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Abstract

Learning in neural networks has developed in many directions, from image recognition and
speech processing to data analysis in general. Most theories relying on gradient descents tune
the weights to constrain the output activity in a given range of activation levels, thereby focus-
ing on the first-order statistics of the network activity. Here we propose a learning formalism
akin to the delta rule to tune both afferent and recurrent weights in a network, which shapes
the input-output mapping for covariances, i.e. the second-order statistics. Covariance patterns
define a natural metric for time series that capture their propagating nature. We develop the
theory for classification of time series with hidden dynamics, as determined by their spatio-
temporal covariances. This brings a conceptual change of perspective by employing variability
in the time series to represent the information to be learned, rather than merely being the
noise that corrupts the mean signal. Closed-form expressions reveal identical pattern capacity
in a binary classification task compared to the ordinary perceptron; the information density,
however, exceeds the classical counterpart by a factor equal to the number of sending neurons.
Our theory also complements recent studies of the relationship between noise correlation and
(de)coding, showing that activity variability can be the basis for information to be learned by
neural networks.

1 Introduction

The present paper considers the problem of transmission of information conveyed by time series
in a neural network, as illustrated in Fig. 1A. A classical assumption is that the information
is embedded in the mean of each input (see Fig. 1B), which can be evaluated up to sampling
noise over an observation window (of duration d). By tuning the network weights (green
links and arrow in Fig. 1A), groups of patterns in the mean input activity can be mapped to
specific output patterns of mean activity. For supervised learning, the delta rule iteratively
evaluates the error in predicting the category for each stimulus presentation and modifies the
weights accordingly to improve the classification accuracy [5]. Classification for vector patterns
corresponds to the classical perceptron, which does not involve recurrent connectivity (in
purple) and has a long history [29, 23]. In its original version the weights determine the linear
summation of the input activity to obtain the output activity of a single node. Stereotypical
output patterns define categories, as represented with the two distinct mean vectors in red
and blue in Fig. 1B. Many refinements have been developed to stabilize learning, in particular
non-linear transformations to rectify the output, using step or sigmoidal functions [23, 5].
The capacity of the perceptron, namely how many input patterns it can discriminate, has
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Figure 1: From mean-based to covariance-based classification with time series. A:
Example network where n = 2 output nodes generate time series (in dark brown on the right)
from the noisy time series of m = 10 input nodes (in light brown on the left). The afferent
connections B (green links summarized by the green arrow) and, when existing, recurrent
connections A (purple dashed links and arrow) determine the input-output mapping. We
observe the time series over a window of duration d. B: From the observed time series in
panel A, one can calculate the mean activity over the observation window, which gives a
vector (darker pixels indicate stronger values). Tuning the connectivity weights such that
several input patterns of mean activity (m-dimensional vectors on the left-hand side) are
mapped to a same output pattern (n-dimensional vector of the right-hand side) implements
a classification scheme, here represented for two categories in red (dotted rectangle) and
blue. The mapping between input and output (mean) vectors corresponds to the classical
perceptron, with two output nodes here. C: The covariance perceptron maps the covariance
patterns of an input time series (m×m matrices on the left-hand side) to covariance patterns
of the output time series (n× n matrices on the right-hand side), for example larger variance
for one of the two nodes here. The core of this study is a learning mechanism that tunes the
connectivity to obtain good classification performance.
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been the subject of many studies [9, 12, 31, 3]. To take time into account, the perceptron
has been extended from static patterns to spatio-temporal patterns with the recurrent back-
propagation [26] and back-propagation through time [25]. It led to modern classification
machines like deep learning [21, 30], based on recent improvements in the network architecture
like convolutional networks and thanks to computers with increasing power. Importantly, all
these algorithms are based on the view that the time series is composed of a succession of
snapshots of individual patterns (or trajectories) which are possibly corrupted by noise: they
focus on the mean signals at each time (or window) and do not explicitly take into account
their temporal correlations, arising from possible cofluctuations in the example of Fig. 1A.

Instead, the present study proposes a new framework for supervised learning that naturally
captures the propagating nature of multivariate time series. The goal is the optimization of
the mapping between input and output covariances in the network in Fig. 1A, moving from the
first-order to the second-order statistics of the network activity. Building up on the classical
‘mean perceptron’ (Fig. 1B), we use the classification paradigm as an example to illustrate our
theory and classify time series based on their covariance patterns (Fig. 1C). Meanwhile, we
question the use for recurrent connectivity (in purple in Fig. 1A), for which the theory is much
less developed than afferent connectivity (in green). The ansatz is that co-fluctuation patterns
—here determined by covariances without or with time lags— convey information that can
be used to train the network and to classify input time series into categories. In particular,
we aim to use the covariance perceptron to discriminate time series that are characterized
by hidden dynamics. This is a radically different viewpoint on signal variability compared
to Fig. 1B, where the information is conveyed by the mean signal and fluctuations are noise.
Conceptually, taking the second statistical order as the basis of information is an intermediate
description between the detailed signal waveform and the (oversimple) mean signal. The
switch from means to covariances implies richer representations for the same number of nodes
that can be used for training and detection, which we assess in this study.

To fix ideas we use discrete network dynamics similar to the multivariate autoregressive
(MAR) process [22]; extensions to continuous-time processes and other dynamical systems are
discussed later. The output activity yti with 1 ≤ i ≤ n in discrete time t ∈ Z depends on its
own immediate past activity (i.e. with a unit time shift) and on the inputs xtk with 1 ≤ k ≤ m:

yti =
∑

1≤j≤n
Aijy

t−1
j +

∑
1≤k≤m

Bikx
t
k , (1)

where the recurrent and afferent connections are embodied by the matrices A ∈ Rn×n and
B ∈ Rn×m, see Fig. 1A. As we deal with time series, we define the means

Xk ≡ 〈xtk〉 (2)

Yi ≡ 〈yti〉 ,

where the angular brackets indicate the average over realizations and over a period of duration
d. The covariances with τ ∈ Z being the time lag (positive or negative integers) are defined
as

P τkl ≡ 〈xt+τk xtl〉 − 〈xt+τk 〉〈x
t
l〉 (3)

Qτij ≡ 〈yt+τi ytj〉 − 〈yt+τi 〉〈ytj〉 .

In this study we only consider centered variables with zero mean for covariance-based classi-
fication, so the second terms on the right-hand sides vanish in Eq. (3); considerations about
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a mixed scenario based on both means and covariances will be discussed at the end of the
paper. In addition, a threshold is applied on the output to perform classification, thereby
implementing a non-linearity. However, the consistency and learning equations are derived for
the linear system while assuming stationarity for the inputs, see Annexes A and B. The ob-
servation of limited data via the window of duration d in Fig. 1A results in “noise” compared
to the theoretical estimates.

Section 2 considers the shaping of the input-output mapping for covariances by performing
online training on the afferent connectivity. The theory is formulated in a similar manner to
the delta rule, but adapted for covariances (and in a linear system). Firstly examined for
an analytical abstraction of the network dynamics, the learning procedure is then verified
on simulated time series while varying the duration d to see the effect of the observation
noise. Section 3 explores the information capacity of the covariance perceptron with a non-
linearity applied on the observed outputs, or readouts. It compares it with the classical mean
perceptron for the same network architecture with only afferent connectivity. This corresponds
to the case of offline learning (for the abstracted dynamics) with patterns that are presented
to the perceptron without the above-mentioned noise. Section 4 extends the online training
of Section 2 to a network with both afferent and recurrent connectivities in order to deal with
the temporal structure of covariances, either in inputs or outputs. In that case a non-linearity
arises from the network feedback related to the recurrent connectivity.

2 Online learning input-output covariance mappings in feed-
forward networks

This section presents the concepts underlying the covariance perceptron and compares it with
the classical perceptron. The classical perceptron for means, shown in Fig. 1B, corresponds
to observing the output mean vector Y for the classification of the input mean vector X in
Eq. (2). The example of Fig. 1B corresponds to the following input-output mapping for the
mean vectors:

X 7→ Y = BX . (4)

The derivation of this consistency equation with afferent connectivity B only —i.e. A = 0 in
Eq. (1)— assumes stationarity for the inputs in the absence of temporal correlations (P τkl = 0
for τ 6= 0). Under the same conditions, our proposed scheme relies on the mapping between
the input and output covariance matrices, P 0 and Q0 in Eq. (3):

P 0 7→ Q0 = BP 0BT , (5)

where T denotes the matrix transpose. Details can be found in Annex A. The common
property of Eqs. (4) and (5) is that both mappings are linear in the respective inputs (X and
P 0). However, the second is bilinear in the weight B while the first is simply linear.

2.1 Theory for learning of spatial correlation structure by tuning afferent
connectivity

To theoretically examine covariance-based learning, we start with the abstraction of the MAR
dynamics P 0 7→ Q0 in Eq. (5). It corresponds to the consistency equation Eq. (23), which is
derived in Annex A assuming stationarity. In this section we also assume vanishing temporal
correlations (P 1 = P−1T = 0) and absent recurrent connectivity (A = 0). As depicted in
Fig. 2A, each training step consists in presenting an input pattern P 0 to the network and the
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Figure 2: Learning variances in a feed-forward network. A: Schematic representation
of the input-output mapping for covariances defined by the afferent weight matrix B, linking
m = 10 input nodes to n = 2 output nodes. B: Objective output covariance matrices Q̄0 for
two categories of inputs. C: Matrix for the 5 input covariance patterns P 0 (left column), with
their image by the original connectivity (middle column) and the final image after learning
(right column). D: Same as C for the second category. E: Evolution of individual weights of
matrix B during ongoing learning. F: Evolution of the error between Q0 and Q̄0 at each step
(top panel). The individual matrix elements correspond to the gray traces, and the total error
taken as the matrix distance E in Eq. (25) to the thick black curve. The Pearson correlation
coefficient between the vectorized Q0 and Q̄0 (bottom panel) describes how they are “aligned”,
1 corresponding to a perfect linear match.
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resulting output pattern Q0 is compared to the objective Q̄0 in Fig. 2B. For illustration pur-
pose, we use 2 categories (red and blue) of 5 input patterns each, as represented in Fig. 2C-D.
To properly test the learning procedure, noise is artificially added to the presented covariance
pattern, see the left matrix in Fig. 2A to be compared with the top left matrix in Fig. 2C. The
purpose is to mimic the variability of covariances estimated from a (simulated) time series of
finite duration (see Fig. 1), without taking into account the details of the sampling noise. The
desired update for each afferent weight Bik is described in Annex B and is based on the chain
rule in Eq. (26), which gives, after combining Eq. (27) and Eq. (30) —again using P−1 = 0
and A = 0:

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
(6)

= ηB
(
Q̄0 −Q0

)
�
(
U ikP 0BT +BP 0U ikT

)
,

where U ik is a m×m matrix with 0s everywhere except for element (i, k) that is equal to 1.
Here ηB denotes the learning rate and the symbol � indicates the element-wise multiplication
of matrices followed by the summation of the resulting elements —or alternatively the scalar
product of the vectorized matrices. Note that, although this operation is linear, the update
for each matrix element involves U ik that selects a single non-zero row for U ikP 0BT and a
single non-zero column for BP 0U ikT. Therefore, the expression in Eq. (6) is different from
(Q̄0 −Q0)P 0BT +BP 0(Q̄0 −Q0)T, as could be naively thought.

