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Abstract

Learning in neuronal networks has developed in many directions, from image recognition and
speech processing to data analysis in general. Most theories that rely on gradient descents tune the
connection weights to map a set of input signals to a set of activity levels in the output of the network,
thereby focusing on the first-order statistics of the network activity. Fluctuations around the desired
activity level constitute noise in this view. Here we propose a conceptual change of perspective by
employing temporal variability to represent the information to be learned, rather than merely being
the noise that corrupts the mean signal. The new paradigm tunes both afferent and recurrent weights
in a network to shape the input-output mapping for covariances, the second-order statistics of the
fluctuating activity. When including time lags, covariance patterns define a natural metric for time
series that capture their propagating nature. Notably, this viewpoint differs from recent studies that
focused on noise correlation and (de)coding, because the activity variability here is the basis for
stimulus-related information to be learned by neurons. We develop the theory for classification of
time series based on their spatio-temporal covariances, which reflect dynamical properties. Closed-
form expressions reveal identical pattern capacity in a binary classification task compared to the
ordinary perceptron. The information density, however, exceeds the classical counterpart by a factor
equal to the number of input neurons. We finally demonstrate the crucial importance of recurrent
connectivity for transforming spatio-temporal covariances to spatial covariances.

1 Introduction

A fundamental cognitive task that is commonly performed by humans and animals is the classification of
time-dependent signals. For example, in the perception of auditory signals, the listener needs to distinguish
the meaning of different sounds: The neuronal system receives a series of pressure values, the stimulus,
and needs to assign a category, for example whether the sound indicates the presence of a predator or a
prey.

Neuronal information processing systems are set apart from traditional paradigms of information pro-
cessing by their ability to be trained, rather than being algorithmically programmed. The same archi-
tecture, a network composed of neurons connected by synapses, can be adapted to perform different
classification tasks. The physical implementation of learning predominantly consists of adapting the
connection strengths between neurons —a mechanism termed synaptic plasticity. Learning in artificial
neuronal networks is often formulated as a gradient descent for an objective function that measures the
mismatch between the desired and the actual outputs. This idea forms the basis of supervised learning [8].
The most prominent examples of such synaptic update rules are the delta rule for the perceptron neuronal
network [37, 28, 40] and error back-propagation [38]. These led to modern classification machines, like
deep learning and convolutional networks [24, 39]. Their success was only unleashed rather recently by the
increased computational power of modern computers and large amounts of available training data, both
required for successful training. A key problem to be solved in the improvement of a neuronal information
processing is thus to devise new and efficient paradigms for training.

A central feature of the training design is how the physical stimulus is represented in terms of neuronal
activity. The traditional view regards the time series of neuronal activity as a succession of snap shots, each
of which is possibly corrupted by noise. Thus, the mean activity is regarded as the relevant information
of the signal; the variance that measures departures from this mean quantifies the noise. The task of
the neuronal network is to robustly classify time-varying input signals despite their variability within
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each category. This view has led to efficient technical solutions to train neuronal networks by recurrent
back-propagation [34] or by back-propagation through time [33].

The representation of information by the mean activity is, however, challenged by two observations
in biological neuronal networks. First, neuronal activity in cortex shows a considerable amount of vari-
ability even if the very same experimental paradigm is repeated multiple times [2]; neurons also tend to
respond more reliably to transients, than to steady states [26]. Previous studies have proposed that this
variability may be related to probabilistic representations of the environment in a Bayesian fashion [6, 32].
Second, synaptic plasticity, the biophysical implementation of learning, has been shown to depend upon
the temporal activity of the presynaptic and the postsynaptic neurons [27, 7], which can be formalized
using the covariance of the neuronal activity [22, 16]. Experimental and theoretical evidence thus points
to a relation between the variability of neuronal activity and the representation of the stimulus.

These observations raise several questions: How can a neuronal system perform its function despite
this large amount of variability? Moving a step further, can variability even be employed to represent
information in its covariance structure, as suggested by covariance-dependent synaptic plasticity and by the
preferred response of neurons to transients? If so, how to train networks that employ such representations?
Finally, one may wonder if covariance-based learning is superior to technical solutions that employ a mean-
based representation, providing a reason why it may be used by neuronal circuits.

We here present a novel paradigm that employs the covariances of fluctuating activity to represent
stimulus information. We show how the input-output mapping for covariances can be learned in a recurrent
network architecture by efficiently trained the connectivity weights by a gradient-descent learning rule. We
find that covariance-based classification is at least as robust as with the mean perceptron. Analyzing the
capacity of the network in terms of the maximum number of correctly classifiable stimuli shows that it is en
par with the traditional architecture; In terms of memory capacity in bits, however, it largely exceeds the
traditional paradigm by a factor m, the number of input neurons. Our work thus provides evidence that
covariance-based information processing in a biological context can reach superior performance compared
to paradigms that have so far been used in artificial neuronal networks.

The remainder of the article is organized as follows: Section 2 formalizes the main idea of this article,
the use of the covariance of stochastic fluctuations to represent information. Section 3 considers a network
with feed-forward connectivity that is trained in an online manner, as a time-varying process, to implement
a desired mapping from the input covariance to the output covariance. We derive a gradient-descent
learning rule that adapts the feed-forward connections and examine the network training in theory, for
infinite observation time, as well as for time series of limited duration. Section 4 focuses on the capacity
of the covariance perceptron in the case of assigning a binary class label to a bipartite set of noiseless
input covariance patterns. This capacity is also compared with the classical perceptron. Section 5 extends
the online training of Section 3 to a network with both afferent and recurrent connections. We show how
recurrent connections allow us to exploit the temporal structure of input covariances as an additional
dimension for stimulus representation that can be mapped to output representations. Importantly, we
demonstrate the specific role played by the recurrent network connectivity when the information to learn
is in the temporal dimension of covariances, but not in its spatial dimension.

2 Covariance-based representation of information

The present paper considers the problem of information transmission conveyed by a time series in a
neuronal network, as illustrated in Fig. 1A. To fix ideas, consider a discrete-time network dynamics as
defined by a multivariate autoregressive (MAR) process [25]. The activity of the m inputs xt1≤k≤m is

described by a stochastic process in discrete time t ∈ Z. The inputs drive the activity yt1≤i≤n of the n

output neurons via connections B ∈ Rn×m, which form the afferent connectivity. The outputs also depend
on their own immediate past activity (i.e. with a unit time shift) through the connections A ∈ Rn×n, the
recurrent connectivity, as

yti =
∑

1≤j≤n

Aijy
t−1
j +

∑
1≤k≤m

Bikx
t
k , (1)
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Figure 1: From mean-based to covariance-based classification of a time series. A Network with
n = 2 output nodes generates a time series (in dark brown on the right) from the noisy time series of
m = 10 input nodes (in light brown on the left). The afferent (feed-forward) connections B (green links
and green arrow) and, when existing, recurrent connections A (purple dashed links and arrow) determine
the input-output mapping. We observe the time series over a window of duration d. B The time series in
panel A determines the m-dimensional vector of mean activities, averaged over the observation window d
(darker pixels indicate higher values). The classification scheme is implemented by tuning the connectivity
weights A and B such that several input patterns of mean activity (m-dimensional vectors on the left-
hand side) are mapped to the same output pattern (n-dimensional vector of the right-hand side), thereby
representing two categories in red (dotted rectangle, neuron 1 highly active) and blue (neuron 2 highly
active). The mapping between input and output (mean) vectors in Eq. (2) corresponds to the classical
perceptron. C The covariance perceptron maps the covariance patterns of an input time series (m ×m
matrices on the left-hand side) to covariance patterns of the output time series (n × n matrices on the
right-hand side), see Eq. (3) for their formal definition. Here the two classes are represented by larger
variance of either of the two nodes.
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illustrated in Fig. 1A. We define the mean activities

Xk ≡ 〈xtk〉 (2)

Yi ≡ 〈yti〉 ,

where the angular brackets indicate the average over realizations and over a period of duration d.
A classical assumption is that the information is represented by the mean of each input (see Fig. 1B).

By tuning the connection weights, A and B, patterns in the mean input activity can be mapped to desired
patterns in the mean activity of the output. The example in Fig. 1B maps a bipartite set of patterns
to either of two output patterns, each of which representing one class; the network performs a binary
classification of the incoming stimuli. Applying a threshold function to the output yields the classical
‘mean perceptron’ [28].

The present study proposes a different representation of information that employs temporal fluctu-
ations, rather than the mean activity. We thus move from the first-order statistics, the mean, to the
second-order statistics, the covariance of the statistical fluctuations of the network activity. The input
and output covariances, with τ ∈ Z being the time lag, are defined as

P τkl ≡ 〈xt+τk xtl〉 − 〈xt+τk 〉〈xtl〉 (3)

Qτij ≡ 〈yt+τi ytj〉 − 〈yt+τi 〉〈ytj〉 .

Here we implictly assume stationarity of the inputs over the window of duration d in Fig. 1A. In this
study we consider the case of vanishing mean for covariance-based classification, so the second terms on
the right-hand sides disappear in Eq. (3); considerations about a mixed scenario based on both means
and covariances will be discussed at the end of the article.

In this setting, the goal of learning is to shape the mapping from the input covariance P to the output
covariance Q in the network in Fig. 1A. Building up on the classical ‘mean perceptron’ (Fig. 1B), we
use classification as an example to illustrate our theory. The ansatz is that correlated fluctuations across
neurons —as defined by covariances in Eq. (3)— convey information that can be used to train the network
weights and then classify input time series into categories. Fig. 1C shows the concept of classifying a time
series based on patterns in the covariance: The ‘red class’ of input covariance matrices P is mapped by
the network to an output, where neuron 1 has larger variance than neuron 2. For the ‘blue class’ of input
covariances matrices, the variance of neuron 2 exceeds that of neuron 1.

In particular, we aim to use the ‘covariance perceptron’ to discriminate time series that have a co-
variance structure that results from the input activity obeying a network dynamics itself. In this case,
input and output information are of the same type, which makes the scheme represent and process in-
formation in a self-consistent manner. This opens the way to successive stages of information processing
as in multilayer perceptrons. This viewpoint on signal variability radically differs from that in Fig. 1B,
where the information is conveyed by the mean signal and fluctuations are noise. Conceptually, taking
the second statistical order as the basis of information is an intermediate description between the detailed
signal waveform and the (oversimple) mean signal. The switch from means to covariances implies that
richer representations can be realized with the same number of nodes. We assess in this study how to
make use of this enlarged representation space for training and classification.

