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Abstract 

The CHARGE Gene-Lifestyle Interactions Working Group is a unique initiative formed to improve our understanding 

of the role and biological significance of gene-environment interactions in human traits and diseases. The 

consortium published several multi-ancestry genome-wide interaction studies (GWIS) involving up to 610,475 

individuals for three lipids and four blood pressure traits while accounting for interaction effects with drinking and 

smoking exposures. Here we used GWIS summary statistics from these studies to decipher potential differences 

in genetic associations and GxE interactions across phenotype-exposure-population trios, and to derive new 

insights on the potential mechanistic underlying GxE through in-silico functional analyses. Our comparative 

analysis shows first that interaction effects likely contribute to the commonly reported ancestry-specific genetic 

effect in complex traits, and second, that some phenotype-exposures pairs are more likely to benefit from a 

greater detection power when accounting for interactions. It also highlighted a negligible correlation between 

main and interaction effects, providing material for future methodological development and biological 

discussions. We also estimated contributions to phenotypic variance, including in particular the genetic heritability 

conditional on the exposure, and heritability partitioned across a range of functional annotations and cell-types. 

In these analyses, we found multiple instances of heterogeneity of functional partitions between exposed and 

unexposed individuals, providing new evidence for likely exposure-specific genetic pathways. Finally, along this 

work we identified potential biases in methods used to jointly meta-analyses genetic and interaction effects. We 

performed a series of simulations to characterize these limitations and to provide the community with guideline 

for future GxE studies.  
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Introduction 

The precise role of gene-environment interactions (GxE) in complex human disease traits remains unclear. 

Although genome-wide GxE studies having been conducted for many phenotypes, the number of identified GxE 

is very small relative to the large number of genetic variants identified in traditional genome-wide association 

studies (GWAS). A number of issues related to the identification of GxE have been well described in the literature1-

3, including in particular very low power4. As a result, the required sample size needed to detect GxE is substantially 

larger than for of marginal genetic effect. Moreover, few studies have explored potential differences in GxE across 

populations, or assessed the contribution of GxE to the variance of human phenotypes, or explored enrichment 

of GxE for specific functional mechanisms.  

The Gene-Lifestyle Interactions Working Group5 (GLIWG) within the Cohorts for Heart and Aging Research in 

Genetic Epidemiology (CHARGE) is an international initiative that has the potential to address some of these 

challenges. It is a large-scale, multi-ancestry consortium that aims at systematically evaluating genome-wide gene-

lifestyle interactions on cardiovascular disease related traits using genotypic data from up to 610,475 individuals. 

The consortium published a series of genome-wide single nucleotide polymorphism (SNP) by smoking and drinking 

interaction screenings focusing on four blood pressure phenotypes: diastolic blood pressure (DBP), systolic blood 

pressure (SBP), pulse pressure (PP), mean arterial pressure (MAP), and three lipid levels: triglycerides (TG), high-

density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL). For each pair of a phenotype 

and an exposure, a genome-wide interaction studies (GWIS) using the 1 degree of freedom (df) test for GxE 

interaction and the 2 df joint test of genetic and interaction effects6 has been conducted. The results from these 

analyses have been published in five papers: SNP-by-alcohol interaction7 and SNP-by-smoking interaction8,9 on 

blood pressure, and SNP-by-alcohol interaction10 and SNP-by-smoking interaction on lipids11.  

Here we first synthesize the GWIS results for all phenotype-exposure combinations. We highlight the 

importance of our large-scale initiative, providing evidence that interacting variants might differ by genetic 

ancestry, and show that accounting for GxE can help discovering new loci, especially for certain phenotype-

exposure pairs. We then performed a series of analyses comparing interaction effects against both genetic main 

effects estimated in our studies and marginal effects from previous GWAS. Contrary to a commonly assumed 

hypothesis12, we found only negligible correlation between the interaction and marginal effect, highlighting 

additional challenges for future GxE interactions studies. Estimated variance explained by main and interaction 

effect for the outcomes under study also showed that in general, interactions explain a very small amount of 

phenotypic variance on top of the marginal genetic effect for these traits. However, these limitations were 

balanced by heritability analyses. Partitioning the genetic variance in exposed and unexposed individuals 

separately, using both functional and cell type annotations, we found differential enrichment between the two 

groups in multiple instances. This suggests GxE might still play an important role in these phenotypes, with some 

exposures potentially triggering new molecular mechanisms or reducing the contribution of pathways involved in 

unexposed individuals. 

 

Material and Methods 

Phenotypes and exposures 

We considered four blood pressure phenotypes (DBP, SBP, PP, MAP), and three lipids levels (TG, HDL, LDL). DBP 

and SBP were derived as the average over multiple measurements performed at resting or sitting positions. PP 
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and MAP were derived as the difference between SBP and DBP, and the sum of two-thirds of DBP and one-third 

of SBP, respectively. In all cohorts, HDL and TG were directly assayed, while LDL was either directly assayed or 

estimated using the Friedewald equation13: LDL = TC − HDL − (TG/5). Both HDL and TG were natural log 

transformed, while LDL was not transformed. Additional details of the phenotype transformation have been 

published here5. 

Two binary smoking exposures, current smoking and ever smoking, were considered and measured similarly 

across all smoking GWIS. The current smoking variable was coded as 1 if the subject smoked regularly in past year 

and as 0 otherwise. Ever smoking status was coded as 1 if the subject smoked at least 100 cigarettes during his/her 

lifetime and 0 otherwise. For alcohol consumption, two binary variables were considered, referred further as 

current drinking and drinking habit. For both blood pressure and lipid traits, the former exposure was defined 

similarly for all studies, corresponding to any recurrent drinking behavior. The drinking habits exposure was 

defined differently across publications. For lipids phenotypes, the variable was coded as 1 for the subset of current 

drinkers having at least two drinks per week and 0 to for everyone else (i.e. the no drinkers and those drinking 

less than two drinks per week)10. The blood pressure GWIS used instead a “low versus heavy drinking”, where the 

variable was coded 1 for individuals having at least 8 glasses per week, and 0 for individuals with less than 8 glasses 

per week, while all non-drinkers were removed7. 