Before training, the output covariances are rather homogeneous as in the examples of
Fig. 2C-D (initial Q0) because the weights are initialized with similar random values. The
afferent weights Bik in Fig. 2E become specialized and tend to stabilize at the end of the
optimization. Meanwhile, Fig. 2F shows the diminution of the error E0 between Q0 and Q̄0

defined in Eq. (25). After training, the output covariances (final Q0 in Fig. 2C-D) follow the
desired objective patterns with differentiated variances, as well as small covariances.

As a consequence, the network responds to the red input patterns with higher variance in
the first output node, and to the blue inputs with higher variance in the second output (top
plot in Fig. 3B). We use a threshold at zero for the difference between the output variances
in order to make a binary classification, whose accuracy during the optimization is shown
in Fig. 3C. Initially around chance level at 50%, the accuracy increases on average due to
the gradual shaping of the output by the gradient descent. The jagged evolution is due to
the noise artificially added to the input covariance patterns (see the left matrix in Fig. 2A),
but it eventually stabilizes around 90%. The network can also be trained by changing the
objective matrices to obtain positive cross-covariances for red inputs, but not for blue inputs
(Fig. 3D); note that variances are identical for the two categories here. The output cross-
covariances have separated distributions for the two input categories after training (bottom
plot in Fig. 3E), yielding the good classification accuracy in Fig. 3F. As a sanity check, the
variance does not show a significant difference when training for cross-covariances (top plot
in Fig. 3E). Conversely, the output cross-covariances are similar and very low for the variance
training (bottom plot in Fig. 3B). These results demonstrate that the afferent connections can
be efficiently trained to learn categories based on input covariances, just as with input vectors
of mean activity.

2.2 Online learning for simulated time series relying on observation window

Now we turn back to the configuration in Fig. 1C and verify that the learning procedure
based on the theoretical consistency equations also works for simulated time series, where the
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Figure 3: Comparison between learning output patterns for variance and cross-
covariance. A: The top matrices represent the two objective covariance patterns of Fig. 2B,
which differ by the variances for the two nodes. B: The plots display two measures based on
the output covariance: the difference between the variances of the two nodes (top) and the
level of covariance (bottom). Each violin plot corresponds to the distributions for the output
covariance in response to 100 noisy versions of the 5 input patterns in the corresponding
category. Note that the distributions are partly spread due to the artificial noise applied to the
input covariances (see the main text about Fig. 2 for details). The separability between the red
and blue distributions indicates a good classification and the dashed line indicates the threshold
at zero used for binary classification based on the variance difference. C: Evolution of the
classification accuracy based on the variance difference between the output nodes during the
optimization. The binary classification corresponds to the threshold in panel B and predicts
red if the variance of the output node 1 is larger than 2, and blue otherwise. The accuracy
eventually stabilizes above the dashed line that indicates 80% accuracy. D-F: Same as A for
two objective covariance patterns that differ by the cross-covariance level, strong for red and
zero for blue. The classification in panel F corresponds to a threshold for the cross-covariance
at 0.4 set at the middle of the target cross-covariance values (0.8 and 0).

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.1 0.15 0.2
input density f

0.5

1.0

ac
cu

ra
cy

10 20 30
observation
duration d

0.5

1.0

ac
cu

ra
cy

observation window

0 200 400 600 800 1000
optimization steps

0.0

0.2

0.4

er
ro

r Q
0

d=10
d=20
d=30

1 2

1

2

0

1

1 2

1

2

0

1

Output objectives Q0
_

A

B

B

1 10
1

10

1 10
1

10

1 10
1

10
1 10

1

10

1 10
1

10

1 10
1

10
Input covariance matrices P0

D

10 20 30
observation duration d

0.00

0.01

m
at

rix
 d

ist
an

ce

P0

Q0

C E F

Figure 4: Online learning input covariances by tuning afferent connectivity. A:
The same network as in Fig. 2A is trained to learn the input spatial covariance structure P 0

determined by the graphical model in Eq. (7). Only 3 matrices P 0 = WWT out of the 5 for
each category are displayed here. Each matrix element in each W has a probability f = 10% of
being non-zero, so the actual f is heterogeneous across the W . The objective matrices (right)
correspond to a specific variance for the output nodes. B: Example of simulation of the time
series for the inputs (light brown traces) and outputs (dark brown). An observation window
(gray area) is used to calculate the covariances from simulated time series. C: Sampling error
as measured by the matrix distance between the covariance estimated from the time series
(see panel B) and the corresponding theoretical value for random connectivities when varying
the duration d of the observation window. The error bars indicate the standard error of the
mean over 100 noisy versions of the 5 input patterns in each category. D: Evolution of the
error for 3 example optimizations with various observation duration d as indicated in the
legend. E: Classification accuracy after training as a function of d pooled for 20 network and
input configurations similar to Fig. S3D. For d ≥ 20, the accuracy is close to 90% on average,
mostly above the dashed line indicating 80%. F: Similar plot to panel E when varying the
input density of W from f = 10 to 20%, with d = 20.
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samples of the process itself are presented, rather than their statistics, the matrices P and
Q. We refer to this as online learning, but note that the covariances are estimated from an
observation window, as opposed to a continuous estimation of the covariances. Note that the
weight update is applied for each pattern presentation.

To do so, we represent the correlation structure among the units by a superposition of
independent Gaussian random variables ztl with unit variance (akin to white noise), which are
mixed by a coupling matrix W :

xtk =
∑

1≤l≤m
Wkl z

t
l . (7)

We use 10 patterns for P 0 = WWT with W having f = 10% density on average to generate
noisy input time series, which the network has to classify based on the variance of the output
nodes, see Fig. 4A where only 3 input patterns per category are represented. The input time
series thus differ by the spatial correlation structure of their activity.

The covariances from the time series are computed using an observation window of duration
d, after discarding a stabilization simulation period to remove the influence of initial conditions
(corresponding to negative times in Fig. 4B). The window duration d affects the precision of
the empirical covariances compared to their theoretical counterpart, as shown in Fig. 4C. This
raises the issue of the precision required in practice for learning to occur in a proper manner.

As expected, a longer observation duration d helps with stabilizing the learning, which
can be seen in the evolution of the error in Fig. 4D: the darker curves for d = 20 and 30 have
fewer upside jumps than the lighter curve. To assess the quality of the training, we repeat
the simulations for 20 network and input configurations, then calculate the variance difference
between the two output nodes for the red and blue input patterns. Values for d ≥ 20 achieve
very good classification accuracy in Fig. 4E. These results mean that the covariance estimate
can be evaluated with sufficient precision even for a few tens of time points only. Moreover,
the performance only slightly decreases for denser input patterns (Fig. 4F). Similar results
can be obtained while training the cross-covariance instead of the variances.

3 Discrimination capacity for perceptron with afferent connec-
tions (offline learning)

The efficiency of the binary classification in Fig. 3 relies on tuning the weights to obtain a
linear separation between the input covariance patterns. Now we consider the capacity of the
covariance perceptron, namely the number of input patterns that can be discriminated in a
binary classification, and compare it with the classical linear perceptron (for means). There
are two important differences in the present section compared to Section 2. Here we consider
noiseless patterns with offline learning, meaning that the weight optimization is performed us-
ing a given number p of patterns (or pattern load) and the classification accuracy is evaluated
with the same patterns. In addition, the non-linearity applied to the readout (observed output
for classification) is incorporated in the weight optimization. We first present geometric con-
siderations about the input-output mappings for the mean and covariance perceptrons. Then
we analytically calculate their capacity using methods from statistical physics and compare
the prediction to numerical simulation (similar to Fig. 3).
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Figure 5: Comparison between input patterns based on mean and covariance. A:
Two examples of pattern classification for mean-based decoding. In the left diagram, the two
categories can be linearly separated, but not in the right diagram. B: The left diagram is
the equivalent of the right diagram in panel A for variance-based decoding. The right panel
extends the left one by considering the covariance P 0

12.

3.1 Input spaces for mean and covariance patterns

Beside the difference between the input-output mappings in terms of the weights B —bilinear
for Eq. (5) versus linear for Eq. (4)— the input space has higher dimensionality for covariances
than means: m(m+ 1)/2 for P 0 including variances compared to m for X. Covariances thus
offer a potentially richer environment, but they also involve constraints related to the fact
that a covariance matrix is positive semidefinite:

P 0
ij = P 0

ji , (8)

P 0
ii ≥ 0 ,

|P 0
ij | ≤

√
P 0
ii P

0
jj ,

for all indices i and j.
To conceptually compare the mean and the covariance perceptron, we consider an example

with m = 2 and n = 1, so that the dimensionality of the free parameters in the source
population is the same in both perceptrons. In the mean perceptron linear separability for the
vector X is implemented by the threshold on Y1 = B11X1 +B12X2 and corresponds to a line in
the plane (X1, X2), as represented by the purple line in the left plot of Fig. 5A that separates
the red and blue patterns (colored dots). The right plot of Fig. 5A, however, represents a
situation where the two categories of patterns cannot be linearly separated. This corresponds
to a well-known limitation of the (linear single-layer) perceptron that cannot implement a
logical XOR gate [23].

