeling methods compared in this study 

Acronym Version Name Language Computing time (s)* Reference 

liver PBMCs retinal 
neurons 

CIBERSORT 1.01 Cell type Identification 
by Estimating Relative 
Subsets of RNA 
Transcripts 

R and 
Java 

(b) = 44 
 

(b) = 169 
(c) = 700 

(b) = 36 (Newman 
et al, 
2015b) 

GSEA 3.0 Gene Set Enrichment 
Analysis 

Java 93 78 98 (Subrama
nian et al, 
2005) 

GSVA 1.30 Gene Set Variation 
Analysis 

R 1.2 0.9 0.73 (Hänzelma
nn et al, 
2013) 

ORA R(3.5.1) Over-representation 
Analysis 

R 4 3 4 (Fisher, 
1935; 
Goeman & 
Bühlmann, 
2007) 
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