3 Online learning input-output covariance mappings in feedfor-
ward networks

This section presents the concepts underlying the covariance perceptron with afferent connections B only
(meaning absent recurrent connectivity A = 0) and compares it with the classical perceptron. The
classical perceptron for means, shown in Fig. 1B, corresponds to observing the output mean vector Y for
the classification of the input mean vector X in Eq. (2). It relies on the input-output mapping

X 7→ Y = BX . (4)

The derivation of this consistency equation —with A = 0 in Eq. (1)— assumes stationarity for the
inputs. Under the same assumption of (second-order) stationarity, the novel proposed scheme relies on
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the mapping between the input and output covariance matrices, P 0 and Q0 in Eq. (3), namely

P 0 7→ Q0 = BP 0BT , (5)

where T denotes the matrix transpose. Details can be found with the derivation of the consistency equation
Eq. (23) in Appendix A, which also assumes stationarity. The common property of Eqs. (4) and (5) is
that both mappings are linear in the respective inputs (X and P 0). However, the second is bilinear in the
weight B while the first is simply linear. Note also that this section ignores temporal correlations (i.e. we
consider that P 1 = P−1T = 0); time-lagged covariances, however, do not play any role in Eq. (23) when
A = 0.

3.1 Theory for learning of spatial covariance structure by tuning afferent
connectivity

To theoretically examine covariance-based learning, we start with the abstraction of the MAR dynamics
P 0 7→ Q0 in Eq. (5). As depicted in Fig. 2A, each training step consists in presenting an input pattern
P 0 to the network and the resulting output pattern Q0 is compared to the objective Q̄0 in Fig. 2B. For
illustration, we use two categories (red and blue) of 5 input patterns each, as represented in Fig. 2C-D.
To properly test the learning procedure, noise is artificially added to the presented covariance pattern;
compare the left matrix in Fig. 2A to the top left matrix in Fig. 2C. The purpose is to mimic the variability
of covariances estimated from a (simulated) time series of finite duration (see Fig. 1), without taking into
account the details of the sampling noise. The update ∆Bik for each afferent weight Bik is obtained by
minimizing the distance in Eq. (25) between the actual and the desired output covariance

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
(6)

= ηB
(
Q̄0 −Q0

)
�
(
U ikP 0BT +BP 0U ikT

)
,

where U ik is a m×m matrix with 0s everywhere except for element (i, k) that is equal to 1; this update
rule is obtained from the chain rule in Eq. (26), combining Eqs. (27) and (30) with P−1 = 0 and A = 0
(see Appendix B). Here ηB denotes the learning rate and the symbol � indicates the element-wise
multiplication of matrices followed by the summation of the resulting elements —or alternatively the
scalar product of the vectorized matrices. Note that, although this operation is linear, the update for
each matrix entry involves U ik that selects a single non-zero row for U ikP 0BT and a single non-zero
column for BP 0U ikT. Therefore, the whole-matrix expression corresponding to Eq. (6) is different from
(Q̄0 −Q0)P 0BT +BP 0(Q̄0 −Q0)T, as could be naively thought.

Before training, the output covariances are rather homogeneous as in the examples of Fig. 2C-D (initial
Q0) because the weights are initialized with similar random values. During training, the afferent weights
Bik in Fig. 2E become specialized and tend to stabilize at the end of the optimization. Accordingly, Fig. 2F
shows the decrease of the error E0 between Q0 and Q̄0 defined in Eq. (25). After training, the output
covariances (final Q0 in Fig. 2C-D) follow the desired objective patterns with differentiated variances, as
well as small covariances.

As a consequence, the network responds to the red input patterns with higher variance in the first
output node, and to the blue inputs with higher variance in the second output (top plot in Fig. 3B). We
use the difference between the output variances in order to make a binary classification. The classification
accuracy corresponds to the percentage of output variances with the desired ordering. The evolution of the
accuracy during the optimization is shown in Fig. 3C. Initially around chance level at 50%, the accuracy
increases on average due to the gradual shaping of the output by the gradient descent. The jagged evolution
is due to the noise artificially added to the input covariance patterns (see the left matrix in Fig. 2A), but
it eventually stabilizes around 90%. The network can also be trained by changing the objective matrices
to obtain positive cross-covariances for red inputs, but not for blue inputs (Fig. 3D); in that case variances
are identical for the two categories. The output cross-covariances have separated distributions for the
two input categories after training (bottom plot in Fig. 3E), yielding the good classification accuracy in
Fig. 3F. As a sanity check, the variance does not show a significant difference when training for cross-
covariances (top plot in Fig. 3E). Conversely, the output cross-covariances are similar and very low for the
variance training (bottom plot in Fig. 3B). These results demonstrate that the afferent connections can
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Figure 2: Learning variances in a feed-forward network. A Schematic representation of the input-
output mapping for covariances defined by the afferent weight matrix B, linking m = 10 input nodes to
n = 2 output nodes. B Objective output covariance matrices Q̄0 for two categories of inputs. C Matrix
for the 5 input covariance patterns P 0 (left column), with their image under the original connectivity
(middle column) and the final image after learning (right column). D Same as C for the second category.
E Evolution of individual weights of matrix B during ongoing learning. F The top panel displays the
evolution of the error between Q0 and Q̄0 at each step. The total error taken as the matrix distance E0 in
Eq. (25) is displayed as a thick black curve, while individual matrix entries are represented by gray traces.
In the bottom panel the Pearson correlation coefficient between the vectorized Q0 and Q̄0 describes how
they are “aligned”, 1 corresponding to a perfect linear match.
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Figure 3: Comparison between learning output patterns for variance and cross-covariance. A
The top matrices represent the two objective covariance patterns of Fig. 2B, which differ by the variances
for the two nodes. B The plots display two measures based on the output covariance: the difference
between the variances of the two nodes (top) and the cross-covariance (bottom). Each violin plot shows
the distributions for the output covariance in response to 100 noisy versions of the 5 input patterns in the
corresponding category. Artificial noise applied to the input covariances (see the main text about Fig. 2 for
details) contributes to the spread. The separability between the red and blue distributions of the variances
indicates a good classification. The dashed line is the tentative implicit boundary enforced by learning
using Eq. (30) with the objective patterns in panel A: Its value is the average of the variance differences
over the two categories. C Evolution of the classification accuracy based on the variance difference between
the output nodes during the optimization. Here the binary classifier uses the differece in output variances,
predicting red if the variance of the output node 1 is larger than 2, and blue otherwise. The accuracy
eventually stabilizes above the dashed line that indicates 80% accuracy. D-F Same as panels A-C for two
objective covariance patterns that differ by the cross-covariance level, strong for red and zero for blue. The
classification in panel F results from the implicit boundary enforced by learning for the cross-covariances
(dashed line in panel E), here equal to 0.4 that is the midpoint between the target cross-covariance values
(0.8 for read and 0 for blue).
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be efficiently trained to learn categories based on input (co)variances, just as with input vectors of mean
activity in the classical perceptron.

3.2 Online learning for time series observed using a finite time window

Now we turn back to the configuration in Fig. 1C and verify that the learning procedure based on the
theoretical consistency equations also works for simulated time series, where the samples of the process
itself are presented, rather than their statistics embodied in the matrices P 0 and Q0. We refer to this as
online learning, but note that the covariances are estimated from an observation window, as opposed to
a continuous estimation of the covariances. As before, the weight update is applied for each presentation
of a pattern.

To generate the input time series, we use a superposition of independent Gaussian random variables
ztl with unit variance (akin to white noise), which are mixed by a coupling matrix W :

xtk =
∑

1≤l≤m

Wkl z
t
l . (7)

We use 10 patterns P 0 = WWT, where W is drawn randomly with f = 10% density of non-zero entries,
so the input time series differ by their spatial covariance structure. The network has to classify these
patterns based on the variance of the output nodes. The setting is shown in Fig. 4A, where only three
input patterns per category are displayed.

The covariances from the time series are computed using an observation window of duration d, after
discarding an initial transient period to remove the influence of initial conditions (corresponding to negative
times in Fig. 4B). The window duration d affects the precision of the empirical covariances compared to
their theoretical counterpart, as shown in Fig. 4C. This raises the issue of the precision required in practice
for effective learning.

As expected, a longer observation duration d helps to stabilize the learning, which can be seen in the
evolution of the error in Fig. 4D: the darker curves for d = 20 and 30 have fewer upside jumps than the
lighter curve for d = 10. To assess the quality of the training, we repeat the simulations for 20 network
and input configurations, then calculate the difference in variance between the two output nodes as in
Fig. 3B-C. Training for windows with d ≥ 20 achieve very good classification accuracy in Fig. 4E. This
indicates that the covariance estimate can be evaluated with sufficient precision from only a few tens of
time points. Moreover, the performance only slightly decreases for denser input patterns (Fig. 4F). Similar
results can be obtained while training the cross-covariance instead of the variances.

4 Discrimination capacity for perceptron with afferent connec-
tions (offline learning)

The efficiency of the binary classification in Fig. 3 relies on tuning the weights to obtain a linear separation
between the input covariance patterns. Now we consider the capacity of the covariance perceptron,
namely the number of input patterns that can be discriminated in a binary classification, and compare
it with the classical linear perceptron (for mean activity). There are two important differences in the
present section compared to Section 3. Here we consider noiseless patterns with offline learning, meaning
that the weight optimization is performed using a given number p of patterns (or pattern load) and the
classification accuracy is evaluated with the same patterns. In addition, the non-linearity applied to the
readout (observed output for classification) is incorporated into the weight optimization. We first present
geometric considerations about the input-output mappings for the mean and covariance perceptrons. Then
we analytically calculate their capacity using methods from statistical physics and compare the prediction
to numerical simulation (similar to Fig. 3).