The same scheme with variance is represented in the left diagram of Fig. 5B. In this
example we have Q0

11 = B2
11P

0
11 +B2

12P
0
22 +2B11B12P

0
12. In the absence of the cross-covariance

P 0
12, the situation is similar to the equation for the mean vector, albeit being in the positive

quadrant. This means that the output variance Q0
11 cannot implement a linear separation

for the XOR configuration of input variances P 0
11 and P 0

22, both small or both large for the
blue category, one small and the other large for the red category. Now taking P 0

11 and P 0
22

equal to 0 or 1 for small or large values to fix ideas, we have Q0
11 ∈ {B2

11, B
2
12} for the blue

patterns and Q0
11 ∈ {0, B2

11 + B2
12 + 2B11B12P

0
12} for red patterns. Provided the red values

are smaller than the blue values, linear separation is achieved. This leads to the sufficient
condition −2B11B12P

0
12 ≥ max(B2

11, B
2
12). Provided the weight product B11B12 and P 0

12 have
opposite signs and that 2|P 0

12| ≥ max(|B11/B12|, |B12/B11|), a pair of satisfactory weights B11

and B12 can be found. Observing that max(u, 1/u) ≥ 1 for all u > 0, a sufficient condition
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for separating red and blue patterns is 1/2 ≤ |P 0
12| ≤ 1; the right bound simply comes from

Eq. (8).
The increased dimensionality thus gives an additional “degree of freedom” related to P 0

12

for the variance-based decoding in this toy example. This is illustrated in the right diagram
of Fig. 5B by the purple dashed triangle representing a plane that separates the blue and red
dots: the trick is “moving” the upper right blue dot from the original position (light blue
with P 0

12 = 0) in front of the plane to a position behind the plane (dark blue with P 0
12 > 0).

This suggests that separability for input covariances may have more flexibility than for input
means, due to increased dimensionality.

3.2 Theoretical capacity and information density for decoding based on
output cross-covariances

To get a more quantitative handle on the capacity, we now derive a theory that is exact in
the limit of large networks m → ∞ and that can be compared to the seminal theory by
Gardner [12] on the capacity of the mean perceptron.

So far, the weight optimization and classification have been performed in two subsequent
steps. After training the connectivity to implement a mapping from given input covariance
patterns to two objective covariance patterns, classification is performed by a simple thresh-
olding on the observed matrix element in the output, variance or cross-covariance. We now
combine these two procedures into one. The reason is simple: Consider a single entry of the
readout covariance matrix Q0

ij . For binary classification, it only matters that the covariance

Q0
ij be separable, either above or below a given threshold. For each input pattern P 0 = P̂ r

indexed by 1 ≤ r ≤ p, we assign a label ζrij ∈ {−1, 1} corresponding to the position of Q̂rij with

respect to the threshold, where we define Q̂r = Q0(P̂ r) = BP̂ rB following Eq. (5). We are
thus demanding less to the individual matrix element in Q0 than in the previous paradigm:
It may live on the entire half-axis, instead of being fixed to a particular value. Note that the
numbers of −1 and 1 in ζrij may not be exactly balanced here.

Formalizing the classification problem, we fix an element Q̂rij of the readout matrix and

draw a random label ζrij ∈ {−1, 1} independently for each input pattern P̂ r. An important
measure for the quality of the classification is the margin defined as

κ = min
1≤r≤p

(
ζrij Q̂

r
ij

)
. (9)

It measures the smallest distance over all Q̂rij from the threshold set to 0. It plays an important
role for the robustness of the classification [8], as a larger margin tolerates more noise in
the input pattern before classification is compromised. The margin of the classification is
illustrated in Fig. 6A, where each dot represents one of the p patterns and the color indicates
the corresponding category ζrij . As mentioned above, we directly train the afferent weights B
to maximize κ, not to implement a particular mapping between patterns. This optimization
increases the gap and thus the separability between red and green dots in Fig. 6A. In practice,
it is simpler to perform this training for a soft-minimum κ̂, which covaries with the true
margin, as shown in Fig. 6B.

The limiting capacity is determined by the pattern load p at which the margin κ vanishes.
More generally, we evaluate how many patterns we can discriminate while maintaining a given
minimal margin. We consider each input covariance pattern to be of the form P̂ r = 1m + χr

with 1m the diagonal matrix and the random matrix χr where diagonal elements are 0 and
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Figure 6: Memory capacity of the covariance perceptron with a single readout
(n = 2). A: Evolution of the readout Q0

12 = Q̂r12 = (B P̂ pBT)12 over training period,
maximizing the soft minimum margin κ̂ = −η−1 ln

∑
r exp(−η ζr12 Q̂

r
12) by a gradient decent

with η = 4 for m = 50 afferent neurons. Each dot corresponds to one of the p = 20 patterns:
red for ζr12 = 1 and green for ζ12 = −1. B: Minimum margin over training; blue: minimum
margin given by (9); red: soft minimum margin κ̂. C: Overlap R12 = B̌1TB̌2 between the
pair of row vectors involved in the calculation of the readout Q0

12. Symbols from numerical
optimization; error bars show standard error from 5 realizations; solid line from theory in
the large m-limit, which predicts R12 → 0; see Eq. (C.5). D: Total number of classifications

C = p n(n−1)
2 /m relative to the number m of inputs over the effective margin κ̄ = κ/

√
fc2

relative to the typical variance
√
fc2 of an element of the readout matrix. Symbols from

numerical optimization; solid curve from theory in the large m limit given by Eq. (13). Other
parameters: m given in legend; f = 0.2; r = 0.5. Numerical results in C and D from
maximization of the soft-minimum margin κ̂.
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off-diagonal elements indexed by (k, l) are independently and identically distributed as χrkl = 0
with probability 1−f and χrkl = ±c, each with probability f/2. Here f controls the sparseness
(or density) of the cross-covariances. From Eq. (5), the task of the perceptron is to find a
suitable afferent weight matrix B that lead to correctly classification for all p patterns. This
reads for a given margin κ > 0 and all matrix elements 1 ≤ i < j ≤ n as

ζrij
(
BP̂ rBT

)
ij
> κ , ∀ 1 ≤ r ≤ p . (10)

The random ensemble for the patterns allows us to employ methods from disordered sys-
tems [10]. Closely following the computation for the mean perceptron by Gardner [12, 18],
the idea is to consider the replication of several covariance perceptrons. The replicas, indexed
by α and β, have the same task defined by Eq. (10). The sets of patterns P̂ r and labels ζr

are hence the same for all replicas, but each replicon has its own readout matrix Bα. If the
task is not too hard, meaning that the pattern load p is small compared to the number of free
parameters Bα

ik, there are many solutions to the problem Eq. (10). One thus considers the
ensemble of all solutions and computes the typical overlap between the solution Bα and Bβ

in two different replicas. At a certain load p there should only be a single solution left —the
overlap between solutions in different replicas becomes unity. This point defines the limiting
capacity C.

Technically, the computation proceeds by defining the volume of all solutions for the whole
set of cross-covariances Q0

ij as

V =

∫
S

dB
∏
i<j

θ
(
ζrij
(
B P̂ r BT

)
ij
− κ
)
, (11)

where
∫
S dB integrates over all readout vectors that lie on an m-dimensional sphere S —

the norm of each row vector of B is set to unity. This constraint leads to a variance of
each target neuron which is approximately unity, consistent with the sending population.
The typical behavior of the system for large m is obtained by first taking the average of
ln(V) over the ensemble of the patterns. It can be computed by the replica trick 〈ln(V)〉 =
limq→0

(
〈Vq〉 − 1

)
/q [10]. The assumption is that the system is self-averaging; for large m

the capacity should not depend much on the particular realization of patterns. The leading
order behavior for m → ∞ follows as a mean-field approximation in the auxiliary variables
Rαβij ≡

∑
1≤k≤mB

α
ikB

β
jk, assuming symmetry over replicas and indices. Here Rαβij measures

the overlap between the two row vectors of Bα for the element Q̂rαij for a given replicon α.
The saddle point equations —cf. Eqs. (56) and (57) in Annex C— admit a vanishing solution

Rαβij = 0 for i 6= j. This result is intuitively clear: The two readout vectors must be close to

orthogonal, because otherwise the diagonal of the input covariance pattern P̂ rii = 1 would cause
a non-zero bias of the readout Qαij irrespective of the label ζr = ±1. Thus the perceptron
would lose flexibility in assigning arbitrary labels to patterns. Fig. 6C shows the overlap
observed by numerical optimization as a function of the margin. In the finite-size system
studied numerically, a small but nonzero overlap is observed.

To take into account the total number of independent binary classification labels ζrij relative
to the input number m, we define the capacity of the perceptron as

C =
p∗n(n− 1)

2m
, (12)

where p∗ is the maximum load when the overlap Rα 6=βii approaches unity —or equivalently the
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space of solutions vanishes. Our calculations show that

C(κ̄) =
n

2

(∫ ∞
−κ̄

du√
2π

e−
u2

2 (u+ κ̄)2

)−1

. (13)

At vanishing margin one obtains C = n. For n = 2, a single readout, the capacity is hence
identical to the mean perceptron [9]. Moreover, it only depends on the margin through the
compound parameter κ̄ ≡ κ/

√
fc2, relative to the standard deviation of the readout. This

dependence on κ is identical for the mean perceptron for which we have fc2 = 1.
The capacity is shown in Fig. 6D in comparison to the direct numerical optimization of the

margin. Comparing the curves for different numbers m of inputs, the deviations between the
theoretical prediction and numerical results is explained by finite size corrections —at weak
loads, the larger network is closer to the analytical result. However, for the larger network
the optimization does not converge at high memory loads, explaining the negative margin;
pattern separation is incomplete in this regime.

The replica calculation hints at an intuitive explanation for the equivalence of both per-
ceptrons. For the case n = 2 with two readout vectors and a single label, the problem
becomes isotropic in neuron space after the pattern average —cf. Eq. (45) in Annex C. As
an example, we assume a readout in an arbitrary direction determined by a row vector of B,
say B̌1T = (1, 0, . . . , 0)T. The readout element is given by Q0

12 = B̌1T P 0 B̌2 =
∑

k χ1k B̌
2
k,

which is a simple linear readout of a binary random vector χ1k —the same as with the mean
perceptron.