Generally, the use of categories for the exposures was necessary for harmonizing data from the large number 

of studies, especially for alcohol consumption. Additional details on the assessment of the exposure and 

phenotypes are provided in the corresponding publications.   

 

Data pre-processing 

All studies conducted a two-stage approach. In stage 1 (referred as Discovery), a standard GWIS was performed 

using up to 18 million genetic variants. In stage 2 (referred as Replication), only a subset of variants with a p-value 

below a certain threshold (P<10-6 or P<10-5) at stage 1 were further considered. More details can be found in the 

corresponding publications7,8,10,11. For each outcome-exposure, we had access to complete meta-analysis 

summary statistics of both the discovery and the replication stages for populations of four different ancestries 

(European, African, Asian and Hispanic) after quality control filtering. To ensure a fair comparison, we re-

processed all results using the same pipeline. In the discovery stage, we excluded SNPs with a MAF below 1% and 

with significant (P < 10-6) heterogeneous effects across individual cohorts. SNPs present in only one ancestry were 

excluded from trans-ancestries analyses. Trans-ancestry summary statistics in the replication stage were filtered 

similarly to the discovery stage. Finally, we computed meta-analyses results for the combined analyses (discovery 

stage + replication stage) in each individual ancestry and trans-ancestry. For each ancestry and each phenotype-

exposure combination, only SNPs included in both stages were retained in the final combined dataset. All meta-

analyses were computed using the METAL software14. 

 

Identification of independent signals and loci 

We report genome-wide significant variants in the combined meta-analyses (P < 5x10-8) for each outcome-

exposure and in each ancestry. Independent signals were defined using the clumping framework from the PLINK 

software15, using a linkage disequilibrium (LD) threshold of 0.2 and a maximum physical distance from the lead 

SNP (i.e. the most associated variant) of ± 500 kb. The LD was derived using 1000 Genomes Project16 individuals 

as a reference panel while accounting for ancestry. We used the EUR, AFR, combined EAS-SAS and AMR samples 
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as proxies for the individuals from European, African, Asian and Hispanic ancestries, respectively. For the trans-

ancestry analyses, we built our reference panel by merging all these populations. In some tables and figures, we 

also grouped independent association signals into loci by clustering SNPs located less than 500 kb upstream or 

downstream from the lead SNP. Note that when deriving shared associated loci across studies (e.g. across 

ancestries), we merged loci that overlap, resulting in total counts sometimes slightly lower than the expected total 

count. 

 

Interaction effect conditional on marginal effect 

We assessed potential enrichment for interactions effects for SNPs displaying marginal genetic association. To 

ensure independence between our interaction effect GWIS and the marginal GWAS, we used summary statistics 

from previous studies on blood pressure traits17-19 and lipid traits20-23.  Here, we considered only individuals of 

European ancestry, in order to maximize the sample size while limiting potential issues due to genetic 

heterogeneity, where the top variants might differ across populations. Moreover, to avoid enrichment driven by 

a single locus, we performed a clumping of the GWAS of marginal genetic effect with PLINK24, so that all candidate 

SNPs considered are independent from each other. We first derived the proportion of interaction effect nominally 

significant at type I error rate (alpha) threshold of 0.05 among successive bins of SNPs selected based on their 

marginal association. For the last bin, including only SNPs previously identified at genome-wide significance level, 

we also performed three complementary approaches to test jointly interaction effects4 at those variants: an 

omnibus test, an unweighted genetic risk score (uGRS) test, and a weighted genetic risk score (wGRS) (see 

Supplementary Note).  

 

Variance explained and heritability 

We first estimated the fraction of phenotypic variance explained by top SNPs, decomposed into main effects, 

interaction effects and those effects jointly using the R package VarExp25 (see Supplementary Note). The analysis 

was conducted for each ancestry and each phenotype-exposure combination separately, using only genome-wide 

significant SNPs in the combined meta-analyses for either the 2df or the 1df test for the given trio (exposure-

phenotype-ancestry). For simplicity, we clustered SNPs into loci of 1Mb (500kb from the top SNP upstream and 

downstream) and computed the variance explained using only top SNPs (with the lowest p-value) for all loci. Also, 

because of potentially biased estimations of the interaction effect sizes using the 2df framework but not for the 

main genetic effect size, we used the genetic main effect size estimates from the joint framework and the 

interaction effect sizes computed using the standard 1df meta-analyses for the interaction test. 

For each project, we also aimed at assessing potential differences in heritability across exposure-specific strata. 

Again, to avoid genetic heterogeneity issues, we focused on European ancestry samples only. We computed the 

genetic heritability in the whole sample and in exposure-specific strata (i.e. in unexposed and exposed individuals 

separately) for each trait and exposure combination using the LDscore approach26. We used the pre-computed 

LDscores relative to European ancestry samples provided with software. When unavailable from the original 

studies, we derived the summary statistics of the genetic marginal effect in the whole sample and in unexposed 

and exposed individuals from the interaction model using a tool we recently developed27. 
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Stratified heritability  

For each exposure stratum, genetic heritability was further partitioned by both cell type-specific and general 

annotations28. As for the overall heritability, these analyses focused on European ancestry individuals only. We 

used two distinct sets of annotations: baseline and GenoSkyline+. The baseline annotations encompass 53 tissue-

agnostic, general functional annotations. GenoSkyline+ is a recently proposed annotation set integrating a rich 

collection of epigenomic data from the Roadmap Epigenomics Project29. Additional details on the annotations are 

provided in the Supplementary Note. Enrichment and annotation-specific heritability were compared across 

exposure strata for each trait. When assessing the significance of the enrichment, we used a Bonferroni corrected 

significance threshold of P < 0.000277. We further quantified enrichment for tissue-specific heritability following 

Finucane et al.30, where results from cell-specific annotations based on gene expression data were gathered into 

tissue-specific classes. Except when specified otherwise, enrichment analyses compared median enrichment 

between exposure strata, avoiding comparison of significance which would be biased by differences in sample 

size.  