4.1 Input spaces for mean and covariance patterns

Beside the difference between the input-output mappings in terms of the weights B — bilinear for Eq. (5)
versus linear for Eq. (4) — the input space has higher dimensionality for covariances than for means:
m(m+ 1)/2 for P 0 including variances compared to m for X. Covariances thus offer a potentially richer
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Figure 4: Online learning input covariances by tuning afferent connectivity. A The same network
as in Fig. 2A is trained to learn the input spatial covariance structure P 0 of time series governed by the
dynamics in Eq. (7). Only 3 matrices P 0 = WWT out of the 5 for each category are displayed. Each entry
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Example of simulation of the time series for the inputs (light brown traces) and outputs (dark brown). An
observation window (gray area) is used to calculate the covariances from simulated time series. C Sampling
error as measured by the matrix distance between the covariance estimated from the time series (see panel
B) and the corresponding theoretical value when varying the duration d of the observation window. The
error bars indicate the standard error of the mean over 100 repetitions of randomly drawn W and afferent
connectivity B. D Evolution of the error for 3 example optimizations with various observation durations
d as indicated in the legend. E Classification accuracy at the end of training (cf. Fig. 3C) as a function of
d, pooled for 20 network and input configurations. For d ≥ 20, the accuracy is close to 90% on average,
mostly above the dashed line indicating 80%. F Similar plot to panel E when varying the input density
of W from f = 10 to 20%, with d = 20.
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Figure 5: Comparison between input patterns based on mean and covariance. A Two examples
of pattern classification for mean-based decoding. In the left diagram, the two categories can be linearly
separated, but not in the right diagram. B The left diagram is the equivalent of the right diagram in
panel A for variance-based decoding. The right panel extends the left one by considering the covariance
P 0

12.

environment, but they also involve constraints related to the fact that a covariance matrix is positive
semidefinite:

P 0
ij = P 0

ji , (8)

P 0
ii ≥ 0 ,

|P 0
ij | ≤

√
P 0
ii P

0
jj ,

for all indices i and j.
To conceptually compare the mean and the covariance perceptron, we consider an example with m = 2

and n = 1, so that the number of free parameters for classification (i.e. the afferent weights) and the
dimensionality of the output are the same for both perceptrons. In the mean perceptron linear separability
for the vector X is implemented by the threshold on Y1 = B11X1 + B12X2 and corresponds to a line in
the plane (X1, X2), as represented by the purple line in the left plot of Fig. 5A that separates the red
and blue patterns (colored dots). The right plot of Fig. 5A, however, represents a situation where the two
categories of patterns cannot be linearly separated. This corresponds to a well-known limitation of the
(linear single-layer) perceptron that cannot implement a logical XOR gate [28].

The same scheme with variance is represented in the left diagram of Fig. 5B. In this example we have
Q0

11 = B2
11P

0
11 +B2

12P
0
22 + 2B11B12P

0
12. In the absence of the cross-covariance P 0

12, the situation is similar
to the equation for the mean vector, albeit being in the positive quadrant. This means that the output
variance Q0

11 cannot implement a linear separation for the XOR configuration of input variances P 0
11 and

P 0
22, when they are both small or both large for the blue category, one small and the other large for the

red category. Now considering P 0
12, we take, as an example, P 0

11 and P 0
22 equal to 0 or 1 for small or

large values, so we obtain Q0
11 ∈ {B2

11, B
2
12} for the red patterns and Q0

11 ∈ {0, B2
11 +B2

12 + 2B11B12P
0
12}

for the blue patterns. Provided the blue values of Q0
11 are smaller than the red values, linear separation

is achieved. This leads to the sufficient condition −2B11B12P
0
12 ≥ max(B2

11, B
2
12). Provided the weight

product B11B12 and P 0
12 have opposite signs and that 2|P 0

12| ≥ max(|B11/B12|, |B12/B11|), a pair of
satisfactory weights B11 and B12 can be found. Observing that max(u, 1/u) ≥ 1 for all u > 0, a sufficient
condition for separating red and blue patterns is 1/2 ≤ |P 0

12| ≤ 1; the right bound simply comes from
Eq. (8).

The increased dimensionality for the inputs related to P 0
12 thus gives an additional “degree of freedom”

for the variance-based decoding in this toy example. This is illustrated in the right diagram of Fig. 5B
by the purple dashed triangle representing a plane that separates the blue and red dots: The trick is
“moving” the upper right blue dot from the original position (light blue with P 0

12 = 0) in front of the
plane to a position behind the plane (dark blue with P 0

12 > 0). This toy example suggests that separability
for input covariances may have more flexibility than for input means, due to the larger dimensionality.
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4.2 Theoretical capacity and information density for decoding based on out-
put cross-covariances

To get a more quantitative handle on the capacity, we now derive a theory that is exact in the limit of
large networks m→∞ and that can be compared to the seminal theory by Gardner [15] on the capacity
of the mean perceptron.

So far, the weight optimization and classification have been performed in two subsequent steps, illus-
trated in Fig. 6A. After training the connectivity to implement a mapping from given input covariance
patterns to two objective covariance patterns (left plot), classification is performed by a simple threshold-
ing based on the observed entries of the output matrix (right plot; in practice, it is equivalent to evaluate
the difference between the output variances). We now combine these two procedures into one (see the red
and blue lines that “push” the dot clouds in Fig. 6B), while focusing on cross-covariances. The reason
is simple: Consider a single entry of the readout covariance matrix Q0

ij with 1 ≤ i < j ≤ n. For binary

classification, it only matters that the covariance Q0
ij be separable, either above or below a given threshold.

For each input pattern P 0 = P̂ r indexed by 1 ≤ r ≤ p, we assign a label ζrij ∈ {−1, 1} corresponding

to the position of Q̂rij with respect to the threshold, where we define Q̂r = Q0(P̂ r) = BP̂ rBT following

Eq. (5). We are thus demanding less to the individual matrix entry in Q0 than in the previous learning for
input-output mapping: It may live on the entire half-axis, instead of being fixed to one particular value.
Note that the numbers of −1 and 1 in ζrij may not be exactly balanced between the two categories here.

Formalizing the classification problem, we fix an element Q̂rij of the readout matrix and draw a random

label ζrij ∈ {−1, 1} independently for each input pattern P̂ r. An important measure for the quality of the
classification is the margin defined as

κ = min
1≤r≤p

(
ζrij Q̂

r
ij

)
. (9)

It measures the smallest distance over all Q̂rij from the threshold, here set to 0. It plays an important role
for the robustness of the classification [11], as a larger margin tolerates more noise in the input pattern
before classification is compromised. The margin of the classification is illustrated in Fig. 6A, where each
dot represents one of the p patterns and the color indicates the corresponding category ζrij . As mentioned
above, we directly train the afferent weights B to maximize κ. This optimization increases the gap and
thus the separability between red and blue dots in Fig. 6C. In practice, it is simpler to perform this
training for a soft-minimum κ′, which covaries with the true margin κ (9), as shown in Fig. 6D.

The limiting capacity is determined by the pattern load p at which the margin κ vanishes. More
generally, we evaluate how many patterns we can discriminate while maintaining a given minimal margin.
We consider each input covariance pattern to be of the form P̂ r = 1m + χr with 1m the diagonal matrix
and a random matrix χr with vanishing diagonal elements and off-diagonal elements, indexed by (k, l),
that are independently and identically distributed as χrkl = 0 with probability 1 − f and χrkl = ±c, each
with probability f/2, while enforcing symmetry for each χr. Here f controls the sparseness (or density) of
the cross-covariances. From Eq. (5), the task of the perceptron is to find a suitable afferent weight matrix
B that leads to correct classification for all p patterns. This requirement reads, for a given margin κ > 0
and a given entry 1 ≤ i < j ≤ n, as

ζrij
(
BP̂ rBT

)
ij
> κ , ∀ 1 ≤ r ≤ p . (10)

The random ensemble for the patterns allows us to employ methods from disordered systems [13].
Closely following the computation for the mean perceptron by Gardner [15, 21], the idea is to consider
the replication of several covariance perceptrons. The replicas, indexed by α and β, have the same task
defined by Eq. (10). The sets of patterns P̂ r and labels ζr are hence the same for all replicas, but each
replicon has its own readout matrix Bα. If the task is not too hard, meaning that the pattern load p is
small compared to the number of free parameters Bαik, there are many solutions to the problem Eq. (10).
One thus considers the ensemble of all solutions and computes the typical overlap between the solution
Bα and Bβ in two different replicas. At a certain load p there should only be a single solution left —the
overlap between solutions in different replicas becomes unity. This point defines the limiting capacity C.

Technically, the computation proceeds by defining the volume of all solutions for the whole set of
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Figure 6: Memory capacity of the covariance perceptron with a single readout (n = 2). A
Schematic representation of B Evolution of the readouts Q̂r12 = (B P̂ r BT)12 over the optimization that
maximizes the soft minimum margin κ′ = −η−1 ln(

∑
r exp(−η ζr12 Q̂

r
12)) by a gradient descent with η = 4

for m = 50 afferent neurons. Each dot corresponds to one of the p = 20 patterns: red for ζr12 = 1
and blue for ζr12 = −1. C a D Minimum margin over training; blue: minimum margin given by (9);
red: soft minimum margin κ′. D Overlap R12 = B̌1TB̌2 between the pair of row vectors involved in the
calculation of the readout Q0

12. Symbols from numerical optimization; error bars show standard error from
5 realizations; solid line from theory in the large m-limit, which predicts R12 → 0; see Eq. (C.5). F Total

number of classifications C = p n(n−1)
2 /m relative to the number m of inputs over the effective margin

κ̄ = κ/
√
fc2 relative to the typical variance

√
fc2 of an element of the readout matrix. Symbols from

numerical optimization; solid curve from theory in the large m limit given by Eq. (13). Other parameters:
m given in legend; f = 0.2; c = 0.5. Numerical results in C and D from maximization of the soft-minimum
margin κ′.
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cross-covariances Q0
ij as

V =

∫
S

dB
∏
i<j

θ
(
ζrij
(
B P̂ r BT

)
ij
− κ
)
, (11)

where
∫
S

dB integrates over all row vectors that lie on an m-dimensional sphere S —the norm of each row
vector of B is set to unity. This constraint leads to a variance of each target neuron which is approximately
unity, consistent with the input population. The typical behavior of the system for large m is obtained by
first taking the average of ln(V) over the ensemble of the patterns. It can be computed by the replica trick
〈ln(V)〉 = limq→0

(
〈Vq〉 − 1

)
/q [13]. The assumption is that the system is self-averaging; for large m the

capacity should not depend much on the particular realization of patterns. The leading order behavior for
m→∞ follows as a mean-field approximation in the auxiliary variables Rαβij ≡

∑
1≤k≤mB

α
ikB

β
jk, assuming

symmetry over replicas and indices. Here Rαβij measures the overlap between the two row vectors of Bα

and Bβ involved in the calculation of two replica α and β. The saddle point equations —cf. Eqs. (57)

and (58) in Appendix C— admit a vanishing solution Rαβij = 0 for i 6= j. This result is intuitively clear:
The two row vectors must be close to orthogonal, because otherwise the diagonal of the input covariance
pattern P̂ rii = 1 would cause a non-zero bias of the readout Qαij irrespective of the label ζr = ±1. Thus
the perceptron would lose flexibility in assigning arbitrary labels to patterns. Fig. 6E indeed shows an
overlap Rααij close to zero, observed for finite-size networks using numerical optimization.