The memory capacity only grows in proportion to n, again similar to n classical mean
perceptrons (i.e. n outputs). Intuitively one could expect it to grow as n(n−1)/2, the number
of classification readouts. It is easy to understand why it is the former: Consider three readout
neurons —say i, j, and j′— and their corresponding row vectors in B, namely B̌iT, B̌jT and
B̌j′T. The covariance Q0

ij provides a constraint on B̌i. Likewise, the entry Q0
ij′′ provides a

second constraint, potentially contradicting if the readouts must be independent in the sense
of coding distinct pattern separations. Stated differently, we have n(n − 1)/2 independent
constraints, but only mn weights in B. Therefore, there is a tradeoff between more readouts
and more constraints for the weights.

Even though the pattern load p at a given margin is identical in the two perceptrons, the
covariance perceptron has a higher information density. It is sufficient to compare the cases
of a single readout in both cases. The mean perceptron stores the information [18]

Imean = m2 C(κ) , (14)

the number of bits required to express the mC patterns of m binary variables each. The
covariance perceptron, on the other hand, stores

Icov =
fm2(m− 1)

2
C(κ/

√
fc2) (15)

bits. The latter expression hence grows ∝ m3, while the former only with m2. If one employs
sparse patterns, where f ∝ m−1, both perceptrons have comparable information content. The
dependence on the number of readout neurons n is another linear factor in both cases.

It is worth recalling that the calculations here neglect the constraints that the covariance
matrices P must be positive semidefinite. Nonetheless, considering the limit of weak and not
too dense entries such that fc � 1, this requirement is assured by the unit diagonal. Since√
fc2 only determines the scale on which the margin κ is measured, the optimal capacity
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can always be achieved if one allows for a sufficiently small margin. In a practical application
where covariances must be estimated from the data, this of course implies a longer observation
time d to cope with the estimation error.

3.3 Comparison of capacity via training accuracy for mean and covariance
perceptrons

The analysis in the previous section exposed that the capacity of the covariance perceptron is
comparable to that of the mean perceptron. To compare and complement the previous results,
we use the same optimization as in Figs. 2 and 3, but without additional noise on the presented
patterns. We consider (cross-)covariance-based decoding for the network N2 with two output
nodes in Fig. 7A. We binarize the output with a threshold function θ(Q0

12−0.5) = 1 for Q0
12 >

0.5 and 0 for Q0
12 < 0.5. To incorporate this non-linearity in the gradient descent, we choose

as objectives Q̄0
12 ∈ {0, 1} and redefine the error E in Eq. (25) in Annex B: E0 = Q̄0

12−θ(Q0
12).

It follows that ∂E
∂Q12

becomes a matrix full of zeros when the prediction is correct and full of
±1 in the case of erroneous prediction, depending on the category. The error averaged over
50 configurations is displayed in Fig. 7C when increasing the number of covariance patterns
similar to the right matrix in Fig. 7B where off-diagonal elements are 0 or c = 1 (here the
matrices are non-negative and required to be positive semidefinite). For each configuration,
the maximum accuracy is retained, in line with the offline learning procedure.

The same θ is applied to Q0
11 for variance-based decoding and to X1 for mean-based

decoding (which is the classical perceptron with binary output) for the network N1 with
a single output node in Fig. 7A. The comparison between the respective accuracies when
increasing the total number p of patterns to learn (p/2 in each category) in Fig. 7D shows
that the variance perceptron with the N1 network is on par with the mean perceptron. It also
shows a clear advantage for the covariance perceptron, which is partly explained by the fact
that the N2 network has twice as many afferent weights as the N1 network. The sparseness
of the input patterns also affects the capacity, which slightly increases for denser covariance
matrices in Fig. 7E. Last, Fig. 7F shows that tuning the mapping is robust when increasing
the number m of inputs.

4 Online learning of simulated time series with hidden dynam-
ics for both afferent and recurrent connectivities

We now come back to online learning with noisy time series and extend the results of Sec-
tion 2 to the tuning of both afferent and recurrent connectivities in Eq. (1) with the same
application to classification. From the dynamics described in Eq. (1), a natural use for A is the
transformation of input spatial covariances (P 0 6= 0 and P 1 = 0) to output spatio-temporal
covariances (Q0 6= 0 and Q1 6= 0), or vice-versa (P 0 6= 0, P 1 6= 0, Q0 6= 0 and Q1 = 0). These
two examples in Annexes D.2 and D.3 explore the theory for these two cases, relying on the
consistency equations Eqs. (23) and (24) derived in Annex A assuming stationarity in place of
the real dynamics. Here we consider the configuration in Fig. 1C and verify that the learning
procedure tested using theoretical consistency equations also works for simulated time series
that differ by their hidden dynamics. This corresponds to the second example where both
P 0 and P 1 convey information. To our knowledge the first result for supervised learning that
relies on the dynamics in a neural network.

The spatio-temporal structure in our model for inputs is determined by a coupling matrix
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Figure 7: Numerical evaluation of capacity using offline learning with non-linearity
applied to readout. A: Feedforward networks with afferent connectivity as in Fig. 2A with
n = 1 and n = 2 output nodes, referred to as N1 and N2. B: Example mean vector X (left)
and covariance matrix P 0 (right) whose density of non-zero elements is exactly f = 20%. Note
that the variances are all fixed to 2 while non-zero off-diagonal elements are set to c = 1. C:
Evolution of the classification accuracy over the noiseless patterns (each color correspond to
a number of input patterns to learn). The variability corresponds to the standard error of the
mean accuracy over 50 input and network configurations. D: Comparison of the classification
accuracies as a function of the number of patterns (x-axis). Covariance-based learning is
tested in the N2 architecture using the cross-covariance (see panel B), while variance-based
learning and mean-based learning are performed with N1. The plotted values are the maximum
accuracy for each configuration, whose means are represented in panel C. E: Similar plot to
panel D for covariance-based learning when varying the sparseness of the input covariance
matrices, as indicated by the density f in the legend. The error bars indicate the standard
error of the mean accuracy over 50 repetitions. F: Similar plot to panel E when varying the
number m of inputs in the network (see legend). The number of patterns to learned are given
as a fraction of m. The error bars correspond to 20 repetitions.
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Figure 8: Online learning for input spatio-temporal covariances with both afferent
and recurrent connectivities. A: The same network as in Fig. S3A to learn the input
spatio-temporal covariance structure, which is determined here by a coupling matrix W be-
tween the inputs as in Eq. (16). Only 3 examples (left matrices) out of the 5 patterns are
displayed for each category. The objective matrices (right) correspond to a specific variance
for the output nodes. B: Example of simulation of the time series for the inputs (light brown
traces) and outputs (dark brown). An observation window (gray area) is used to calculate the
covariances from simulated time series. C: Sampling error as measured by the matrix distance
between the covariance estimated from the time series (see panel B) and the corresponding
theoretical value for random connectivities when varying the duration d of the observation
window. The error bars indicate the standard error of the mean over 100 noisy versions of
the p = 10 input patterns, 50 for each category. D: Evolution of the error for 3 example op-
timizations with various observation durations d as indicated in the legend. E: Classification
accuracy after training similar to Fig. S3D averaged over 20 network and input configurations.
For the largest d = 100, the accuracy is above 80% on average, see the dashed line. The color
contrast corresponds to the 3 values for d as in panel D. F: Accuracy similar to E for d = 100
for 20 configurations when varying the number m of inputs (x-axis). The number of patterns
to learn is p = 10 for all configurations.

17

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


W as a MAR process:

xtk =
∑
l

Wklx
t−1
l + ztk , (16)

with ztk being a Gaussian random variable (or white noise with unit variance). This is the
equivalent to the graphical model in Eq. (7) for generating temporally correlated input signals.
As in Fig. 4, we use 10 patterns for W with 10% density to generate the input time series
that the network has to classify based on the output variances, see Fig. 8A where only 3 out
of 5 matrices W in each category are displayed. The difference between the input patterns
is thus in their hidden dynamics, which the learning has to capture for categorization. Here
P 0 satisfies the discrete Lyapunov equation P 0 = WP 0WT + 1m and P 1 = WP 0, as well as
P 2 = W 2P 0. The derivation of the consistency equations in Annex A assumes P 2 = 0 and
is thus an approximation. As the inputs matrix W must have eigenvalues smaller than 1 in
modulus for stability purpose, our approximation corresponds to ||P 2|| = ||WP 1|| < ||P 1||.

The output is trained only using Q0, meaning that the input spatio-temporal structure is
mapped to an output spatial structure. This time simplifying Eq. (70), the weight updates
are given by

∆Aij = ηA
(
Q̄0 −Q0

)
� ∂Q0

∂Aij
, (17)

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
,

where the derivatives are given by the matrix versions of Eqs. (30) and (32) in Annex B:

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (18)

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT

+U ikP−1TBTAT +BP−1TU ikTAT .

Both formulas correspond to the discrete Lyapunov equation that can be solved at each op-
timization step to evaluate the weight updates for A and B. The non-linearity due to the
recurrent connectivity A thus plays an important role in determining the weight updates.
Note also that Eq. (18) involves the approximation that ignores P 2 and the purpose of the
following is to test the robustness of the proposed learning in a practical use.

The covariances from the time series are computed using an observation window of duration
d represented in Fig. 8B, in the same manner as before. The window duration d affects
the precision of the empirical covariances compared to their theoretical counterpart, but the
output covariances are much noisier here even for very large d (Fig. 8C), partly due to the
approximation mentioned above. This implies that larger d is required to ensure robustness
for the learning procedure when training A in addition to B rather than training B alone.