 

Simulation study 

We compared the performances of meta-analysis strategies for estimating and testing the main and interaction 

effects across multiple cohorts. The first strategy (1df framework) uses the effect estimate and standard error of 

the parameter of interest (either the main or interaction term) from each individual cohort and then performs a 

standard 1 degree of freedom inverse-variance weighted meta-analysis. The second strategy (2 df framework) 

performs first a meta-analysis of both parameters jointly, using not only single cohort effect estimates and 

standard errors, but also their covariance14,31. It then uses the effect estimates from the previous step to perform 

a standard Wald test of each parameter separately. 

We conducted several simulations, all including two cohorts for clarity. The first focused on understanding 

differences we observed for the interaction effect between the two frameworks on real data. We generated 

20,000 genotypes per cohort, a binary exposure and a phenotype as a linear combination of a main genetic effect, 

an interaction effect, or both. These simulations aimed at assessing the impact of heterogeneity across cohorts, 

when varying the MAF of the SNPs, the proportion of exposed individuals in the two cohorts, and the effect sizes 

of the main genetic effect and of the interaction effect. For each replicate and each scenario, we perform a linear 

regression in each cohort and applied the two aforementioned frameworks to test for the interaction between 

the SNP and the exposure. The second simulation broadened the scope of the assessment, and compared 

estimated coefficient and corresponding chi-squared test for both the interaction and main genetic effect terms 

for the two frameworks. Here, we simulated a series of 1,000 replicates using either a binary outcome or a 

continuous outcome and a single SNP, while varying all parameters (distribution of the exposure, MAF, presence 

and size of the genetic and interaction effects, sample size of each cohort) at random and independently between 

the two cohorts. Finally, the last simulation uses a similar framework but focuses on comparing the power and 

robustness of the 2df joint test of main and interaction effect, as compared to marginal genetic effect model.   
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Results 

Overview 

We focused on three lipid and four blood pressure phenotypes, each examining GxE interaction with two 

smoking and two alcohol exposures, for a total of 28 GWIS (Table 1).  All outcome-exposure pairs considered were 

analyzed using a two-stage approach involving up to 610,475 individuals. In stage 1, genome-wide interaction 

analysis was performed in up to 29 cohorts with a total of up to 149,684 individuals from multiple ancestries: 

European-Ancestry (EA), African-Ancestry (AA), Asian-Ancestry (ASA), and Hispanic-Ancestry (HA). In stage 2, 

involving up to an additional 71 studies with 460,791 individuals, also from multiple ancestries, studies focused 

on the replication of a subset of variants from stage 1 with a p-value threshold of 1.0 x 10-6
 achieved by either the 

1df or the 2 df test. Note that the total sample size (discovery + replication) varied substantially across the trait 

analyzed, with an average of 311K for lipids and 457K for blood pressure traits. To ensure a fair comparison across 

all analyses, we re-processed all GWIS summary results using the same pipeline. Stage 1 quantile-quantile (QQ) 

plots for both the 1df and the 2df test are presented in Figure S1, and frequency of the exposure are presented in 

Figure S2 and Table S1. Finally, note that the primary association results from the original studies and our analyses 

are highly concordant, but minor differences might exist because of slight differences in the analysis pipeline. 

 

Summary of 2df results 

The 2df test identified a large number of variants in both the trans-ancestry (Table 1) and ancestry-specific 

(Table S2) meta-analysis. After clumping SNPs based on their pairwise linkage disequilibrium, the 2df trans-

ancestry analyses identified a total of 5,913 association signals, reduced to 1,698 associations when aggregating 

neighboring SNPs into loci (see Material and Methods). A total of 54% of loci (N=926) harbored a single 

independent association signal (Figure S3). For the other loci, the number of potentially additional signals equaled 

3 on average with a maximum of 71. Importantly, many loci overlapped across the exposures tested. For example, 

there were 108 and 103 loci identified for HDL when including interaction between current drinking and drinking 

habits, respectively. However, 92 of those loci overlap between the two analyses. Further merging all overlapping 

loci identified by different exposure scans, our studies found a total of 112, 98, 77 loci for HDL, LDL, TG, and 74, 

75, 75 and 59 loci for SBP, DBP, MAP and PP. On average, 13% of the loci were identified by a single exposure 

scan, while 41% were identified by all four exposure association studies for each phenotype (Figure 1a).  

When stratifying results by exposure, accounting for interaction with drinking tended to identify more lipids 

associations, while accounting for interaction with smoking identified more associations for blood pressure 

phenotypes (Figure 1b-e). Looking at cross-phenotypes results, GWIS accounting for current drinking and drinking 

habits captured 81% and 61% of all loci, respectively, and current smoking and ever smoking scans identified 75% 

and 72% of all loci respectively. Note that the lower number of signals for drinking habits is likely partly explained 

by the smaller sample size used for that exposure (307K on average versus 440K for the other exposures), 

especially for the BP GWIS that used a different definition for drinking habits (see Material and Methods). 

Nevertheless, to understand the differences observed across other exposures, we used the HDL results as a case 

study. First, we noticed that the 2df chi-squared test from overlapping loci across the four exposure scans were 

highly correlated (Figure S4a). This is expected, as most studies have approximately the same sample size at 

discovery and replication stages, and assuming the contribution of the interaction effect is limited. Conversely, 

we noticed a larger mean interaction effect chi-square at those same loci for the drinking exposures as compared 

to the smoking exposures, whatever the framework used to derive the interaction chi-squared test (see the last 
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result sections), suggesting the higher detection rate is at least partly explained by a contribution of the interaction 

effect (Figure S4b). 