To take into account the total number of independent binary classification labels ζrij relative to the
input number m, we define the capacity of the perceptron as

C =
p∗n(n− 1)

2m
, (12)

where p∗ is the maximum load when the overlap Rα6=βii approaches unity —or equivalently the volume of
solutions in Eq. (11) vanishes. Our calculation in Appendix C shows that

C(κ̄) =
n

2

(∫ ∞
−κ̄

du√
2π

e−
u2

2 (u+ κ̄)
2

)−1

. (13)

At vanishing margin one obtains C = n. For n = 2, a single readout, the capacity is hence identical to
the mean perceptron [12]. Moreover, it only depends on the margin through the parameter κ̄ ≡ κ/

√
fc2,

which measures the margin κ relative to the standard deviation of the readout. This dependence on κ is
identical for the mean perceptron, which was originally analyzed for fc2 = 1.

The capacity is shown in Fig. 6F in comparison to the direct numerical optimization of the margin.
Comparing the curves for different numbers m of inputs, the deviations between the theoretical prediction
and numerical results is explained by finite size corrections —at weak loads, the larger network is closer to
the analytical result. However, for the larger network the optimization does not converge at high memory
loads, explaining the negative margin; pattern separation is incomplete in this regime.

The replica calculation exposes an intuitive explanation for the equivalence of both perceptrons. For
the case n = 2 with two row vectors of B and a single label, the problem becomes isotropic in neuron
space after the pattern average —cf. Eq. (46) in Appendix C. As an example, we assume a readout in
an arbitrary direction determined by a row vector of B, say B̌1T = (1, 0, . . . , 0)T. The readout element is
given by Q0

12 = B̌1T P 0 B̌2 =
∑
k χ1k B̌

2
k, which is a simple linear readout of a binary random vector χ1k

—the same as with the mean perceptron.
The memory capacity only grows in proportion to n, again similar to n classical mean perceptrons (i.e.

n outputs). Intuitively one could expect it to grow as n(n−1)/2, the number of classification readouts. It
is easy to understand why it is the former: Consider three readout neurons —say i, j, and k— and their
corresponding row vectors in B, namely B̌iT, B̌jT and B̌kT. The covariance Q0

ij provides a constraint on

B̌i. Likewise, the entry Q0
ik provides a second constraint, potentially contradicting with the first. Stated

differently, we have n(n− 1)/2 independent constraints, but only mn weights in B. Therefore, there is a
tradeoff between more readouts and more constraints for the weights.

Even though the pattern load p at a given margin is identical in the two perceptrons, the covariance
perceptron has a higher information density. It is sufficient to compare the cases of a single readout in
both cases. The mean perceptron stores the information [21]

Imean = m2 C(κ) , (14)
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the number of bits required to express the mC patterns of m binary variables each. The covariance
perceptron, on the other hand, stores

Icov =
fm2(m− 1)

2
C(κ/

√
fc2) (15)

bits. Although the calculations in Appendix C ignore the constraint that the covariance matrices P̂ r

must be positive semidefinite, this constraint is ensured when using not too dense and strong entries such
that fc � 1, thanks to the unit diagonal. Since

√
fc2 only determines the scale on which the margin

κ is measured, the optimal capacity can always be achieved if one allows for a sufficiently small margin.
In a practical application, where covariances must be estimated from the data, this of course implies a
longer observation time d to cope with the estimation error. Under this assumption, the expression for the
information density of the covariance perceptron grows ∝ m3, while the former for the mean perceptron
only grows with m2. If one employs very sparse patterns such that f ∝ m−1 (an extreme condition), both
perceptrons have comparable information content. The dependence on the number of readout neurons n
is another linear factor in both cases.

4.3 Comparison of capacity via training accuracy for mean and covariance
perceptrons

The analysis in the previous subsection exposed that the capacity of the covariance perceptron is com-
parable to that of the mean perceptron. To compare and complement the results in Section 3, we use
the same optimization as in Figs. 2 and 3, but without additional noise on the presented patterns. We
consider mean-based decoding and variance-based decoding for the network N1 with a single output node
in Fig. 7A, as well as cross-covariance-based decoding for the network N2 with two output nodes.

Here we consider binarized outputs obtained using a threshold function θ, for example θ(Q0
12) = 1 for

Q0
12 > 0.5 and 0 for Q0

12 < 0.5 for the cross-covariance in the network N2, as in the analytical calculation of
the capacity. To incorporate this non-linearity in the gradient descent, we choose objectives Q̄0

12 ∈ {0, 1}
and redefine the error E in Eq. (25) in Appendix B as E0 = Q̄0

12 − θ(Q0
12). It follows that ∂E

∂Q12
becomes

a matrix full of zeros when the prediction is correct, whereas erroneous prediction corresponds to ±1 for
the output entries that determine the decision, with the sign depending on the category. We consider the
same kind of patterns as with the analytical calculation, similar to the right matrix in Fig. 7B where off-
diagonal elements are either 0 or c = 1 (we further check that the matrices are non-negative and required
to be positive semidefinite). The evolution of the classification accuracy averaged over 50 configurations is
displayed in Fig. 7C, where each color corresponds to a given number of input covariance patterns (lower
accuracy for more patterns) For each configuration, the maximum accuracy is retained, in line with the
offline learning procedure.

The same θ is applied to Q0
11 for variance-based decoding with the network N1. For mean-based

decoding, we apply θ to X1 and use binary input patterns (left vector in Fig. 7B), which corresponds
to the classical perceptron. The comparison between the respective accuracies when increasing the total
number p of patterns to learn (p/2 in each category) in Fig. 7D shows that the variance perceptron with
the N1 network is on par with the mean perceptron. It also shows a clear advantage for the covariance
perceptron, which is partly explained by the fact that the N2 network has twice as many afferent weights
as the N1 network. The sparseness of the input patterns also affects the capacity that slightly increases
for denser covariance matrices in Fig. 7E, as suggested by the theoretical results on information density.
Last, Fig. 7F shows that tuning the mapping is robust when increasing the number m of inputs.

5 Online learning of simulated time series with hidden dynamics
for both afferent and recurrent connectivities

We now come back to online learning with noisy time series and extend the results of Section 3 to the tuning
of both afferent and recurrent connectivities in Eq. (1) with the same application to classification. From
the dynamics described in Eq. (1), a natural use for A is the transformation of input spatial covariances
(P 0 6= 0 and P 1 = 0) to output spatio-temporal covariances (Q0 6= 0 and Q1 6= 0), or vice-versa (P 0 6= 0,
P 1 6= 0, Q0 6= 0 and Q1 = 0). The Appendices D.2 and D.3 provide examples for these two cases. As in
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Figure 7: Numerical evaluation of capacity using offline learning with non-linearity applied to
readout. A Feedforward networks with afferent connectivity as in Fig. 2A with n = 1 and n = 2 output
nodes, referred to as N1 and N2. B Example mean vector X (left) and covariance matrix P 0 (right) whose
density of non-zero elements is exactly f = 20%. Note that the variances are all fixed to 2 while non-
zero off-diagonal elements are set to c = 1. C Evolution of the classification accuracy over the noiseless
patterns (each color correspond to a number of input patterns to learn). The variability corresponds to
the standard error of the mean accuracy over 50 input and network configurations. D Comparison of
the classification accuracies as a function of the number of patterns (x-axis). Covariance-based learning
is tested in the N2 architecture using the cross-covariance (see panel B), while variance-based learning
and mean-based learning are performed with N1. The plotted values are the maximum accuracy for each
configuration, whose means are represented in panel C. E Similar plot to panel D for covariance-based
learning when varying the sparseness of the input covariance matrices, as indicated by the density f in the
legend. The error bars indicate the standard error of the mean accuracy over 50 repetitions. F Similar
plot to panel E when varying the number m of inputs in the network (see legend). The number of patterns
to learned are given as a fraction of m. The error bars correspond to 20 repetitions.
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Fig. 2, we here do not simulate the time series, but instead rely on the consistency equations Eqs. (23) and
(24), which are obtained in Appendix A under the assumption of stationary statistics. They demonstrate
the ability to tune the recurrent connectivity together with the afferent connectivity, which we further
examine now. To do so, we consider simulated time series that differ by their hidden dynamics. By
“hidden dynamics” we simply mean that each time series obeys a dynamical equation, which determines
its spatio-temporal structure that can be used for classification. Concretely, we use

xtk =
∑
l

Wklx
t−1
l + ztk , (16)

with ztk being independent Gaussian random variables unit variance. This dynamical equation replaces the
superposition of Gaussians in Eq. (7) for generating temporally correlated input signals. A class consists of
a set of such processes, each with a different choice for the matrix W in Eq. (16), as shown in Fig. 8A. The
matrix W itself is not known to the classifier, only the resulting statistics of x that obeys Eq. (16); thus
we call this setting “classification of hidden dynamics”. The key here is that P 1 conveys information, but
not P 0. Our theory predicts that recurrent connectivity is necessary to extract the relevant information to
separate the input patterns. To our knowledge this is the first study that tunes the recurrent connectivity
in a supervised manner to specifically extract temporal information when spatial information is “absent”.

Concretely, we here use 6 patterns for W (3 for each category) to generate the input time series
that the network has to classify based on the output variances, illustrated in Fig. 8A. Importantly, we
choose W = exp(µ1m + V ) with exp being the matrix exponential and V an antisymmetric matrix
and µ < 0 for stability. As a result, the zero-lag covariance of the input signals P 0 = 1

1−e2µ1m is the
same for all patterns of either category, proportional to the identity matrix as illustrated in Fig. 8B.
This can be seen using the discrete Lyapunov equation P 0 = WP 0WT + 1m, which is statisfied because
WWT = exp(2µ1m + V + V T ) = e2µ1m. As mentioned earlier, the time-lagged covariances P 1 = WP 0

differ across patterns, which is the basis for distinguishing the two categories. The derivation of the
consistency equations in Appendix A assumes P 2 = 0 and is thus an approximation because we have
P 2 = W 2P 0 here. As the input matrix W must have eigenvalues smaller than 1 in modulus to ensure
stable dynamics, our approximation corresponds to ||P 2|| = ||WP 1|| < ||P 1||.

The output is trained only using Q0, meaning that the input spatio-temporal structure is mapped to
an output spatial structure. Simplifying Eq. (71) for the current configuration, the weight updates are
given by

∆Aij = ηA
(
Q̄0 −Q0

)
� ∂Q0

∂Aij
, (17)

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
,

where the derivatives are given by the matrix versions of Eqs. (30) and (32) in Appendix B:

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (18)

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT

+U ikP−1TBTAT +BP−1TU ikTAT .