This can be seen in Fig. 8D, where the evolution of the error for the darkest curves with
d ≥ 50 remain lower on average than the the lighter curve with d = 20. To assess the quality of
the training, we repeat the simulations for 20 network and input configurations, then calculate
the variance difference between the two output nodes for the red and blue input patterns. The
accuracy gradually improves from d = 20 to 100 in Fig. 8F. When varying the number m of
inputs while keeping p = 10 patterns to learn, the optimization procedure seems to lose
robustness for m ≥ 20. These results contrasts with the robustness and efficiency observed for
the feedforward networks trained to detect only spatial covariances and require further study.
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5 Discussion

The aim of this paper is the development of a new learning theory for the categorization of
time series. Training the weights in the MAR network in a supervised manner, our proposed
method extracts the regularities among several input covariance patterns in order to map
each category of inputs to a specific output covariance pattern. A main result is that the
covariance perceptron can be trained in an online manner to robustly classify time series
with various covariance patterns while observing a few time points only (Fig. 4). For the
same number of nodes and connections, its capacity per input is theoretically the same as
the classical perceptron (Fig. 6). However, the information capacity in bits is one order of
magnitude larger because the number of covariance readouts grows quadratically with the
number of output neurons. In simulations akin to offline learning, the resulting accuracy of
the covariance perceptron compares favorably with the mean perceptron (Fig. 7). Another
important result is the demonstration that the covariance perceptron can classify time series
with respect to their hidden dynamics (Fig. 8).

The conceptual change of perspective compared to previous studies is that variability in
the time series is the basis for the information to be learned, namely the second-order statistics
of the co-fluctuating inputs here. Importantly, covariance patterns can involve time lags and
are a genuine metric for time series, describing the transitions of activity between nodes. Our
theory based on dynamic features contrasts with classical and more “static” approaches based
on the mean activity of time series or their binarization, for which the variability is akin to
noise. We stress the importance of the results for online learning where cross-validation is
performed taking the variability inherent to time series, unlike the test for capacity that rely
on noiseless patterns (Fig. 7).

5.1 Covariance-based decoding and representations

The mechanism underlying classification is the linear separability of the input covariance
patterns performed by the threshold on the output activity, in the same manner as the classical
perceptron for vectors of values. The perceptron is a central concept for classification based
on artificial neural networks, from logistic regression [5] to deep learning [21, 30]. The whole
output covariance matrix Q0 can be used as a target, cross-covariances as well as variances
In Section 3 the non-linearity on the readout used for classification has been included in the
gradient descent, which is straightforward by adapting Eqs. (25) and (27) in Annex B. It
remains to be explored which types of non-linearities improve the classification performance
—as is well known for the perceptron [23]— or lead to interesting input-output covariance
mappings. Nonetheless, our results lay the foundation for covariance perceptron with multiple
layers, including with linear feedback in each layer with recurrent connectivity, as its design
is consistent with covariance in inputs and outputs.

Although our study is not the first one to train the recurrent connectivity in a supervised
manner, our approach differs from previous extensions of the delta rule / back-propagation
algorithm, such as recurrent back-propagation [26] and back-propagation through time [25].
Those algorithms focus on the mean activity (or trajectories over time, based on first-order
statistics) and Even though they do take temporal information into account (which implies
correlations via the trajectories), the algorithms applied consider the inputs as statistically in-
dependent variables. Moreover, unfolding time is the adaptation of techniques for feedforward
networks to recurrent networks, but it does not take the effect of the recurrent connectivity
as in the steady-state dynamics considered here. A comparison with those approaches for real
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data such as movies or sounds is left for future work.
The reduction of dimensionality of covariance patterns —from many input nodes to a

few output nodes— implements an “information compression”. For the same number of
input-output nodes in the network, the use of covariances instead of means involves higher-
dimensional spaces in input and output, which may help in finding a suitable projection for a
classification problem. It is worth noting that applying a classical machine-learning algorithm
like the multinomial linear regressor to the vectorized covariances matrices would correspond
to nm(m − 1)/2 weights to tune, to be compared with only nm weights in our study. The
present theoretical calculations focus on the capacity of the covariance perceptron for perfect
classification (Fig. 6). It uses Gardner’s replica method [12] in the thermodynamic limit, to-
ward infinitely many inputs (m→∞). We have shown that our framework indeed presents an
analytically solvable model in this limit and compute the pattern capacity C = p/m by replica
symmetric mean-field theory, analog to the mean perceptron [12]. It turns out that the pattern
capacity (per input and output) is exactly identical to that of the mean perceptron once the
classification margin fixed. Its information capacity in bits, however, growth with m3, whereas
it only has a dependence as m2 for the mean perceptron. Both, the pattern capacity and the
information capacity, depend linear on the size of the target population n. The latter result
is trivial in the case of the mean perceptron —we just have n independent perceptrons here.
However, it is non-trivial in the case of the covariance perceptron, because different entries
Q0
ij here share the same rows of the matrix B. These partly confounding constraints reduce

the capacity from the naively expected dependence on n(n− 1)/2, the number of independent
off-diagonal elements of Q0, to n.

The theory to evaluate the capacity for noiseless patterns (Fig. 6) should thus be extended
to take into account the observation noise that is inherent to many time series (or models
thereof, like the MOU and MAR used here). For such noisy patterns, it appears relevant to
evaluate the capacity in the “error regime” [6], which also corresponds to our results using
numerical simulation (Fig. 7).

5.2 Learning and functional role for recurrent connectivity

In our theory, recurrent connections do not have the same role as afferent connections that
are efficient in separating Q0 patterns (Figs. 3 and 4). Since even the time series in Fig. 8
differ by their corresponding Q0, one could argue that afferent connections are sufficient.
Indeed, supplementary simulations with tuning only B (not shown) did not show a decrease
in the accuracy. A possible role for A is capturing the temporal structure of input covariances
or shaping it for output covariances, as studied in Figs. S2 and S3. Other supplementary
simulations of Fig. S2 with a specialization for Q̄1 instead of Q̄0 were not successful either.
Further study is thus required to better understand the benefit of tuning A. For objectives
involving both Q̄0 and Q̄1, there must exist an accessible mapping (P 0, P 1) 7→ (Q0, Q1)
determined by A and B. The use for A may bring an extra flexibility that broadens the
domain of solutions or the stability of learning, although it was not clearly observed so far in
our simulations.

On a more technical ground, a positive feature of our learning scheme is its surprising
stability (see Annex D.1), even though it should be explored in more depth. The learning
equations for A in Annex B are an elaboration of the optimization for recurrent connectivity
only in the multivariate Ornstein-Uhlenbeck (MOU) process that we recently proposed [15].
Such learning update rules fall in the group of natural gradient descents [1] as they take into
account the non-linearity between the weights and the output covariances to tune. A natural
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gradient descent was used before to train afferent and recurrent connectivity to decorrelate
signals and perform blind-source separation [7]. This suggests another possible role for A
about the global organization of output nodes, like forming communities of output nodes that
are independent of each other (irrespective of the patterns).

5.3 Extensions to continuous time and non-linear dynamics

The MAR network dynamics in discrete time used here leads to a simple description for
the propagation of temporally-correlated activity. Extension of the learning equations to
continuous time requires the derivation of consistency equations for the lagged covariances of
MOU process driven by inputs with MOU-like covariances [4]. This is doable, but yields more
complicated expressions than for the MAR process.

One can also envisage the following generalization to take into account several types of
non-linearity that can arise in recurrently connected networks:

dxti = φ(xti) + ψ

∑
j

Cijx
t
j

+ dW t
i . (19)

with local dynamics determined by φ and interactions rectified using the function ψ. Such
non-linearities are expected to vastly affect the covariance mapping in general, but special
cases like the rectified linear function preserve the validity of the derivation for the linear
system in Annex A in a range of parameters. The present formalism may thus be extended
beyond the non-linearity applied to the readout (Section 3). Note that applying a non-linearity
to the dynamics or the output is in fact the same for the mean perceptron, but not for the
covariance perceptron.

Another point is that non-linearities involve a cross-talk between statistical orders, meaning
that input means may strongly affect output covariances and, conversely, input covariances
with output means. This opens the way to mixed decoding paradigms where the relevant
information may be distributed in both means and covariances. As the linear system studied
here does not exhibit such cross-talk, mixed schemes have been left for future work.

5.4 Learning and (de)coding in biological neuronal networks

An interesting application for the present theory is its adaptation to spiking neuronal networks.
In fact, the bio-inspired model of spike-timing-dependent plasticity (STDP) can be expressed
on covariances between spike trains [19, 13], which was an inspiration of the present study.
STDP-like learning rules were used for object recognition [20] and related to the expectation-
maximization algorithm [24]. Although genuine STDP relates to unsupervised learning, exten-
sions were developed to implement supervised learning for spike patterns [17, 27, 16, 11, 32].
A common trait of those approaches is that learning mechanisms are derived for feedforward
connectivity only, even though they have been used and tested in recurrently-connected net-
works. Instead of focusing on the detailed timing in spike trains in output, our supervised
approach could be transposed to shape the input-output mapping between spike-time covari-
ances, which are an intermediate description between spike patterns and firing rate. As such,
it allows for some flexibility concerning the spike timing (e.g. jittering) and characterization
of input-output patterns, as was explored before for STDP [14]. An important property for
covariance-based patterns is that they do not require a reference start time, because the cod-
ing is embedded in relative time lags. Our theory thus opens a promising perspective to learn
temporal structure of spike trains and provides a theoretical ground to genuinely investigate
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learning in recurrently connected neuronal networks. A key question is whether our method
can be implemented as an online learning rule. Another important question concerns the
locality of the learning rule, which requires pairwise information about neuronal activity.

Studies of noise correlation, which is akin to the variability of spike counts (i.e. mean
firing activity), showed that variability is not always an hindrance for decoding [2]. Our study
shows another possible role for activity variability and is in line with recent results about
stimulus-dependent correlations observed in data [28].
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Annex:

A Network dynamics describing activity propagation

Here we recapitulate well-known calculations [22] that describe the statistics of the activity in
discrete time in a MAR process in Eq. (1), which we recall here:

yti =
∑
j

Aijy
t−1
j +

∑
k

Bikx
t
k . (20)

Our focus are the self-consistency equations when the multivariate outputs yti are driven by
the multivariate inputs xtk, whose activity is characterized by the 0-lag covariances P 0 and
1-lag covariances P 1 = (P−1)T, where T denotes the matrix transpose. We assume stationary
dynamics (over the observation period) and require that the recurrent connectivity matrix A
has eigenvalues in the unit circle (modulus strictly smaller than 1) for stability purpose. To
keep the calculations as simple as possible, we make the additional hypothesis that P±n = 0 for
n ≥ 2, meaning that the memory of xtk only concerns one time lag. Therefore, the following
calculations are only an approximations of the general case for xtk, which is discussed in
the main text about Fig. 8. Note that this approximation is reasonable when the lagged
covariances Pn decrease exponentially with the time lag n, as is the case when inputs are a
MAR process.