An important novelty of the Gene-Lifestyle Interactions Working Group is the inclusion of a large proportion of 

non-European ancestry individuals. More precisely, over the two stages, 63% (N=380,612) were of European, 27% 

(N=162,370) of Asian, 6% (N=34,901) of African and 4% (N=22,334) of Hispanic ancestries. For the 2df test, the 

total number of significant associations per ancestry was globally proportional to the available sample size (Table 

S1). Merging results from all phenotype-exposure pairs, there was 1,285, 383, 135, and 148 phenotype-variants 

associations identified after clumping by this approach in EA, ASA, AA, and HA, respectively. Deriving the overlap 

across ancestries for those associations, we found that the vast majority of ASA and HA associations were also 

identified by the larger EA studies (Figure 2a). Conversely, 32% (43 out of 135) of the associations identified in AA 

were exclusively identified in this population. These association mostly implied variants monomorphic in all 

ancestries except the African ancestry. The trans-ancestry analysis identified 1276 (94%) of all ancestry-specific 

associations, while uncovering an additional 148 associations. All associations missed in the trans-ancestry 

analyses were found in a single ancestry from ASA (N=6), AA (N=36), EA (N=41), and HA (N=1). To account for 

sample size differences and assess whether top variants were consistent across populations, we also extracted for 

each ancestry-specific signal the p-value at the same top SNP for the other ancestries from stage 1, and assumed 

replication if that p-value was smaller than 0.05. Figure 2b shows the overlap over all phenotypes and per 

phenotype is modest, which suggests enrichment for ancestry-specific variants in most populations and in African 

ancestry in particular. 

 

Summary of 1df results 

Despite the reasonably large sample size available in our studies, we found only one significant interaction 

across the 28 trans-ancestry GWIS when combining discovery and replication. Nevertheless, we attempted to 

assess a potential GxE contribution by decomposing the signal from the significant 2df results. For each 

phenotype-exposure-ancestry trio we derived the number of SNPs inducing an enhanced genetic effect in exposed 

individuals (when main and interaction have the same direction) and those inducing a reduced genetic effect 

(when main and interaction have opposite signs). As showed in Figure S5, main and interaction tended to be 

distributed at random among those SNPs, although we did observe a slight enrichment for significant differences, 

with 14 out of 91 trios showing nominally significant (P<0.05) disequilibrium in concordant versus discordant 

effects. Four of them, all in trans-ancestry analyses, remain significant after correction for multiple testing: LDL 

showed larger genetic effect in both current and ever smokers, DBP showed larger genetic effect in current 

drinkers, and SBP showed smaller genetic effect among ever smokers. Among sets of variants displaying 

interaction effects discordant with main genetic effect, we also searched for those inducing an opposite effect 

between exposed and unexposed individuals. Although it is expected that the 2df test is supposed to overperform 

the marginal test, there was only 41 such associations (0.4% of all associations). 

Finally, in ancestry-specific meta-analysis, the 1df interaction test identified 8 loci reaching genome-wide 

significance, all observed in the African ancestry population (Table S3). They involved smoking exposure only and 

are associated with both lipids and blood pressure traits. Four were also detected at genome-wide significance 

with the 2df test in the African ancestry population, while the remaining four were relatively close to genome-

wide significance with that test (P between 1.9x10-6 and 6.3x10-8). In line with the results from the 2df test (Figure 

2), African ancestry appears to be enriched for ancestry-specific associations. 
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Comparison against marginal effect screening 

We retrieved from the literature loci exhibiting significant marginal genetic effect on blood pressure traits17-19 

and lipid traits22,32, and compared those associations against both 1df and 2df tests from our stage 1 analysis (as 

some SNPs were not available at stage 2). Description of these references are provided in Table S4, and the list of 

SNPs used in Table S5. Overall, the 2df screenings identified 167 novel loci-outcome associations, where loci are 

defined as the genetic region 500kb around the top associated variant. Among the 647 associations retrieved 

from the literature, 302 were also found in our studies, while 345 associations were not replicated at genome-

wide significance level (note that this is a stringent comparison as some of them might be captured at stage 2). 

Most of the new association results for lipids were identified when accounting for interaction with drinking 

exposures, while the majority of new blood pressure associations were identified when accounting for interaction 

with smoking exposures (Table 2). For example, 86% (N=18) of the 21 new associations with HDL were found in 

the gene-by-current drinking GWIS, when only 52% (N=11) were identified in the gene-by-current smoking GWIS. 

Conversely 65% (N=17) of the 26 new associations with DBP were found in the gene-by-ever smoking GWIS, while 

15% (N=4) were identified in the gene-by-drinking habits GWIS. 

We next assessed potential enrichment for interaction effects across variants previously identified in these 

marginal effect GWAS. The distribution of interaction effects at those variants did not indicate any clear trend 

(Figure S6) and the joint test of all single SNP33 did not find any enrichment for interaction effect among these 

variants (Table S6). The smallest single SNP p-value was observed for rs1260326 (P = 3.3e-6), a missense variant 

in GCKR. Interestingly, GCKR has been previously found associated with alcohol consumption34,35, and interaction 

between variants in GCKR and alcohol consumption have been reported for gout disease36. Besides assessing 

interaction effect at genome-wide significant variants, we also explored potential enrichment for interaction at 

non-significant SNPs. Such enrichment would be of particular interest to increase power of GxE test through 2-

step approaches12,37,38 (see for example Figure S7). The most common 2-step approach consists of filtering out 

SNPs displaying a marginal genetic p-value larger than a given 1 significance threshold. To assess for the potential 

of this strategy in our data, we quantified the enrichment of nominally significant variants (i.e. P < 0.05) for GxE 

interaction effect while varying 1 between 0.1 and 10-6 applied to the aformentioned external marginal GWAS 

summary statistics. Overall, there was no clear enrichment in our data (Figure 3), although some phenotype-

exposure pairs show a slight increase in the proportion of significant GxE interaction, including in particular TG 

and drinking habits (11% of the SNPs against the 5% expected for 1=10-5). Note that the absence of enrichment 

for other phenotype-exposure pairs does not rule out the relevance of this strategy, but suggests that alternative 

metrics might be used to select candidates. 