Both formulas have the form of a discrete Lyapunov equation that can be solved at each optimization step
to evaluate the weight updates for A and B. The non-linearity due to the recurrent connectivity A thus
plays an important role in determining the weight updates. As Eq. (18) involves the approximation of
ignoring P 2, the purpose of the following is to test the robustness of the proposed learning in a practical
use.

The covariances from the time series are computed using an observation window of duration d rep-
resented in Fig. 8B, in the same manner as before. We use a larger window duration d compared to
Fig. 4 because the output covariances are much noisier here due to the approximation mentioned above.
The influence of d can also be seen in Fig. 8D, where the evolution of the error for the darkest curves
with d ≥ 60 remain lower on average than the lighter curve with d = 20. To assess the quality of the
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Figure 8: Online learning for input spatio-temporal covariances with both afferent and re-
current connectivities. A Same network as in Fig. S3A to learn the input spatio-temporal covariance
structure, which is determined here by a coupling matrix W between the inputs as in Eq. (16). Here we
have 3 input patterns per category. The objective matrices (right) correspond to a specific variance for
the output nodes. B The matrices W are constructed such that they all obey the constraint P 0 = 1m.
C Example of simulation of the time series for the inputs (light brown traces) and outputs (dark brown).
An observation window (gray area) is used to calculate the covariances from simulated time series. D
Evolution of the error for 3 example optimizations with various observation durations d as indicated in the
legend. E Classification accuracy after training similar to Fig. S3D averaged over 20 network and input
configurations. For the largest d = 100, the accuracy is above 80% on average (dashed line). The color
contrast corresponds to the three values for d as in panel D. F Accuracy similar to E when switching off
the learning for the recurrent connectivity A.
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training, we repeat the simulations for 20 network and input configurations, then calculate the difference
in variance between the two output nodes for the red and blue input patterns. The accuracy gradually
improves from d = 20 to 100 in Fig. 8E. When switching off the learning of A in Fig. 8F, classification
stays at chance level. This is expected and confirms our theory, because the learning for B only captures
differences in P 0, which is the same for all patterns here. These results demonstrate the importance of
recurrent connections in transforming input spatiotemporal covariances into output spatial covariances.

6 Discussion

This paper presents a new learning theory for the categorization of time series. We derive learning rules
to train both afferent and recurrent connections of a linear network model in a supervised manner. The
proposed method extracts regularities in the spatio-temporal fluctuations of input time series, as quantified
by their covariances. Networks can be trained to map several input time series to a stereotypical output
time series that represents the respective class, thus implementing a ‘covariance perceptron’ as shown here
for two categories of output covariance patterns.

A main result is that the covariance perceptron can be trained in an online manner to robustly clas-
sify time series with various covariance patterns, while observing a few time points only (Fig. 4). In-
tuitively, this robustness results from the representation of the information by the covariance within a
higher-dimensional space compared to the mean, which is employed by classical architectures. The new
architecture therefore can make more efficient use of the resources, neurons and synapses, as formally
shown by assessing its capacity; the information density is orders of magnitude larger than that of the
mean perceptron: It exceeds the mean perceptron by a factor equal to the number of input neurons
even though the number of classifiable patterns is theoretically the same as for the classical perceptron
(Fig. 6). In simulations akin to offline learning, the resulting accuracy of the covariance perceptron com-
pares favorably with the mean perceptron (Fig. 7). The other main result is the demonstration that the
covariance perceptron can classify time series with respect to their hidden dynamics, based on temporal
information only (Fig. 8). In other words, the goal here is to distinguish the statistical dependencies
in signals that obey different dynamical equations. We stress the importance of the results for online
learning: Cross-validation is here performed by taking into account the variability inherent to the time
series. This contrasts with the assessment of the capacity that relies on noiseless patterns (Fig. 7).

The conceptual change of perspective compared to previous studies is that variability in the time series
is here the basis for the information to be learned, namely the second-order statistics of the co-fluctuating
inputs. This view, which is based on dynamical features, thus contrasts with classical and more “static”
approaches that consider the variability as noise, potentially compromising the information conveyed in
the mean activity of the time series. Importantly, covariance patterns can involve time lags and are a
genuine metric for time series, describing the transfer of activity between nodes. This paradigm opens the
door to a self-consistent formulation of information processing in recurrent networks: The source of the
signal and the classifier both have the same structure of a recurrent network.

6.1 Covariance-based decoding and representations

The mechanism underlying classification is the linear separability of the input covariance patterns per-
formed by a threshold on the output activity, in the same manner as in the classical perceptron for vectors.
The perceptron is a central concept for classification based on artificial neuronal networks, from logistic
regression [8] to deep learning [24, 39]. The entire output covariance matrix Q0 can be used as the target
quantity to be trained, cross-covariances as well as variances. In Section 4 the non-linearity on the readout
used for classification has been included in the gradient descent. It remains to be explored which types
of non-linearities improve the classification performance —as is well known for the perceptron [28]— or
lead to interesting input-output covariance mappings. Nonetheless, our results lay the foundation for
covariance perceptrons with multiple layers, including linear feedback by recurrent connectivity in each
layer. The important feature in its design is the consistency of covariance-based information from inputs
to outputs.

Although our study is not the first one to train the recurrent connectivity in a supervised manner, our
approach differs from previous extensions of the delta rule [28] or the back-propagation algorithm [38],
such as recurrent back-propagation [34] and back-propagation through time [33]. Those algorithms focus
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on the mean activity (or trajectories over time, based on first-order statistics) and, even though they do
take temporal information into account (related to the successive time points in the trajectories), they
consider the inputs as statistically independent variables. Moreover, unfolding time corresponds to the
adaptation of techniques for feedforward networks to recurrent networks, but it does not take the effect of
the recurrent connectivity as in the steady-state dynamics considered here. In the context of unsupervised
learning, several rules were proposed to extract information from the spatial correlations of inputs [31]
or their temporal variance [4]. Because our training scheme is based on the same input properties, we
expect that the strengths exhibited by those learning rules also partly apply to our setting, for example
the robustness for the detection of time-warped patterns as studied in [4].

The reduction of dimensionality of covariance patterns —from many input nodes to a few output
nodes— implements an “information compression”. For the same number of input-output nodes in the
network, the use of covariances instead of means makes a higher-dimensional space accessible to represent
input and output, which may help in finding a suitable projection for a classification problem. It is worth
noting that applying a classical machine-learning algorithm, like the multinomial linear regressor [8], to
the vectorized covariance matrices corresponds to nm(m − 1)/2 weights to tune, to be compared with
only nm weights in our study (with m inputs and n outputs). The presented theoretical calculations
focus on the capacity of the covariance perceptron for perfect classification (Fig. 6). It uses Gardner’s
replica method [15] in the thermodynamic limit, toward infinitely many inputs (m→∞). We have shown
that our paradigm indeed presents an analytically solvable model in this limit and compute the pattern
capacity C = p/m by replica symmetric mean-field theory, analogous to the mean perceptron [15]. It turns
out that the pattern capacity (per input and output) is exactly identical to that of the mean perceptron.
Its information capacity in bits, however, grows with m3, whereas it only has a dependence as m2 for the
mean perceptron. The proposed paradigm in large networks therefore reaches an information density that
is orders of magnitude higher than that of the mean perceptron.

Both the pattern capacity and information capacity linearly depend on the size of the target population
n. The latter result is trivial in the case of the mean perceptron —one simply has n independent percep-
trons in that case. However, it is non-trivial in the case of the covariance perceptron, because different
entries Q0

ij here share the same rows of the matrix B. These partly confounding constraints reduce the
capacity from the naively expected dependence on n(n − 1)/2, the number of independent off-diagonal
elements of Q0, to n.

Future work should extend the theory of the capacity for noiseless patterns (Fig. 6) to take into account
the observation noise, which is inherent to time series, as well as to the here-considered network models.
For such noisy patterns, it appears relevant to evaluate the capacity in the “error regime” [9], in which
classification is not perfect; our numerical results correspond to this regime (Fig. 7).

6.2 Learning and functional role for recurrent connectivity

Our theory shows that recurrent connections are crucial to transform information contained in time-lagged
covariances into covariances without time lag (Fig. 8). Simulations confirm that recurrent connections can
indeed be learned successfully to perform robust binary classification in this setting. The corresponding
learning equations clearly expose the necessity of training the recurrent connections. For objectives involv-
ing both covariance matrices, Q̄0 and Q̄1, there must exist an accessible mapping (P 0, P 1) 7→ (Q0, Q1)
determined by A and B. The use for A may also bring an extra flexibility that broadens the domain
of solutions or improve the stability of learning, even though this was not clearly observed so far in our
simulations.

On a more technical ground, a positive feature of our learning scheme is the surprising stability of the
recurrent weights A for ongoing learning (see Appendix D.1). Many previous studies use regularization
terms, in biology known as “homeostasis”, to prevent the problematic growth of recurrent weights that
often leads to an explosion of the network activity [42, 43]. It remains to be explored in more depth why
such regularizations are not needed in the current framework.

The learning equations for A in Appendix B can be seen as an extension of the optimization for
recurrent connectivity recently proposed [18] for the multivariate Ornstein-Uhlenbeck (MOU) process,
which is the continuous-time version of the MAR studied here. Such learning update rules fall in the
group of natural gradient descents [1] as they take into account the non-linearity between the weights
and the output covariances. A natural gradient descent was used before to train afferent and recurrent
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connectivity to decorrelate signals and perform blind-source separation [10]. This suggests as another
possible role for A the global organization of output nodes; for example, forming communities of output
nodes that are independent of each other (irrespective of the patterns).

6.3 Extensions to continuous time and non-linear dynamics

The MAR network dynamics in discrete time used here leads to a simple description for the propagation
of temporally-correlated activity. Extension of the learning equations to continuous time MOU processes
requires the derivation of consistency equations for the time-lagged covariances. The inputs to the process,
for consistency, themselves need to have the statistics of a MOU process [5]. This is doable, but yields
more complicated expressions than for the MAR process.

To take into account several types of non-linearities that arise in recurrently connected networks, one
can also envisage the following generalization of the network dynamics

dxti = φ(xti) + ψ

∑
j

Cijx
t
j

+ dW t
i . (19)

Here the local dynamics is determined by φ and interactions are rectified by the function ψ. Such non-
linearities are expected to vastly affect the covariance mapping in general, but special cases, like the
rectified linear function, preserve the validity of the derivation for the linear system in Appendix A in a
range of parameters. The present formalism may thus be extended beyond the non-linearity applied to
the readout (Section 4). Note that for the mean perceptron a non-linearity applied the dynamics is in fact
the same as applied to the output; this is, however, not so for the covariance perceptron.