Under those conditions, we define Rτik = 〈yt+τi xtk〉 and express these matrices in terms of
the inputs as a preliminary step. They obey

Rτ = ARτ−1 +BP τ . (21)

Because we assume P±n = 0 for n ≥ 2, we have the following expressions

R−n = 0 for n ≥ 2 , (22)

R−1 = BP−1 ,

R0 = ABP−1 +BP 0 .

Using the expression for R, we see that the general expression for the zero-lagged covariance
of yti depends on both zero-lagged and lagged covariances of xtk:

Q0 = AQ0AT +BP 0BT +AR−1BT +BR−1TAT (23)

= AQ0AT +BP 0BT +ABP−1BT +BP−1TBTAT .

The usual (or simplest) Lyapunov equation in discrete time corresponds to P 1 = 0 and the
afferent connectivity matrix B being the identity with n = m independent inputs that are
each sent to a single output. Likewise, we obtain the lagged covariance for yti :

Q1 = AQ1AT +BP 1BT +AR0BT +BR−2TAT (24)

= AQ1AT +BP 1BT +ABP 0BT +AABP−1BT .

Note that the latter equation is not symmetric because of our assumption of ignoring P±n = 0
for n ≥ 2.
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B Theory for weight updates

We now look into the gradient descent to reduce the error Eτ , defined for τ ∈ {0, 1}, between
the network covariance Qτ and the desired covariance Q̄τ , which we take here as the matrix
distance:

Eτ =
1

2
||Qτ − Q̄τ ||2 ≡

1

2

∑
i1,i2

(Qτi1i2 − Q̄
τ
i1i2)2 . (25)

The following calculations assume the tuning of B or A, or both.
Starting with afferent weights, the derivation of their updates ∆Bik to reduce the error

Eτ at each optimization step is based on the usual chain rule, here adapted to the case of
covariances:

∆Bik = −ηB
∂Eτ

∂Bik
= −ηB

∑
i1,i2

∂Eτ

∂Qτi1i2

∂Qτi1i2
∂Bik

= −ηB
∂Eτ

∂Qτ
� ∂Qτ

∂Bik
, (26)

where ηB is the learning rate for the afferent connectivity and the symbol � defined in Eq. (6)
corresponds to the sum after the element-wise product of the two matrices. Note that we use
distinct indices for B and Qτ . Once again, this expression implies the sum over all indices
(i′, j′) of the covariance matrix Qτ . The first terms ∂Eτ

∂Qτi1i2
can be seen as an n×n matrix with

indices (i1, i2):
∂Eτ

∂Qτ
= Qτ − Q̄τ . (27)

The second terms in Eq. (26) correspond to a tensor with 4 indices, but we now show that
it can be obtained from the above consistency equations in a compact manner. Fixing j and
k and using Eq. (23), the “derivative” of Q0 with respect to B can be expressed as

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+

∂B

∂Bik
P 0BT +BP 0 ∂B

∂Bik

T

+A
∂B

∂Bik
P−1BT +ABP−1 ∂B

∂Bik

T

(28)

+
∂B

∂Bik
P−1TBTAT +BP−1T ∂B

∂Bik

T

AT .

Note that the first term on the right-hand side of Eq. (23) does not involve B, so it vanishes.
Each of the other terms in Eq. (23) involves B twice, so they each give two terms in the above
expression —as when deriving a product. The trick lies in seeing that

∂Bi′k′

∂Bik
= δi′iδk′k (29)

where δ denotes the Kronecker delta. In this way we can rewrite the above expression using
the basis n×m matrices U ik that have 0 everywhere except for element (i, k) that is equal to
1. It follows that the n2 tensor element for each (i, k) can be obtained by solving the following
equation:

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+ U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT (30)

+U ikP−1TBTAT +BP−1TU ikTAT ,

which has the form of a discrete Lyapunov equation:

X = AXAT + Σ (31)
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with the solution X = ∂Q0

∂Aij
and Σ being the sum of 6 terms involving matrix multiplica-

tions. The last step to obtain the desired update for ∆Bik in Eq. (26) is to multiply the two
n × n matrices in Eqs. (30) and (27) element-by-element and sum over all pairs (i1, i2) —or
alternatively vectorize the two matrices and calculate the scalar product of the two resulting
vectors.

Now turning to the case of the recurrent weights, we use the same general procedure as
above: We simply substitute each occurrence of A in the consistency equations by a basis
matrix, once at a time in the case of matrix products. The “derivation” of Q0 in Eq. (23)
with respect to A gives

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (32)

where V ij is the basis n×n matrix with 0 everywhere except for (i, j) that is equal to 1. This
has the same form as Eq. (31) and, once the solution for the discrete Lyapunov equation is
calculated for each pair (i, j), the same element-wise matrix multiplication can be made with
Eq. (27) to obtain the weight update ∆Aij .

Likewise, we compute from Eq. (24) the following expressions to reduce the error related
to Q1:

∂Q1

∂Bik
= A

∂Q1

∂Bik
A+ U ikP 1BT +BP 1U ikT +AU ikP 0

k1k2B
T +ABP 0U ikT (33)

+AAU ikP−1BT +AABP−1U ikT ,

and

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT + V ijABP−1BT +AV ijBP−1BT .

(34)

These expressions are also discrete Lyapunov equations and can be solved as explained before.

C Theory for the memory capacity of the covariance percep-
tron with feedforward connectivity

We consider the mapping P 0 7→ Q0 in Eq. (5) with P 0 ∈ Rm×m and y ∈ Rn×n, ignoring the
recurrent connectivity in Eq. (20). We want to discriminate p input covariance patterns P 0,
which we denote by P̂ r with 1 ≤ r ≤ p and assume to be of the form:

P̂ r = 1m + χr , (35)

where 1m is the m×m identity matrix and each symmetric matrix χr = χT is drawn randomly
with

χrkk = 0 (36)

χrk<l ≡


c with prob. 1

2 f

−c with prob. 1
2 f

0 with prob. 1− f
.
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Here we ignore further requirements about P̂ r being positive semidefinite, which is discussed
in the main text. For each input covariance P 0 = P̂ r, the corresponding output covariance
Q0 for the mapping in Eq. (5) is

Q̂r = BP̂ rBT . (37)

We want to investigate the maximum number p of patterns P̂ r that can be discriminated using
Q̂r in a given network defined by the afferent connectivityB. For the readout covariance matrix
Q̂r, we demand the following n(n− 1)/2 constraints for all 1 ≤ i < j ≤ n:

ζri<j Q̂
r
i<j > κ , (38)

ζri<j =

{
1 with prob. 1

2

−1 with prob. 1
2

,

with each matrix ζr being symmetric as is Q̂r. The parameter κ plays the role of a classification
margin. These conditions require each element of the output covariance matrix to be away
from zero by κ, on the side determined by the sign of ζrij .

First considering the diagonal elements of Q̂r, we see that Eq. (37) implies

Q̂rii =
∑
k

B2
ik +

∑
k 6=l

BikBilχ
r
kl ∀ i, r . (39)

The distribution of the patterns defined by Eq. (36) implies 〈χrkl〉 = 0, so the expected value

of output variances Q̂rii implies a normalization for each row vector of B, which we assume to
be equal to 1:

1
!

= 〈Qrii〉χ =
∑
k

B2
ik ∀ i . (40)

This gives another constraint for B, in addition to Eq. (38).

C.1 Gardner’s approach to memory capacity

We now define the volume of solutions B whose p mappings in Eq. (37) satisfy the inequalities
and the statistics of the output covariance in Eq. (38):

V =

∫
dB

∏
i

δ
(∑

k

B2
ik − 1

) p∏
r=1

∏
i<j

θ
(
ζrij
(
BP̂ rBT

)
ij
− κ
)
. (41)

This equation is the analogue to Gardner’s approach of the perceptron; see [18, Section 10.2,
eq. 10.83].

We are interested in the average behavior of V in the limit of large m and therefore consider
〈ln(V)〉 using the replica trick ln(V) = limq→0

Zq−1
q . It leads to the study of the pattern average

of the following expression in the limit q → 0:

Vq =

〈
q∏

α=1

∫
dBα

∏
i

δ
(∑

k

Bα2
ik − 1

) p∏
r=1

∏
i<j

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)〉

ζ,χ

. (42)

Therefore, we consider q such systems that have identical realizations of patterns. If there are
many solutions to the set of equations, the average overlap between different systems will be
small. In case there is only a single solution, the overlap will be unity.
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C.2 Pattern average

We then perform the average over the distribution of patterns that obey Eq. (36) and Eq. (38).
We rewrite the Heaviside function as

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)

=

∫ ∞
κ

dxαij

∫ ∞
−∞

dx̃αij
2π

eı x̃
α
ij

(
ζrij (BαP̂ rBαT)ij−xαij

)
(43)

such that the pattern average〈
q∏

α=1

p∏
r=1

∏
i<j

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)〉

ζ,χ

=

p∏
r=1

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃ eΦr(ıx̃)−ı∑α,i,j x̃
α
ijx

α
ij (44)

can be described by a cumulant generating function Φr of the variable Qrαij ≡ ζrij(BαP̂ rBαT)ij
with respect to the statistics of ζ and χ. The constant ı is the imaginary unit. Here we have

defined the abbreviations
∫∞
κ Dx ≡

∏
α

∏
i<j

∫∞
κ dxαij and

∫∞
−∞Dx̃ ≡

∏
α

∏
i<j

∫∞
−∞

dx̃αij
2π and

used that the p patterns are statistically independent. The function Φr can be expanded in
cumulants and, in the large-m limit, this expansion can be truncated at the second order in a
similar fashion to the mean perceptron [18]. As a result, we obtain

〈Vq〉ζ,χ =

q∏
α=1

∫
dBα

∏
i

δ
(∑

k

Bα2
ik − 1

)
(45)

×
p∏
r=1

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃
∏
i<j

e
−ı∑α x̃

α
ijx

′α
ij− 1

2

∑
α,β x̃

α
ij

〈〈
Qrαij Q

rβ
ij

〉〉
x̃βij

with 〈〈
Qrαij Q

rβ
ij

〉〉
=

(∑
k

Bα
ikB

α
jk

)(∑
k

Bβ
ikB

β
jk

)
(46)

+fc2
(∑

k

Bα
ikB

β
ik

)(∑
k

Bα
jkB

β
jk

)
+fc2

(∑
k

Bα
ikB

β
jk

)(∑
k

Bβ
ikB

α
jk

)
.