 

Variance explained 

We first used VarExp, a tool we recently developed25, to estimate the variance explained by marginal genetic 

effects, the joint genetic and GxE interaction effects, and the interaction effect only at the top genome-wide 

significant variants in each locus for each phenotype-exposure-ancestry analysis (Table S7). Overall, marginal 

genetic effects explained between 0.09% and 8.72% of the total phenotypic variance with an average of 3.59%. 

On the other hand, the interaction terms explained between 0% and 0.41% of the phenotypic variance. The largest 

amount of variance explained was observed for lipids traits, (e.g. average of 4.47% for the 2df, as compared to 

0.81% for blood pressure phenotypes). Overall, we did not observe any major difference in the fraction of variance 

explained by the main genetic effect or jointly by the main genetic effect and the interaction effect across 
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populations. However, we note a larger fraction of variance explained in the European ancestry samples than in 

other populations, with greater differences observed in lipids phenotypes and drinking exposures (7.11% of 

explained variance in individuals from European ancestry versus 5.11% in other populations on average). As 

expected, the fraction of variance explained by the interaction effects only were relatively small for all phenotype-

exposure-ancestry trios. However, this fraction was slightly higher in the African ancestry population (0.15%) than 

in other ancestries (around 0.04%), in agreement with the higher number of significant interactions identified in 

the African samples. 

Second, we estimated potential changes in the heritability of the three lipids and two blood pressures (DBP and 

SBP) traits across all individuals and in strata defined by exposure, using the LDscore approach26 applied to 

summary statistics from the analyses performed in the European ancestry population (Figure 4). We first found 

multiple phenotype-exposure pairs where heritability was significantly different between the exposed and 

unexposed groups. However, in most of the latter cases we noticed unexpectedly large values for the ratio 

measuring the proportion of the inflation in the mean chi-squared statistic that the LD Score regression ascribes 

to causes other than polygenic heritability. The maximum of this ratio equals 0.91 for SBP and drinking habits 

when the guideline suggests it should be close to zero. Such large ratio may indicate a partial mismatch between 

sample and reference for the LD Score or a potential model misspecification (e.g. when low LD variants have 

slightly higher heritability per SNP). We therefore performed a sensitivity analysis, re-deriving the heritability after 

filtering out SNPs based on their p-value for heterogeneity in the meta-analysis and selected the most reliable 

estimate (see Figure S8 and Supplementary Notes). While some of the initially observed differences disappeared, 

most of the trends remained. In particular, heritability among exposed was on average smaller than among non-

exposed for current smoking (h²=0.06 and h²=0.11, respectively) and for drinking habits (h²=0.15 and h²=0.12, 

respectively). Conversely, heritability was on average larger for current drinkers than non-current drinkers 

(h²=0.12 and h²=0.15, respectively).  

 

Differential pathways across exposures 

To explore further differences in genetic effect across exposure strata, we performed a second heritability 

analysis, partitioning genetic contribution by functional annotations28,30. We first considered baseline annotations 

provided with the LDscore package and the GenoSkyline39 annotation set, a cell-type specific annotation database 

derived mainly from the Roadmap Epigenomics29 (Figures S9-13). Because of the relatively modest sample size in 

some strata for such analyses (N equals 12,578 in the smallest strata, see Table S1), we focused on the distribution 

of estimated enrichment coefficient between exposed and unexposed. The majority of phenotype-exposure pairs 

show a similar enrichment pattern (Figure 5). For example, the enrichment estimates were highly correlated for 

drinking habits exposure and lipids (0.75, 0.59 and 0.39 for HDL, LDL and TG, respectively), suggesting that 

potential GxE interactions for those phenotypes do not involve new pathways. Conversely, LDL show substantial 

variability in enrichment for the three other exposures (correlation equals 0.10, 0.22, and 0.17, for current 

drinking, current smoking and ever smoking), suggesting those exposures might activate new genetic pathways 

while reducing the effect of genetic variants involved in unexposed populations. We also noted substantial 

variability for the phenotypes-exposure pairs showing the largest differences in heritability (lipids and current 

smoking, and BP and drinking habits, see Figure 4). However, part of that variability might be due to the reduced 

sample size in one of the two strata, thus making interpretation challenging.  

We next investigated whether exposures tend to display systematic enrichment in specific tissues30. For each 

phenotype, heritability was stratified based on annotation from 205 cell-types linked to 9 tissues (adipose, 
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blood/immune, cardiovascular, central nervous system, digestive, endocrine, liver, musculoskeletal/connective, 

and other), in unexposed and exposed individuals separately. Again, because of unbalanced sample size between 

strata, we focused on the relative differences in median enrichment between exposed and unexposed by tissue, 

while significance was accounted for after merging strata. Detailed results per phenotypes are presented in 

Figures S14-18, and summary results in Figure 6. Overall, liver and adipose were the most enriched and most 

significant tissues for lipids traits, while showing variability between exposed and unexposed individuals. LDL also 

showed some significance and variability for cell-types mapped to digestive tissue for the drinking exposures and 

current smoking. There was less significant enrichment and a less marked difference for BP traits, although we 

noticed a substantially larger enrichment in liver tissue among current drinkers versus non-drinkers for DBP.  