Another point is that non-linearities cause a cross-talk between statistical orders, meaning that the
mean of the input may strongly affect output covariances and, conversely, input covariances may affect
the mean of the output. This opens the way to mixed decoding paradigms where the relevant information
is distributed in both, means and covariances.

6.4 Learning and (de)coding in biological spiking neuronal networks

An interesting application for the present theory is its adaptation to spiking neuronal networks. In
fact, the biologically-inspired model of spike-timing-dependent plasticity (STDP) can be expressed in
terms of covariances between spike trains [22, 16], which was an inspiration of the present study. STDP-
like learning rules were used for object recognition [23] and related to the expectation-maximization
algorithm [30]. Although genuine STDP relates to unsupervised learning, extensions were developed to
implement supervised learning for spike patterns [20, 35, 19, 14, 41]. A common trait of those approaches is
that learning mechanisms are derived for feedforward connectivity only, even though they have been used
and tested in recurrently-connected networks. Instead of focusing on the detailed timing in spike trains in
output, our supervised approach could be transposed to shape the input-output mapping between spike-
time covariances, which are an intermediate description between spike patterns and firing rate. As such, it
allows for some flexibility concerning the spike timing (e.g. jittering) and characterization of input-output
patterns, as was explored before for STDP [17]. An important property for covariance-based patterns
is that they do not require a reference start time, because the coding is embedded in relative time lags.
Our theory thus opens a promising perspective to learn temporal structure of spike trains and provides
a theoretical ground to genuinely investigate learning in recurrently connected neuronal networks. A key
question is whether the covariance estimation in our method can be robustly implemented in an online
fashion. Another important question concerns the locality of the learning rule, which requires pairwise
information about neuronal activity.

Here we have used arbitrary covariances for the definition of input patterns, but they could be made
closer to examples observed in spiking data, as was proposed earlier for probabilistic representation of
the environment [6]. It is important noting that the observed activity structure in data (i.e. covariances)
can not only be related to neuronal representations, but also to computations that can be learned (here
classification). Studies of noise correlation, which is akin to the variability of spike counts (i.e. mean firing
activity), showed that variability is not always a hindrance for decoding [3, 29]. Our study instead makes
active use of activity variability and is in line with recent results about stimulus-dependent correlations
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observed in data [36]. It thus moves variability into a central position in the quest to understand biological
neuronal information processing.
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A Network dynamics describing activity propagation

Here we recapitulate well-known calculations [25] that describe the statistics of the activity in discrete
time in a MAR process in Eq. (1), which we recall here:

yti =
∑
j

Aijy
t−1
j +

∑
k

Bikx
t
k . (20)

Our focus are the self-consistency equations when the multivariate outputs yti are driven by the multivariate
inputs xtk, whose activity is characterized by the 0-lag covariances P 0 and 1-lag covariances P 1 = (P−1)T,
where T denotes the matrix transpose. We assume stationary dynamics (over the observation period)
and require that the recurrent connectivity matrix A has eigenvalues in the unit circle (modulus strictly
smaller than 1) to ensure stability. To keep the calculations as simple as possible, we make the additional
hypothesis that P±n = 0 for n ≥ 2, meaning that the memory of xtk only concerns one time lag. Therefore,
the following calculations are only an approximations of the general case for xtk, which is discussed in the
main text about Fig. 8. Note that this approximation is reasonable when the lagged covariances Pn

decrease exponentially with the time lag n, as is the case when inputs are a MAR process.
Under those conditions, we define Rτik = 〈yt+τi xtk〉 and express these matrices in terms of the inputs as

a preliminary step. They obey
Rτ = ARτ−1 +BP τ . (21)

Because we assume P±n = 0 for n ≥ 2, we have the following expressions

R−n = 0 for n ≥ 2 , (22)

R−1 = BP−1 ,

R0 = ABP−1 +BP 0 .

Using the expression for R, we see that the general expression for the zero-lagged covariance of yti depends
on both zero-lagged and lagged covariances of xtk:

Q0 = AQ0AT +BP 0BT +AR−1BT +BR−1TAT (23)

= AQ0AT +BP 0BT +ABP−1BT +BP−1TBTAT .

The usual (or simplest) Lyapunov equation in discrete time corresponds to P 1 = 0 and the afferent
connectivity matrix B being the identity with n = m independent inputs that are each sent to a single
output. Likewise, we obtain the lagged covariance for yti :

Q1 = AQ1AT +BP 1BT +AR0BT +BR−2TAT (24)

= AQ1AT +BP 1BT +ABP 0BT +AABP−1BT .

Note that the latter equation is not symmetric because of our assumption of ignoring P±n = 0 for n ≥ 2.
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B Theory for weight updates

We now look into the gradient descent to reduce the error Eτ , defined for τ ∈ {0, 1}, between the network
covariance Qτ and the desired covariance Q̄τ , which we take here as the matrix distance:

Eτ =
1

2
||Qτ − Q̄τ ||2 ≡

1

2

∑
i1,i2

(Qτi1i2 − Q̄
τ
i1i2)2 . (25)

The following calculations assume the tuning of B or A, or both.
Starting with afferent weights, the derivation of their updates ∆Bik to reduce the error Eτ at each

optimization step is based on the usual chain rule, here adapted to the case of covariances:

∆Bik = −ηB
∂Eτ

∂Bik
= −ηB

∑
i1,i2

∂Eτ

∂Qτi1i2

∂Qτi1i2
∂Bik

= −ηB
∂Eτ

∂Qτ
� ∂Qτ

∂Bik
, (26)

where ηB is the learning rate for the afferent connectivity and the symbol � defined in Eq. (6) corresponds
to the sum after the element-wise product of the two matrices. Note that we use distinct indices for B
and Qτ . Once again, this expression implies the sum over all indices (i′, j′) of the covariance matrix Qτ .
The first terms ∂Eτ

∂Qτi1i2
can be seen as an n× n matrix with indices (i1, i2):

∂Eτ

∂Qτ
= Qτ − Q̄τ . (27)

The second terms in Eq. (26) correspond to a tensor with 4 indices, but we now show that it can be
obtained from the above consistency equations in a compact manner. Fixing j and k and using Eq. (23),
the “derivative” of Q0 with respect to B can be expressed as

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+

∂B

∂Bik
P 0BT +BP 0 ∂B

∂Bik

T

+A
∂B

∂Bik
P−1BT +ABP−1 ∂B

∂Bik

T

(28)

+
∂B

∂Bik
P−1TBTAT +BP−1T ∂B

∂Bik

T

AT .

Note that the first term on the right-hand side of Eq. (23) does not involve B, so it vanishes. Each of the
other terms in Eq. (23) involves B twice, so they each give two terms in the above expression —as when
deriving a product. The trick lies in seeing that

∂Bi′k′

∂Bik
= δi′iδk′k (29)

where δ denotes the Kronecker delta. In this way we can rewrite the above expression using the basis
n×m matrices U ik that have 0 everywhere except for element (i, k) that is equal to 1. It follows that the
n2 tensor element for each (i, k) can be obtained by solving the following equation:

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+ U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT (30)

+U ikP−1TBTAT +BP−1TU ikTAT ,

which has the form of a discrete Lyapunov equation:

X = AXAT + Σ (31)

with the solution X = ∂Q0

∂Aij
and Σ being the sum of 6 terms involving matrix multiplications. The last

step to obtain the desired update for ∆Bik in Eq. (26) is to multiply the two n× n matrices in Eqs. (30)
and (27) element-by-element and sum over all pairs (i1, i2) —or alternatively vectorize the two matrices
and calculate the scalar product of the two resulting vectors.
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Now turning to the case of the recurrent weights, we use the same general procedure as above: We
simply substitute each occurrence of A in the consistency equations by a basis matrix, once at a time in
the case of matrix products. The “derivation” of Q0 in Eq. (23) with respect to A gives

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (32)

where V ij is the basis n × n matrix with 0 everywhere except for (i, j) that is equal to 1. This has the
same form as Eq. (31) and, once the solution for the discrete Lyapunov equation is calculated for each
pair (i, j), the same element-wise matrix multiplication can be made with Eq. (27) to obtain the weight
update ∆Aij .

Likewise, we compute from Eq. (24) the following expressions to reduce the error related to Q1:

∂Q1

∂Bik
= A

∂Q1

∂Bik
A+ U ikP 1BT +BP 1U ikT +AU ikP 0

k1k2B
T +ABP 0U ikT (33)

+AAU ikP−1BT +AABP−1U ikT ,

and

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT + V ijABP−1BT +AV ijBP−1BT . (34)

(35)

These expressions are also discrete Lyapunov equations and can be solved as explained before.

C Theory for the memory capacity of the covariance perceptron
with feedforward connectivity

We consider the mapping P 0 7→ Q0 in Eq. (5) with P 0 ∈ Rm×m and y ∈ Rn×n, ignoring the recurrent
connectivity in Eq. (20). We want to discriminate p input covariance patterns P 0, which we denote by
P̂ r with 1 ≤ r ≤ p and assume to be of the form:

P̂ r = 1m + χr , (36)

where 1m is the m×m identity matrix and each symmetric matrix χr = χT is drawn randomly with

χrkk = 0 (37)

χrk<l ≡


c with prob. 1

2 f

−c with prob. 1
2 f

0 with prob. 1− f
.

Here we ignore further requirements about P̂ r being positive semidefinite, which is discussed in the main
text. For each input covariance P 0 = P̂ r, the corresponding output covariance Q0 for the mapping in
Eq. (5) is

Q̂r = BP̂ rBT . (38)

We want to investigate the maximum number p of patterns P̂ r that can be discriminated using Q̂r in a
given network defined by the afferent connectivity B. For the readout covariance matrix Q̂r, we demand
the following n(n− 1)/2 constraints for all 1 ≤ i < j ≤ n:

ζri<j Q̂
r
i<j > κ , (39)

ζri<j =

{
1 with prob. 1

2

−1 with prob. 1
2

,
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with each matrix ζr being symmetric as is Q̂r. The parameter κ plays the role of a classification margin.
These conditions require each element of the output covariance matrix to be away from zero by κ, on the
side determined by the sign of ζrij .

First considering the diagonal elements of Q̂r, we see that Eq. (38) implies

Q̂rii =
∑
k

B2
ik +

∑
k 6=l

BikBilχ
r
kl ∀ i, r . (40)

The distribution of the patterns defined by Eq. (37) implies 〈χrkl〉 = 0, so the expected value of output

variances Q̂rii implies a normalization for each row vector of B, which we assume to be equal to 1:

1
!
= 〈Qrii〉χ =

∑
k

B2
ik ∀ i . (41)

This gives another constraint for B, in addition to Eq. (39).