In the second and third lines we added a single term k = l which is negligible in the large-m
limit. We see that the only dependence on the sparseness f and the magnitude c of input
covariances is in the form fc2 —it does not depend on these two parameters separately. The
problem is, moreover, now symmetric in all i < j index pairs. We also observe that the bracket
that is multiplied p times does not depend on the pattern index r, so that we only get the
bracket to the p-th power.

C.3 Auxiliary field formulation

Starting from Eq. (45), we now define the auxiliary fields as

Rαβij ≡
∑
k

Bα
ikB

β
jk , (47)

for i < j and α 6= β. For α = β and i = j we have Rααii = 1 due to Eq. (40). The field Rααij
for i 6= j measures the overlap between input vectors to different units. It contributes to the
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average value of Qrαij because the unit diagonal (common to all P̂ r) is weighted by Rααij . Hence

the output Qrαij will be displaced by Rααij irrespective of the realization of P̂ r. Rαβij for α 6= β

measures the overlap of input vectors in different systems. We denote by B̌iα the row vectors
of matrix Bα defined as (B̌iα)k ≡ Bα

ik to rewrite Eq. (45) as

〈Vq〉 =

∫
dR

∫
DB̌

∏
α,β

∏
i≤j

δ
(
B̌αT
i B̌β

j −R
αβ
ij

)
Gpij (48)

Gij =

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃ e
− 1

2

∑
α,β x̃

α

(
Rααij R

ββ
ij +fc2Rαβii Rαβjj +fc2Rαβij Rβαij

)
x̃β−ı∑α x̃

αx′α
,

with
∫

dR ≡
∏
α,β

∏
i<j

∫
dRαβij

∏
α 6=β

∫
dRαβii and

∫
DB̌ ≡

∏
α

∏
i

∏m
k=1

∫
dB̌iα

k . We used that

G is identical for different patterns P̂ r, hence we may perform the product over r by taking
the p-th power. We express the normalization constraint as

δ(B̌iαTB̌iα − 1) =
1

2πı

∫ i∞

−i∞
dR̃ααii exp

(
− R̃ααii (B̌iαTB̌iα − 1)

)
. (49)

Analogously, we employ this Fourier representation of the Dirac δ to express the constraints
defining the auxiliary fields Eq. (47) to obtain

〈Vq〉 =

∫
dR

∫
dR̃ exp(S) (50)

S = m ln(F ) +
∑
i<j

p ln(Gij) +H (51)

F =

∫
dB̌ exp

(
−

∑
α,β,i≤j

R̃αβij B̌
α
i B̌

β
j

)
(52)

H =
∑

α,β,i≤j
R̃αβij R

αβ
ij (53)

with
∫

dB̌ ≡
∏
α

∏
i

∫
dB̌α

i and Rααii = 1. In defining F we used that the integral
∫

DB̌ exp
(
−∑

α,β,i≤j R̃
αβ
i

∑
k B̌

iα
k B̌

iβ
k factorizes in the index k so that we get m times the same integral

for each component B̌iα
k ∀k = 1, . . . ,m.

We are interested in the saddle points of the integrals
∫

dR
∫

dR̃ and search for a replica-
symmetric solution. We therefore set

Rααij = R=
ij , R̃ααij = R̃=

ij (54)

Rαβij = R 6=ij , R̃αβij = R̃ 6=ij
for α 6= β. Then in the limit q → 0 we get

H = q
∑
i≤j

R̃=
ijR

=
ij − q

∑
i≤j

R̃ 6=ijR
6=
ij (55)

which gives rise to the following saddle point equations

R=
ij = −m

q

∂ ln(F)

∂R̃=
ij

, R 6=ij =
m

q

∂ ln(F)

∂R̃ 6=ij
(56)

R̃=
ij = −p

q

∑
k<l

∂ ln(Gkl)
∂R=

ij

, R̃ 6=ij =
p

q

∑
k<l

∂ ln(Gkl)
∂R 6=ij

(57)

The above equations show that we need to find the contribution of ln(F) and ln(G) proportional
to q as this is the only one surviving in the q → 0 limit.
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C.4 Limit q → 0

For replica symmetry, the exponent in Gij simplifies to

∑
α,β

x̃α
(
Rααij R

ββ
ij + fc2Rαβii R

αβ
jj + fc2Rαβij R

βα
ij

)
x̃β = (λ=

ij − λ
6=
ij)
∑
α

x̃αx̃α + λ 6=ij

(∑
α

x̃α

)2

,

(58)

with λ=
ij = fc2R=

iiR
=
jj + (1 + fc2)R=2

ij and λ 6=ij = fc2R 6=iiR
6=
jj + R=2

ij + fr2R 6=2
ij . The replica

are coupled by the factor λ6=ij , which renders
∫∞
−∞Dx̃ in Gij an q-dimensional integral. In

order to apply the limit q → 0, it is convenient to decouple the replicas by performing the
Hubbard-Stratonovich transformation

exp
(
− 1

2
λ6=ij
(∑

α

x̃α
)2)

=

∫ ∞
−∞

dt√
2π

exp
(
− t2/2 + it

√
λ 6=ij
∑
α

x̃α
)
, (59)

which turns the 2q-dimensional integral
∫∞
−∞Dx

∫∞
−∞Dx̃ into a Gaussian integral over the qth

power of a function gij(t) that is given by a two-dimensional integral

gij(t) =

∫ ∞
κ

dx

∫ ∞
−∞

dx̃

2π
exp

(
− 1

2
(λ=
ij − λ

6=
ij)x̃

2 + it
√
λ 6=ij x̃− ix̃x

)
=

1

2
erfc(aij(t)) , (60)

with aij(t) = (κ − t
√
λ6=ij)/

√
2(λ=

ij − λ
6=
ij). The resulting form of Gij allows to take advantage

of the q → 0 limit by approximating

ln(Gij) = ln 〈gij(t)q〉 = ln
〈
exp

(
q ln

(
gij(t)

))〉
(61)

→ ln
(
1 + q

〈
ln
(
gij(t)

)〉)
→ q

〈
ln
(
gij(t)

)〉
= q

〈
ln
(

erfc
(
aij(t)

))〉
+ ln(1/2) .

C.5 Limiting capacity

We are interested in the limit R 6=ii → R=
ii = 1, which denotes the point where only a single

solution is found: the overlap of the readout between replicas is identical to the length of the
vector in each individual replicon, so only a single solution is found. So we set R 6=ii = 1−εi and
study the limit εi → 0 for all i ∈ [1,m]. We need to be careful in taking this limit as ln(Gij)
is singular for ε = 0. The saddle-point equations relate derivatives of ln(Gij) to tilde-fields,
which in turn are defined by ln(F). A singularity in ln(Gij) at ε = 0 therefore implies also a
singularity in ln(F). These singularities will cancel in the following in the calculation of the
capacity.

In the following, we first focus on the fields R=
ij and R 6=ij for i < j: The function lnGij

depends quadratically on R=
ij and R 6=ij (see Eq. (48)). By Taylor expansion of Eq. (52) around

R̃=
ij = R̃ 6=ij = 0, one can observe that all odd Taylor coefficients vanish since they are deter-

mined by odd moments of a Gaussian integral with zero mean. Therefore, also lnF depends
quadratically on R̃=

ij and R̃ 6=ij . By rewriting Eq. (57) as R̃=
ij = −2R=

ij
p
n

∑
k<l

∂ ln(Gkl)
∂R=2

ij
and

R 6=ij = −2R̃ij
m
n
∂ ln(F)

∂Ũ2
ij

, respectively, and analogously for R̃ 6=ij and R 6=ij , we see that R=
ij = R̃=

ij =

R 6=ij = R̃ 6=ij = 0 is a solution to the saddle point equations. This solution makes sense as R=
ij

represents a displacement of the Qij , therefore a non-vanishing value would hinder the classi-
fication. At the point of limiting capacity all replicas find the same solution. Therefore, also
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the overlap R 6=ij across replica must vanish. Using R̃=
ij = R̃ 6=ij = 0, an analogous procedure as

in Section C.4 can be performed to calculate the term ln(F) in the q → 0 limit

ln(F)→ −1

2
q
∑
i

(
ln
(
R̃=
ii − R̃

6=
ii

)
+ R̃ 6=ii/

(
R̃=
ii − R̃

6=
ii

))
+ const . (62)

Then Eq. (56) can be easily solved to obtain

R̃=
ii = −m

2

1− 2εi
ε2i

, R̃ 6=ii = −m
2

1− εi
ε2i

. (63)

Inserting the solution Eq. (63) into Eq. (57) and using Eq. (61), we get in the limit εi → 0

−m
2

1

ε2i
= p

∑
k<l

∂
〈

ln
(

erfc(akl(t))
)〉

∂R 6=kk
δki +

∂
〈

ln
(

erfc(akl(t))
)〉

∂R 6=ll
δli

 (64)

= p
∑
k<l

∫ ∞
−∞

dt√
2π

exp
(
−t2/2

) ∂
∂akl(t)

erfc(akl(t))

erfc(akl(t))

(
∂akl(t)

∂R 6=kk
δki +

∂akl(t)

∂R 6=ll
δli

)
(65)

= p
∑
k<l

∫ ∞
−∞

dt√
2π

exp
(
−t2/2

) − 2√
π
e−akl(t)

2

erfc(akl(t))

(
∂akl(t)

∂R 6=kk
δki +

∂akl(t)

∂R 6=ll
δli

)

For εk, εl → 0 the function akl(t) goes to negative infinity for t > κ̄ ≡ κ/
√
fr2 and erfc(akl(t))→