 

Risk of bias for the test of interaction in trans-ancestry analysis 

Throughout this work, we used GxE interaction effect estimates and p-values derived using the standard 1df 

inverse-variance meta-analysis scheme as described in Willer et al40, and applied to the 1df interaction effect from 

each contributing cohort. This is similar to the approach used in the original GWIS papers. On the other hand, we 

used the main genetic effect estimates and p-values derived from the 2df framework as described in Manning et 

al14. Indeed, in addition to computing the 2df joint test p-value, the 2df framework provides a joint estimation of 

the main and interaction effect coefficients along with standard errors. These parameters can then be used to 

perform a Wald test of both the main genetic effect and the GxE interaction effect. Our choice of using only the 

main effect from that framework, while using the standard univariate meta-analysis for the GxE interaction, was 

driven by potential bias we observed in a pilot study using results from both frameworks. 

Indeed, while the two frameworks (standard 1df and joint estimation) should produce asymptotically similar 

results, we noticed some differences at top associated variants for the interaction effect results. We therefore 

conducted a series of simulations exploring different scenarios to compare the performance in terms of type I 

error rate and power using a simple case of two cohorts. The different scenarios were designed to explore 

heterogeneity in allele frequencies, in proportions of exposed individuals, and in genetic and interaction effects 

between the two cohorts (see Material and Methods, Table S8). In most scenarios, p-values for interaction 

computed using the two frameworks were similar. However, we found that in the absence of an interaction effect 

but with heterogeneity between the two cohorts for both the main genetic effect and the proportion of exposed 

individuals, the test of interaction derived from the 2df framework exhibited a major increase in type I error rate 

(Figure S19). This specific pattern of both differential genetic effect and exposure frequency likely induce a 

confounding effect on the interaction term (i.e. higher genetic effect in a cohort with a higher level of exposure). 

Note that heterogeneity in the main genetic effect might be explained by a form of GxE interaction; however, it 

can also very likely be due to differences in linkage disequilibrium between causal and typed variants – especially 

when analyzing multiple ancestries – and thus inducing a false interaction signal. 

 

Genetic heterogeneity and power for 2df tests 

To understand further the characteristics of the 2df framework, we performed an additional series of analyses 

using again a simple case were two cohorts with different characteristics were here pooled together. First, we 

performed a simulation in which we compared coefficient and chi-squared statistics for both the main genetic and 

the GxE interaction effect, using the 1df and 2df frameworks across  
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P2017a large number of replicates where all parameters were drawn at random. As showed in Figure S20, when 

the exposure is binary (as in the present study), we confirm a potential bias for the interaction effect but no 

difference in the main genetic effect. When the exposure is continuous, we observed variability in both estimates, 

but no systematic bias (Figure S21). Second, we simulated a series of replicates and compared four models: a 1df 

marginal model only testing the effect of the genetic variants (Y~G), the same model but adjusting for the effect 

of the exposure (Y~G+E), a joint 2df model accounting for interaction between G and E, as used in our studies 

(Y~G+E+GxE), and an alternative joint 2df accounting for interaction between G and the cohort status 

(Y~G+C+GxC). As showed in Figure S22, under a complete null model, all tests are correctly calibrated. In the 

presence of homogenous genetic effect between the two cohorts, the 2df test is slightly less powerful than the 

marginal and adjusted model, which is expected as this test has one additional degree of freedom. However, when 

simulating heterogeneous genetic effetc between the two cohorts, the 2df accounting for GxE interaction shows 

an increase in power despite the absence of such interaction. This is likely explained by the exposure acting as a 

proxy for the cohorts, which itself is involved in a statistical interaction because of the heterogeneity. Indeed, the 

joint 2df accounting for GxCohort interaction shows the highest power in this scenario. 

 

Discussion 
In this study, we assembled and synthesized the results from 28 gene-by-environment interaction GWIS on lipid 

and blood pressure phenotypes performed across four ancestries, which were recently published by the Gene-

Lifestyle Interactions Working Group5,7,8,10,11. This analysis highlights a number of features regarding large-scale 

GxE analysis and trans-ancestry studies. Overall, we found the trans-ancestry 2df test to be efficient for SNP 

discovery, with the vast majority of associations identified in ancestry-specific analyses being confirmed in the 

trans-ancestry analysis, while allowing for a 10% increase in identified signals. Conversely, our data pointed 

toward ancestry-specific patterns for interaction effects, which might be due to differences in allelic frequencies 

at causal variants, but also to other unmeasured factors. For example, African-ancestry analyses displayed several 

interaction effects across all phenotypes-exposure pairs involving several variants almost absent in other 

populations. Our study also found differences when comparing results across exposures. We noted a greater 

increase in detection for lipid-associated variants when accounting for interaction with drinking, and a greater 

increase in detection for blood pressure-associated variants when accounting for interaction with smoking, thus 

stressing the potential importance of these phenotype-exposure pairs. Finally, our assessment of variance 

explained by interaction effects suggest that, even if small, accounting for interaction can help push signals above 

the stringent genome-wide significance threshold. Furthermore, the decomposition of heritability by functional 

annotations highlighted that exposures can induce divergent mechanisms of phenotype production with 

modification in the associated genetic pathway and cell type involved. 

Comparing our results against previous GWAS of marginal genetic effect, we found strong concordance of 

effects for lipid analyses, with most of the previously identified loci being validated in our study, and over 190 new 

associations identified. Results for blood pressure were more heterogeneous, with approximately half of the 

known associations being validated, and as many associations being only found either in our study or in previous 

GWAS. These differences might potentially involve heterogeneity of genetic effect across populations, as the vast 

majority of the non-validated loci for DBP and SBP were found in the UK Biobank cohorts. When using the marginal 

genetic effect reported in these studies to select potential candidate for interaction effect, we did not observe 

enrichment for interaction effects among those variants, nor at other less significant variants. This is in agreement 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2020. ; https://doi.org/10.1101/562157doi: bioRxiv preprint 

https://doi.org/10.1101/562157
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 
 

with our in-depth comparison of main genetic and interaction effects using the consortium data, which found only 

negligible correlation between the interaction and main effects coefficients.  