C.1 Gardner’s approach to memory capacity

We now define the volume of solutions B whose p mappings in Eq. (38) satisfy the inequalities and the
statistics of the output covariance in Eq. (39):

V =

∫
dB

∏
i

δ
(∑

k

B2
ik − 1

) p∏
r=1

∏
i<j

θ
(
ζrij
(
BP̂ rBT

)
ij
− κ
)
. (42)

This equation is the analogue to Gardner’s approach of the perceptron; see [21, Section 10.2, eq. 10.83].
We are interested in the average behavior of V in the limit of large m and therefore consider 〈ln(V)〉

using the replica trick ln(V) = limq→0
Zq−1
q . It leads to the study of the pattern average of the following

expression in the limit q → 0:

Vq =

〈
q∏

α=1

∫
dBα

∏
i

δ
(∑

k

Bα2
ik − 1

) p∏
r=1

∏
i<j

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)〉

ζ,χ

. (43)

Therefore, we consider q such systems that have identical realizations of patterns. If there are many
solutions to the set of equations, the average overlap between different systems will be small. In case there
is only a single solution, the overlap will be unity.

C.2 Pattern average

We then perform the average over the distribution of patterns that obey Eqs. (37) and (39). We rewrite
the Heaviside function as

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)

=

∫ ∞
κ

dxαij

∫ ∞
−∞

dx̃αij
2π

eı x̃
α
ij

(
ζrij (BαP̂ rBαT)ij−xαij

)
(44)

such that the pattern average〈
q∏

α=1

p∏
r=1

∏
i<j

θ
(
ζrij
(
BαP̂ rBαT

)
ij
− κ
)〉

ζ,χ

=

p∏
r=1

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃ eΦr(ıx̃)−ı
∑
α,i,j x̃

α
ijx

α
ij (45)

can be described by a cumulant generating function Φr of the variable Qrαij ≡ ζrij(B
αP̂ rBαT)ij with

respect to the statistics of ζ and χ. The constant ı is the imaginary unit. Here we have defined the

abbreviations
∫∞
κ
Dx ≡

∏
α

∏
i<j

∫∞
κ

dxαij and
∫∞
−∞Dx̃ ≡

∏
α

∏
i<j

∫∞
−∞

dx̃αij
2π and used that the p patterns

are statistically independent. The function Φr can be expanded in cumulants and, in the large-m limit,

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


this expansion can be truncated at the second order in a similar fashion to the mean perceptron [21]. As
a result, we obtain

〈Vq〉ζ,χ =

q∏
α=1

∫
dBα

∏
i

δ
(∑

k

Bα2
ik − 1

)
(46)

×
p∏
r=1

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃
∏
i<j

e−ı
∑
α x̃

α
ijx

′α
ij− 1

2

∑
α,β x̃

α
ij 〈〈Qrαij Qrβij 〉〉 x̃βij

with 〈〈
Qrαij Q

rβ
ij

〉〉
=

(∑
k

BαikB
α
jk

)(∑
k

BβikB
β
jk

)
(47)

+fc2
(∑

k

BαikB
β
ik

)(∑
k

BαjkB
β
jk

)
+fc2

(∑
k

BαikB
β
jk

)(∑
k

BβikB
α
jk

)
.

In the second and third lines we added a single term k = l which is negligible in the large-m limit. We
see that the only dependence on the sparseness f and the magnitude c of input covariances is in the form
fc2 —it does not depend on these two parameters separately. The problem is, moreover, now symmetric
in all i < j index pairs. We also observe that the bracket that is multiplied p times does not depend on
the pattern index r, so that we only get the bracket to the p-th power.

C.3 Auxiliary field formulation

Starting from Eq. (46), we now define the auxiliary fields as

Rαβij ≡
∑
k

BαikB
β
jk , (48)

for i < j and α 6= β. For α = β and i = j we have Rααii = 1 due to Eq. (41). The field Rααij for
i 6= j measures the overlap between input vectors to different units. It contributes to the average value
of Qrαij because the unit diagonal (common to all P̂ r) is weighted by Rααij . Hence the output Qrαij will

be displaced by Rααij irrespective of the realization of P̂ r. Rαβij for α 6= β measures the overlap of input

vectors in different systems. We denote by B̌iα the row vectors of matrix Bα defined as (B̌iα)k ≡ Bαik to
rewrite Eq. (46) as

〈Vq〉 =

∫
dR

∫
DB̌

∏
α,β

∏
i≤j

δ
(
B̌αT
i B̌βj −R

αβ
ij

)
Gpij (49)

Gij =

∫ ∞
κ

Dx

∫ ∞
−∞

Dx̃ e
− 1

2

∑
α,β x̃

α

(
Rααij R

ββ
ij +fc2 Rαβii Rαβjj +fc2 Rαβij Rβαij

)
x̃β−ı

∑
α x̃

αx′α

,

with
∫

dR ≡
∏
α,β

∏
i<j

∫
dRαβij

∏
α6=β

∫
dRαβii and

∫
DB̌ ≡

∏
α

∏
i

∏m
k=1

∫
dB̌iαk . We used that G is

identical for different patterns P̂ r, hence we may perform the product over r by taking the p-th power.
We express the normalization constraint as

δ(B̌iαTB̌iα − 1) =
1

2πı

∫ i∞

−i∞
dR̃ααii exp

(
− R̃ααii (B̌iαTB̌iα − 1)

)
. (50)
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Analogously, we employ this Fourier representation of the Dirac δ to express the constraints defining the
auxiliary fields Eq. (48) to obtain

〈Vq〉 =

∫
dR

∫
dR̃ exp(S) (51)

S = m ln(F ) +
∑
i<j

p ln(Gij) +H (52)

F =

∫
dB̌ exp

(
−

∑
α,β,i≤j

R̃αβij B̌
α
i B̌

β
j

)
(53)

H =
∑

α,β,i≤j

R̃αβij R
αβ
ij (54)

with
∫

dB̌ ≡
∏
α

∏
i

∫
dB̌αi and Rααii = 1. In defining F we used that the integral

∫
DB̌ exp

(
−∑

α,β,i≤j R̃
αβ
i

∑
k B̌

iα
k B̌

iβ
k factorizes in the index k so that we get m times the same integral for each

component B̌iαk ∀k = 1, . . . ,m.

We are interested in the saddle points of the integrals
∫

dR
∫

dR̃ and search for a replica-symmetric
solution. We therefore set

Rααij = R=
ij , R̃ααij = R̃=

ij (55)

Rαβij = R 6=ij , R̃αβij = R̃ 6=ij

for α 6= β. Then in the limit q → 0 we get

H = q
∑
i≤j

R̃=
ijR

=
ij − q

∑
i≤j

R̃ 6=ijR
6=
ij (56)

which gives rise to the following saddle point equations

R=
ij = −m

q

∂ ln(F)

∂R̃=
ij

, R 6=ij =
m

q

∂ ln(F)

∂R̃ 6=ij
(57)

R̃=
ij = −p

q

∑
k<l

∂ ln(Gkl)
∂R=

ij

, R̃ 6=ij =
p

q

∑
k<l

∂ ln(Gkl)
∂R 6=ij

(58)

The above equations show that we need to find the contribution of ln(F) and ln(G) proportional to q as
this is the only one surviving in the q → 0 limit.

C.4 Limit q → 0

For replica symmetry, the exponent in Gij simplifies to

∑
α,β

x̃α
(
Rααij R

ββ
ij + fc2Rαβii Rαβjj + fc2Rαβij Rβαij

)
x̃β = (λ=

ij − λ
6=
ij)
∑
α

x̃αx̃α + λ 6=ij

(∑
α

x̃α

)2

, (59)

with λ=
ij = fc2R=

iiR
=
jj + (1 + fc2)R=2

ij and λ6=ij = fc2R 6=iiR
6=
jj +R=2

ij + fr2R 6=2
ij . The replica are coupled by

the factor λ6=ij , which renders
∫∞
−∞Dx̃ in Gij an q-dimensional integral. In order to apply the limit q → 0,

it is convenient to decouple the replicas by performing the Hubbard-Stratonovich transformation

exp
(
− 1

2
λ 6=ij

(∑
α

x̃α
)2)

=

∫ ∞
−∞

dt√
2π

exp
(
− t2/2 + it

√
λ 6=ij
∑
α

x̃α
)
, (60)

which turns the 2q-dimensional integral
∫∞
−∞Dx

∫∞
−∞Dx̃ into a Gaussian integral over the qth power of a

function gij(t) that is given by a two-dimensional integral

gij(t) =

∫ ∞
κ

dx

∫ ∞
−∞

dx̃

2π
exp

(
− 1

2
(λ=
ij − λ

6=
ij)x̃

2 + it
√
λ6=ij x̃− ix̃x

)
=

1

2
erfc(aij(t)) , (61)
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with aij(t) = (κ− t
√
λ 6=ij)/

√
2(λ=

ij − λ
6=
ij). The resulting form of Gij allows to take advantage of the q → 0

limit by approximating

ln(Gij) = ln 〈gij(t)q〉 = ln
〈
exp

(
q ln

(
gij(t)

))〉
(62)

→ ln
(
1 + q

〈
ln
(
gij(t)

)〉)
→ q

〈
ln
(
gij(t)

)〉
= q

〈
ln
(

erfc
(
aij(t)

))〉
+ ln(1/2) .

C.5 Limiting capacity

We are interested in the limit R 6=ii → R=
ii = 1, which denotes the point where only a single solution is

found: the overlap of the readout between replicas is identical to the length of the vector in each individual
replicon, so only a single solution is found. So we set R 6=ii = 1 − εi and study the limit εi → 0 for all
i ∈ [1,m]. We need to be careful in taking this limit as ln(Gij) is singular for ε = 0. The saddle-point
equations relate derivatives of ln(Gij) to tilde-fields, which in turn are defined by ln(F). A singularity in
ln(Gij) at ε = 0 therefore implies also a singularity in ln(F). These singularities will cancel in the following
in the calculation of the capacity.