2. In this case the nominator in the integrand makes the integral vanish. Therefore, we can
restrict the integration range to t ∈ (−∞, κ̄], where akl(t) → ∞ for ε → 0, such that we can
insert the limit behavior of erfc(akl(t))→ e−akl(t)

2
/(
√
πakl(t)). Using

∂akl(t)
2

∂R 6=kk
→ (κ̄− t)2

2ε2k
, (66)

the limiting capacity follows from

m

ε2i
= p

∫ κ̄

−∞

dt√
2π

exp
(
−t2/2

) (κ̄− t)2

ε2i

∑
k<l

(δki + δli) (67)

as

C ≡ n(n− 1)

2

p

m
=
n

2

(∫ ∞
−κ̄

dt√
2π

exp

(
− t

2

2

)
(t+ κ̄)2

)−1

. (68)

The capacity is identical to the capacity of the mean perceptron. In particular, for κ = 0, we
get

C = n . (69)

D Supplementary results

D.1 Stability of ongoing learning

Fig. S1 illustrates the stability of the learning procedure, both to decrease the error to the
best possible minimum and avoid the “explosion” of recurrent weights A, i.e. them diverging
to ±∞. Here all 10 input patterns have the same objective matrices, Q̄0 in Fig. S1A-B and a
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Figure S1: Stability of ongoing learning. A: Evolution of the error for 20 optimizations
of networks with m = 10 inputs to the n = 3 outputs. Here the objective output covariance
matrix Q̄0 is random and 10 random input patterns P 0 and P 1, but no tuning for Q1 is
performed. The plot is similar to Fig. 2F with the error (matrix distance) and the Pearson
correlation between Q0 and Q̄0 over all 20 optimizations: The black trace corresponds to the
mean over the 20 optimizations and the gray area to the standard deviation. B: Example
evolution of the afferent and recurrent weights (green and purple traces, respectively) for an
optimization. C-D: Same as panels A-B for 20 optimizations of the same type of networks
with more “realistic” objective pairs Q̄0 and Q̄1, as well as P 0 and P 1 input patterns. Both
pairs are generated according to the MAR procedure in Eq. (16), which yields the consistency
equations P 1 = WP 0 and P 0 −WP 0WT = 1 for a given W . The plotted values correspond
to the mean of the two errors or Pearson correlations for Q0 and Q1.
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pair Q̄0 and Q̄1 in Fig. S1C-D. In both cases, the error firstly decreases then stabilizes, still
slowly decreasing. The evolution of the Pearson correlation indicates that the structure of the
output(s) remains stable over the optimization, even though the network may not perfectly
converge towards the objective(s) in error or Pearson correlation.

The procedure to generate realistic input and objective output patterns in Fig. S1C-D
aims to ensure that a solution for A and B exists. Indeed, for usual time series, P 0 and P 1

are not independent, and the choice of the MAR model for the network dynamics similarly
imposes constraints on Q̄0 and Q̄1. Nevertheless, we had ∼ 15% of the optimizations failing
due to an explosion for A. For completely random Q̄0 and Q̄1, the conclusion from numerical
simulations is that the explosion of A is very likely.

D.2 Shaping output spatio-temporal covariances

As shown in Fig. S2A, we want to tune both B and A to obtain a desired spatio-temporal
structure in output. We consider inputs xtk with spatial covariances only (since P 1 = 0) to
be mapped to spatio-temporal covariances for yti . For this purpose, we generalize Eq. (6) to
calculate the weight updates for A and B from the errors of both Q0 and Q1:

∆Bik = ηB

[(
Q̄0 −Q0

)
� ∂Q0

∂Bik
+
(
Q̄1 −Q1

)
� ∂Q1

∂Bik

]
, (70)

∆Aij = ηA

[(
Q̄0 −Q0

)
� ∂Q0

∂Aij
+
(
Q̄1 −Q1

)
� ∂Q1

∂Aij

]
.

The matrix “derivatives” are given by Eq. (30), Eq. (33), Eq. (32) and Eq. (34) in Annex A
while setting P 1 = P−1T = 0, which read in matrix form:

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT , (71)

∂Q1

∂Bik
= A

∂Q1

∂Bik
AT +AU ikP 0BT +ABP 0U ikT ,

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT ,

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT .

Similar to U ik, the n × m matrix V ij has 0 everywhere except for element (i, j). The key
to evaluate the weight update for A is seeing that the third and fourth lines correspond to
the discrete Lyapunov equation that can be solved at each optimization step. As before, we
randomly draw 10 input patterns to be classified into 2 categories of 5 each, whose objective
matrices Q0 and Q1 are represented in Fig. S2B. A positive outcome is that the weight updates
lead to rather stable learning dynamics, even for the recurrent connectivity in Fig. S2C. The
stability of ongoing learning while leaving classification aside is examined in Annex D.1, see
Fig. S1. Meanwhile, the errors for both Q0 and Q1 decrease and eventually stabilize close to
zero in Fig. S2E.

After training, the network maps the input patterns P 0 in the desired manner for Q0 and
Q1, see the two examples in Fig. S2D and the robustness test in Fig. S2F —in a similar manner
to Fig. 3. The surrogates (black distribution in Fig. S2F) correspond to setting A = 0 with
the trained B, which strongly affects the output covariance (here for blue input patterns).
This illustrates the importance of tuning the recurrent connectivity in shaping Q1, as well as
with the discrimination capability for Q0.
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Figure S2: Shaping output spatio-temporal covariances with both afferent and
recurrent connectivities. A: Network architecture with m = 10 input nodes and n = 3
output nodes, the latter being connected together by the recurrent weights A (purple arrow).
B: Objective covariance matrices for two categories (red and blue). C: Evolution of the
afferent and recurrent weights (green and purple traces, respectively). D: Two examples after
training of output patterns Q0 and Q1 in response to two input patterns P 0, among the 5
in each category. E: Evolution of the error for the two output covariance matrices. F: After
training, the covariances in Q0 allow for the discrimination between the two categories, while
the structure of Q1 is similar for the two categories. The plot is similar to Fig. 3. The black
surrogate corresponds to forcing A = 0 with the trained B and presenting the blue inputs,
demonstrating that the trained A is important in shaping the output structure.

33

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


D.3 Learning input spatio-temporal covariances

Now we consider the “converse” configuration of Fig. S2A where each input pattern is formed
by a pair of non-zero P 0 and P 1, see Fig. S3A. The output is trained only using Q0, meaning
that the input spatio-temporal structure is mapped to an output spatial structure. This time
simplifying Eq. (70), the weight updates are given by Eq. (18), which corresponds to discrete
Lyapunov equations that can be solved at each optimization step to evaluate the weight update
for A and B.

We first examine the specialization in terms of covariances inQ0 as defined by the objectives
in Fig. S3C. Here we take input patterns P 0 that are all identical (left matrices in Fig. S3B)
such that the weight specialization must be based on the discrepancies between P 1 across
inputs, even though this configuration may not be realistic for simulated time series. The
desired outcome after training is obtained as illustrated in Fig. S3C. The surrogates (in black)
indicate the importance of the trained recurrent connectivity A, although it appears less strong
here than in Fig. S2F. Despite incidental troughs, the classification accuracy increases and
eventually stabilizes around 90%. Second, Fig. S3D uses the same procedure for specializing
the variances in Q0 and shows similar conclusions. Together, these results demonstrate a
useful flexibility in tuning the input-output covariance mapping using the MAR network.
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Figure S3: Learning input spatio-temporal covariances with both afferent and re-
current connectivities. A: Similar network to Fig. S2A with m = 10 input nodes and n = 2
output nodes. B: Two examples of input patterns corresponding to a pair P 0 and P 1, among
the 5 in each category. The P 0 matrices are identical for all patterns. C: Classification based
on specializing covariances for the two categories: absent for red and positive for blue (top
matrices, same as Fig. 3D). The middle plot is similar to Fig. 3, where the separability of
the red and blue distributions indicates the performance of the classification. The comparison
between the black and blue distribution shows the importance of the recurrent connectivity
A, which is forced to 0 for the surrogates. The bottom plot indicates the evolution of the clas-
sification accuracy during the optimization. The binary classification uses the same threshold
as in Fig. 3E. D: Same as panel C for specializing the variances of the output nodes, with the
same objective matrices and classification procedure threshold as in Fig. 3A-B.

35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2019. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


[12] E. Gardner. The space of interactions in neural network models. Journal of Physics A:
Mathematical and General, 21:257, 1988.

[13] M. Gilson, A. Burkitt, and L. J. van Hemmen. Stdp in recurrent neuronal networks.
Front Comput Neurosci, 4:23, 2010.

[14] M. Gilson, T. Masquelier, and E. Hugues. Stdp allows fast rate-modulated coding with
poisson-like spike trains. PLoS Comput Biol, 7:e1002231, 2011.

[15] M. Gilson, R. Moreno-Bote, A. Ponce-Alvarez, P. Ritter, and G. Deco. Estimation of
directed effective connectivity from fmri functional connectivity hints at asymmetries of
cortical connectome. PLoS Comput Biol, 12:e1004762, 2016.

[16] R. Gütig, T. Gollisch, H. Sompolinsky, and M. Meister. Computing complex visual
features with retinal spike times. PLoS One, 8:e53063, 2013.

[17] R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike timing-based
decisions. Nat Neurosci, 9:420–428, 2006.

[18] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural computation.
Addison-Wesley Longman, 1991.

[19] R. Kempter, W. Gerstner, and J. Van Hemmen. Hebbian learning and spiking neurons.
Physical Review E, 59(4):4498–4514, 1999.

[20] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier. Stdp-based spiking
deep convolutional neural networks for object recognition. Neural Netw, 99:56–67, 2018.

[21] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[22] H. Lütkepohl. New introduction to multiple time series analysis. Springer Science &
Business Media, 2005.

[23] M. L. Minsky and S. A. Papert. Perceptrons. Cambridge MIT Press, 1969.

[24] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass. Bayesian computation emerges in
generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput
Biol, 9:e1003037, 2013.

[25] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: a survey.
IEEE Trans Neural Netw, 6:1212–1228, 1995.

[26] F. J. Pineda. Generalization of back-propagation to recurrent neural networks. Phys Rev
Lett, 59:2229–2232, Nov 1987.
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