Our estimation of the phenotypic variance explained by marginal genetic effect and interaction effect are in 

agreement with previous studies, showing that the contribution of GxE terms on top of marginal genetic effect is 

relatively modest. It confirms the likely limited impact of discovering GxE for prediction purposes in the general 

population41. In addition, the variability observed across population, exposures and phenotypes might be 

explained by various which cannot be sorted out using these data. Consequently, further work would be needed 

not only to understand this heterogeneity but also assess special cases, such as the prediction performances in 

strata defined by environmental exposure, which might lead to gain in predictive power42. In this regard, our 

exposure-specific heritability analyses suggest a potentially larger polygenic effect (and therefore a higher 

prediction power) among non-smokers and current drinkers for most phenotypes. Also, a modest contribution of 

GxE to phenotypic variance does not rule out the potentially important role of GxE in the etiology of these traits. 

For example, a marginal model can capture most of the variance explained by interaction effect, thus masking 

more complex biological mechanisms4. Indeed, the interaction effect only represents the deviation of genetic 

effect relative to the mean of the exposure. Our stratified heritability analyses provide a good example of this 

hypothesis, suggesting in particular a potential change in the genetic architecture of LDL conditional on smoking 

and BP conditional on drinking – i.e. there was much more variability in the enriched annotations between 

exposed and unexposed individuals for those trait-exposure pairs as compared to the other pairs. 

Additionally in this study, we identified a number of methodological subtleties with the 2df framework that can 

make the interpretation of interaction and main effect complex, and in the worst case, can lead to false 

conclusions about the potential link between the two parameters and about potential interaction effect for the 

genetic variants under study. The detailed characterization of the method we performed provides guidelines for 

future studies. In particular our work highlighted the following points: i) when heterogeneity of genetic effect 

across the cohorts analyzed is suspected and the exposure has different distribution across those cohorts, the 

standard 1 degree of freedom inverse-variance meta-analysis of all cohorts should always be preferred for testing 

interaction effect using estimates from the joint 2df framework; ii) while the interaction effect estimate derived 

from the 2df framework shows reduced robustness in the presence of heterogeneity, the main effect estimate 

was much less sensitive to those factors in our simulation; iii) despite this potential bias in effect estimates, the 

joint 2df test of main genetic and interaction effect remains itself well calibrated in all scenarios we considered; 

and iv) we found that while genetic heterogeneity can bias the interaction test, it can at the same time boost the 

power of the 2df test, making it more powerful than the test of marginal genetic effect even in the absence of an 

interaction effect. Our simulations indicated that this gain in power is due to the exposure acting as a proxy for 

cohorts, which themselves display statistical interaction with the genetic variant.  

The Gene-Lifestyle Interactions Working Group is a unique initiative that aims at understanding the interplay 

between genetics and lifestyle on human phenotypes across various ancestries. Here we present an overview of 

the published GxE screenings involving SNP by drinking and smoking exposures interactions on lipid and blood 

pressure traits using GxE summary statistics. These cross analyses identified different signals depending on the 

population and exposures. In addition, the summary data provided by the consortium provide opportunities for 

numerous additional follow-up analyses and we re-analyzed the data to get deeper insights into the biological 

mechanisms underlying the phenotypes conditional on the exposure. Future studies extending methodologies 
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developed for marginal genetic effect GWAS can be used to gain further knowledge on GxE, using fine-mapping43, 

co-heritability44, or conditional analyses45 approaches. 
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Figures 

Figure 1. Loci identified by the trans-ancestry 2df joint test across the four exposures 
We assessed the relative performance of the trans-ancestry joint 2df test across the four exposures. Panel a) 
shows overlapping loci for the 2df test across the four exposures. We further decomposed these results by 
exposure, for current drinking (b), drinking habit (c), current smoking (d), ever smoking (e). The corresponding 
radar plots show the proportion (from 0% to 100%) of the total number of loci identified for that phenotype.  
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Figure 2. Overlapping associations for the 2df test across ancestries 
We derived the overlap in association signal for the joint 2df test of main and interaction effects across the four 
ancestries: Asian (ASA), African American (AA), European (EA), and Hispanic (HA). Panel a) shows a Venn diagram 
focusing only on loci found at genome-wide significance level after the meta-analysis of stage 1 and 2. In panel b) 
we extracted genome-wide significant and independent SNPs per ancestry (i.e. reference population) after the 
meta-analysis of stage 1 and 2, and extracted the p-value for those SNPs in other population (i.e. the matching 
population) from stage 1. The barplot shows for each reference population, the proportion of SNPs in the matching 
population that achieve a p-value below 0.05. 
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Figure 3. Potential power for 2-step approach 
We plotted for each environmental exposure, current drinking (a), drinking habits (b), current smoking (c) and 

ever smoking (d), the proportion of independent SNPs displaying an interaction p-value (Pint) below 0.05 in 

CHARGE across bins of variants selected from an independent marginal effect GWAS. Those bins were defined as 

sets of independent variants with p-value for marginal genetic effect (Pmarg) lower than a given threshold. All 

analyses used only GWIS results from European ancestry individuals. Under the null hypothesis of no correlation, 

we expect the proportion to be close to 0.05 (the black dashed line), independent of the threshold for Pmarg. Each 

of the five phenotypes are represented by a plain color line. When bins of SNPs harbor less than 100 variants (for 

low p-value threshold), proportion of Pint < 0.05 are indicated by dashed lines. 

 

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2020. ; https://doi.org/10.1101/562157doi: bioRxiv preprint 

https://doi.org/10.1101/562157
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

Figure 4. Heritability by exposure group 
Heritability of the three lipids and two blood pressure phenotypes (DBP and SBP) derived using the LDscore applied 

to summary statistics from the European ancestry samples meta-analysis. Heritability was derived for all 

individuals (Marg, yellow bar) and for subset of unexposed (Une, teal bar) and exposed (s, purple bar) individuals. 