In the following, we first focus on the fields R=
ij and R 6=ij for i < j: The function lnGij depends

quadratically on R=
ij and R 6=ij (see Eq. (49)). By Taylor expansion of Eq. (53) around R̃=

ij = R̃ 6=ij = 0,
one can observe that all odd Taylor coefficients vanish since they are determined by odd moments of a
Gaussian integral with zero mean. Therefore, also lnF depends quadratically on R̃=

ij and R̃ 6=ij . By rewriting

Eq. (58) as R̃=
ij = −2R=

ij
p
n

∑
k<l

∂ ln(Gkl)
∂R=2

ij
and R 6=ij = −2R̃ij

m
n
∂ ln(F)

∂Ũ2
ij

, respectively, and analogously for R̃ 6=ij

and R 6=ij , we see that R=
ij = R̃=

ij = R 6=ij = R̃ 6=ij = 0 is a solution to the saddle point equations. This solution
makes sense as R=

ij represents a displacement of the Qij , therefore a non-vanishing value would hinder
the classification. At the point of limiting capacity all replicas find the same solution. Therefore, also the
overlap R 6=ij across replica must vanish. Using R̃=

ij = R̃ 6=ij = 0, an analogous procedure as in Section C.4
can be performed to calculate the term ln(F) in the q → 0 limit

ln(F)→ −1

2
q
∑
i

(
ln
(
R̃=
ii − R̃

6=
ii

)
+ R̃ 6=ii/

(
R̃=
ii − R̃

6=
ii

))
+ const . (63)

Then Eq. (57) can be easily solved to obtain

R̃=
ii = −m

2

1− 2εi
ε2i

, R̃ 6=ii = −m
2

1− εi
ε2i

. (64)

Inserting the solution Eq. (64) into Eq. (58) and using Eq. (62), we get in the limit εi → 0

−m
2

1

ε2i
= p

∑
k<l

∂
〈

ln
(

erfc(akl(t))
)〉

∂R 6=kk
δki +

∂
〈

ln
(

erfc(akl(t))
)〉

∂R 6=ll
δli

 (65)

= p
∑
k<l

∫ ∞
−∞

dt√
2π

exp
(
−t2/2

) ∂
∂akl(t)

erfc(akl(t))

erfc(akl(t))

(
∂akl(t)

∂R 6=kk
δki +

∂akl(t)

∂R 6=ll
δli

)
(66)

= p
∑
k<l

∫ ∞
−∞

dt√
2π

exp
(
−t2/2

) − 2√
π
e−akl(t)

2

erfc(akl(t))

(
∂akl(t)

∂R 6=kk
δki +

∂akl(t)

∂R 6=ll
δli

)

For εk, εl → 0 the function akl(t) goes to negative infinity for t > κ̄ ≡ κ/
√
fr2 and erfc(akl(t)) → 2.

In this case the nominator in the integrand makes the integral vanish. Therefore, we can restrict the
integration range to t ∈ (−∞, κ̄], where akl(t)→∞ for ε→ 0, such that we can insert the limit behavior

of erfc(akl(t))→ e−akl(t)
2

/(
√
πakl(t)). Using

∂akl(t)
2

∂R 6=kk
→ (κ̄− t)2

2ε2k
, (67)
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the limiting capacity follows from

m

ε2i
= p

∫ κ̄

−∞

dt√
2π

exp
(
−t2/2

) (κ̄− t)2

ε2i

∑
k<l

(δki + δli) (68)

as

C ≡ n(n− 1)

2

p

m
=
n

2

(∫ ∞
−κ̄

dt√
2π

exp

(
− t

2

2

)
(t+ κ̄)

2

)−1

. (69)

The capacity is identical to the capacity of the mean perceptron. In particular, for κ = 0, we get

C = n . (70)

D Supplementary results

D.1 Stability of ongoing learning

Fig. S1 illustrates the stability of the learning procedure, both to decrease the error to the best possible
minimum and avoid the “explosion” of recurrent weights A, i.e. them diverging to ±∞. Here all 10 input
patterns have the same objective matrices, Q̄0 in Fig. S1A-B and a pair Q̄0 and Q̄1 in Fig. S1C-D. In
both cases, the error firstly decreases then stabilizes, still slowly decreasing. The evolution of the Pearson
correlation indicates that the structure of the output(s) remains stable over the optimization, even though
the network may not perfectly converge towards the objective(s) in error or Pearson correlation.

The procedure to generate realistic input and objective output patterns in Fig. S1C-D aims to ensure
that a solution for A and B exists. Indeed, for usual time series, P 0 and P 1 are not independent, and
the choice of the MAR model for the network dynamics similarly imposes constraints on Q̄0 and Q̄1.
Nevertheless, we had ∼ 15% of the optimizations failing due to an explosion for A. For completely
random Q̄0 and Q̄1, the conclusion from numerical simulations is that the explosion of A is very likely.

D.2 Shaping output spatio-temporal covariances

As shown in Fig. S2A, we want to tune both B and A to obtain a desired spatio-temporal structure in
output. We consider inputs xtk with spatial covariances only (since P 1 = 0) to be mapped to spatio-
temporal covariances for yti . For this purpose, we generalize Eq. (6) to calculate the weight updates for A
and B from the errors of both Q0 and Q1:

∆Bik = ηB

[(
Q̄0 −Q0

)
� ∂Q0

∂Bik
+
(
Q̄1 −Q1

)
� ∂Q1

∂Bik

]
, (71)

∆Aij = ηA

[(
Q̄0 −Q0

)
� ∂Q0

∂Aij
+
(
Q̄1 −Q1

)
� ∂Q1

∂Aij

]
.

The matrix “derivatives” are given by Eq. (30), Eq. (33), Eq. (32) and Eq. (34) in Annex A while setting
P 1 = P−1T = 0, which read in matrix form:

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT , (72)

∂Q1

∂Bik
= A

∂Q1

∂Bik
AT +AU ikP 0BT +ABP 0U ikT ,

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT ,

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT .

Similar to U ik, the n × m matrix V ij has 0 everywhere except for element (i, j). The key to evaluate
the weight update for A is seeing that the third and fourth lines correspond to the discrete Lyapunov
equation that can be solved at each optimization step. As before, we randomly draw 10 input patterns to
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Figure S1: Stability of ongoing learning. A Evolution of the error for 20 optimizations of networks
with m = 10 inputs to the n = 3 outputs. Here the objective output covariance matrix Q̄0 is random,
as are the 10 random input patterns P 0 and P 1, but no tuning for Q1 is performed. The plot is similar
to Fig. 2F with the error (matrix distance) and the Pearson correlation between Q0 and Q̄0 over all 20
optimizations: The black trace corresponds to the mean over the 20 optimizations and the gray area to
the standard deviation. B Example evolution of the afferent and recurrent weights (green and purple
traces, respectively) for an optimization. C-D Same as panels A-B for 20 optimizations of the same
type of networks with more “realistic” objective pairs Q̄0 and Q̄1, as well as P 0 and P 1 input patterns.
Both pairs are generated by a MAR, Eq. (16), which yields the consistency equations P 1 = WP 0 and
P 0−WP 0WT = 1 for a given W . The plotted values correspond to the mean of the two errors or Pearson
correlations for Q0 and Q1.
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Figure S2: Shaping output spatio-temporal covariances with both afferent and recurrent
connectivities. A Network architecture with m = 10 input nodes and n = 3 output nodes, the latter
being connected together by the recurrent weights A (purple arrow). B Objective covariance matrices
for two categories (red and blue). C Evolution of the afferent and recurrent weights (green and purple
traces, respectively). D Two examples after training of output patterns Q0 and Q1 in response to two
input patterns P 0, among the 5 in each category. E Evolution of the error for the two output covariance
matrices. F After training, the covariances in Q0 allow for the discrimination between the two categories,
while the structure of Q1 is similar for the two categories. The plot is similar to Fig. 3. The black surrogate
corresponds to forcing A = 0 with the trained B and presenting the blue inputs, demonstrating that the
trained A is important in shaping the output structure.
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be classified into 2 categories of 5 each, whose objective matrices Q0 and Q1 are represented in Fig. S2B. A
positive outcome is that the weight updates lead to rather stable learning dynamics, even for the recurrent
connectivity in Fig. S2C. The stability of ongoing learning while leaving classification aside is examined
in Annex D.1, see Fig. S1. Meanwhile, the errors for both Q0 and Q1 decrease and eventually stabilize
close to zero in Fig. S2E.

After training, the network maps the input patterns P 0 in the desired manner for Q0 and Q1, see
the two examples in Fig. S2D and the robustness test in Fig. S2F —in a similar manner to Fig. 3. The
surrogates (black distribution in Fig. S2F) correspond to setting A = 0 with the trained B, which strongly
affects the output covariance (here for blue input patterns). This illustrates the importance of tuning the
recurrent connectivity in shaping Q1, as well as with the discrimination capability for Q0.

D.3 Learning input spatio-temporal covariances

Now we consider the “converse” configuration of Fig. S2A where each input pattern is formed by a pair of
non-zero P 0 and P 1, see Fig. S3A. The output is trained only using Q0, meaning that the input spatio-
temporal structure is mapped to an output spatial structure. This time simplifying Eq. (71), the weight
updates are given by Eq. (18), which corresponds to discrete Lyapunov equations that can be solved at
each optimization step to evaluate the weight update for A and B.

We first examine the specialization in terms of covariances in Q0 as defined by the objectives in
Fig. S3C. Here we take input patterns P 0 that are all identical (left matrices in Fig. S3B) such that
the weight specialization must be based on the discrepancies between P 1 across inputs, even though this
configuration may not be realistic for simulated time series. The desired outcome after training is obtained
as illustrated in Fig. S3C. The surrogates (in black) indicate the importance of the trained recurrent
connectivity A, although it appears less strong here than in Fig. S2F. Despite incidental troughs, the
classification accuracy increases and eventually stabilizes around 90%. Second, Fig. S3D uses the same
procedure for specializing the variances in Q0 and shows similar conclusions. Together, these results
demonstrate a useful flexibility in tuning the input-output covariance mapping using the MAR network.
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Figure S3: Learning input spatio-temporal covariances with both afferent and recurrent
connectivities. A Similar network to Fig. S2A with m = 10 input nodes and n = 2 output nodes.
B Two examples of input patterns corresponding to a pair P 0 and P 1, among the 5 in each category.
The P 0 matrices are identical for all patterns. C Classification based on specializing covariances for the
two categories: absent for red and positive for blue (top matrices, same as Fig. 3D). The middle plot is
similar to Fig. 3, where the separability of the red and blue distributions indicates the performance of
the classification. The comparison between the black and blue distribution shows the importance of the
recurrent connectivity A, which is forced to 0 for the surrogates. The bottom plot indicates the evolution
of the classification accuracy during the optimization. The binary classification uses the same boundary as
in Fig. 3E. D Same as panel C for specializing the variances of the output nodes, with the same objective
matrices and classification procedure as in Fig. 3A-B.
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