Vertical dark lines represent the 95% confidence intervals. 
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Figure 5. Functional enrichment across baseline and GenoSkyline+ annotations 
Partitioned heritability for each lipid-exposure in European ancestry individuals across 180 functional annotations. 

Enrichment among unexposed individuals (X axis) is plotted against enrichment among exposed individuals (Y 

axis). Color and size of each data point indicates enrichment and significance of the enrichment in the total sample 

including exposed and unexposed individuals. 
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Figure 6. Stratification of heritability by tissue 
Cell-type partitioned heritability for each exposure was performed and further merged into nine primary tissue 

categories. The top panels show the results for lipids: LDL (a), HDL (b), and TG (c), and the bottom panels show 

the results for blood pressure: DBP (d), and SBP (e). For each phenotype-exposure pair we derived the difference 

between the median enrichment in exposed and unexposed individuals (enrichment) per tissue. To highlight the 

significance of enrichment within each cell-type, we scaled the size of each data point by the proportion of cell 

types that are nominally significant (i.e. P<0.05) after merging exposed and unexposed results. 
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Tables 
 

Table 1. Summary of trans-ancestry GWIS results for 2df joint and 1df interaction tests. 

Outcome Exposure # variants 
Sample Sizea 

(disc) 
Sample Sizea 

(rep) 
# hits 2dfb # hits 1dfb 

Li
p

id
s 

HDL 

Current Drinking 7,505,310 127,252 231,043 111 (584) 0 (0) 

Regular Drinking 6,848,811 118,899 217,468 109 (528) 0 (0) 

Current Smoking 6,306,314 133,508 253,467 69 (335) 0 (0) 

Ever Smoking 7,269,995 133,816 251,711 74 (370) 0 (0) 

LDL 

Current Drinking 7,448,913 118,654 171,142 92 (492) 0 (0) 

Regular Drinking 6,834,699 111,093 155,280 78 (446) 0 (0) 

Current Smoking 6,261,354 125,629 188,109 53 (251) 0 (0) 

Ever Smoking 7,251,615 125,638 186,230 45 (163) 0 (0) 

TG 

Current Drinking 7,410,534 104,716 221,722 71 (413) 0 (0) 

Regular Drinking 6,839,760 103,214 210,623 72 (365) 0 (0) 

Current Smoking 7,122,377 111,900 241,140 52 (220) 0 (0) 

Ever Smoking 8,438,564 111,909 238,972 49 (226) 0 (0) 

B
lo

o
d

 P
re

ss
u

re
 

SBP 

Current Drinking 7,489,960 121,948 426,121 55 (106) 0 (0) 

Heavy Drinking 10,639,279 62,479 114,058 29 (47) 0 (0) 

Current Smoking 6,849,695 127,730 474,475 66 (139) 0 (0) 

Ever Smoking 7,928,860 127,733 458,034 68 (137) 0 (0) 

DBP 

Current Drinking 7,490,269 121,947 426,177 57 (101) 0 (0) 

Heavy Drinking 10,639,829 62,479 114,111 31 (42) 0 (0) 

Current Smoking 6,784,799 127,730 474,531 70 (138) 0 (0) 

Ever Smoking 7,930,829 127,730 458,089 66 (136) 0 (0) 

MAP 

Current Drinking 7,489,903 121,947 426,112 48 (71) 0 (0) 

Heavy Drinking 10,639,231 62,479 113,287 32 (46) 0 (0) 

Current Smoking 6,848,964 127,730 474,465 69 (144) 1 (1) 

Ever Smoking 7,932,503 127,730 458,024 67 (137) 0 (0) 

PP 

Current Drinking 7,489,921 121,947 420,767 39 (67) 0 (0) 

Heavy Drinking 10,639,279 62,479 114,111 18 (27) 0 (0) 

Current Smoking 7,934,402 127,730 473,514 54 (92) 0 (0) 

Ever Smoking 7,934,402 127,730 457,073 54 (90) 0 (0) 

Abbreviation: HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein, TG, Triglycerides; SBP, Systolic Blood Pressure; DBP, Diastolic 

Blood Pressure; MAP, Mean Arterial Pressure; PP, Pulse Pressure; 1df, 1 degree of freedom interaction test; 2df, 2 degrees of freedom joint 

test; disc, Discovery stage; rep, Replication stage. 
a Maximum sample size across all variants analyzed. 
b plain text number corresponds to the count of associated loci while the total number of associated SNPs after clumping is provided in 

parenthesis. 
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Table 2. Association signal overlap between the 2df test (accounting for interactions) and previous GWAS of 

marginal genetic effect. 

 

Phenotype 

Overall  CHARGE only, per exposure 

External GWAS 
only 

both CHARGE only  Current 
Drinking 

Drinking 
Habits 

Current 
Smoking 

Ever 
 Smoking 

HDL 70 83 21  18 17 11 11 

LDL 60 64 29  24 16 5 6 

TG 91 58 14  9 11 5 4 

SBP 37 43 29  16 2 21 22 

DBP 47 46 26  16 4 22 17 

MAP - - -  - - - - 

PP 40 8 48  33 15 45 44 

All 
345 302 167  116 65 109 104 

Abbreviation: HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein, TG, Triglycerides; SBP, Systolic Blood Pressure; DBP, Diastolic 

Blood Pressure; MAP, Mean Arterial Pressure; PP, Pulse Pressure; 1df, 1 degree of freedom interaction test; 2df, 2 degrees of freedom joint 

test; disc, Discovery stage; rep, Replication stage. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2020. ; https://doi.org/10.1101/562157doi: bioRxiv preprint 

https://doi.org/10.1101/562157
http://creativecommons.org/licenses/by-nc-nd/4.0/

