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Abstract
Learning in neuronal networks has developed in many directions, in particular to reproduce cognitive

tasks like image recognition and speech processing. Implementations have been inspired by stereotypical
neuronal responses like tuning curves in the visual system, where, for example, ON/OFF cells fire or
not depending on the contrast in their receptive fields. Classical models of neuronal networks therefore
map a set of input signals to a set of activity levels in the output of the network. Each category
of inputs is thereby predominantly characterized by its mean. In the case of time series, fluctuations
around this mean constitute noise in this view. For this paradigm, the high variability exhibited by the
cortical activity may thus imply limitations or constraints, which have been discussed for many years.
For example, the need for averaging neuronal activity over long periods or large groups of cells to assess
a robust mean and to diminish the effect of noise correlations. To reconcile robust computations with
variable neuronal activity, we here propose a conceptual change of perspective by employing variability
of activity as the basis for stimulus-related information to be learned by neurons, rather than merely
being the noise that corrupts the mean signal. In this new paradigm both afferent and recurrent weights
in a network are tuned to shape the input-output mapping for covariances, the second-order statistics
of the fluctuating activity. When including time lags, covariance patterns define a natural metric for
time series that capture their propagating nature. We develop the theory for classification of time series
based on their spatio-temporal covariances, which reflect dynamical properties. We demonstrate that
recurrent connectivity is able to transform information contained in the temporal structure of the signal
into spatial covariances. Finally, we use the MNIST database to show how the covariance perceptron
can capture specific second-order statistical patterns generated by moving digits.

Author summary

The dynamics in cortex is characterized by highly fluctuating activity: Even under the very same experimental
conditions the activity typically does not reproduce on the level of individual spikes. Given this variability,
how then does the brain realize its quasi-deterministic function? One obvious solution is to compute averages
over many cells, assuming that the mean activity, or rate, is actually the decisive signal. Variability across
trials of an experiment is thus considered noise. We here explore the opposite view: Can fluctuations be
used to actually represent information? And if yes, is there a benefit over a representation using the mean
rate? We find that a fluctuation-based scheme is not only powerful in distinguishing signals into several
classes, but also that networks can efficiently be trained in the new paradigm. Moreover, we argue why
such a scheme of representation is more consistent with known forms of synaptic plasticity than rate-based
network dynamics.
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1 Introduction
A fundamental cognitive task that is commonly performed by humans and animals is the classification of
time-dependent signals. For example, in the perception of auditory signals, the listener needs to distinguish
the meaning of different sounds: The neuronal system receives a series of pressure values, the stimulus, and
needs to assign a category, for example whether the sound indicates the presence of a predator or a prey.
Neuronal information processing systems are set apart from traditional paradigms of information processing
by their ability to be trained, rather than being algorithmically programmed. The same architecture, a
network composed of neurons connected by synapses, can be adapted to perform different classification
tasks. The physical implementation of learning predominantly consists of adapting the connection strengths
between neurons —a mechanism termed synaptic plasticity. Earlier models of plasticity like the Hebbian
rule [23, 24] focused on the notion of firing together, which was interpreted in terms of firing rate. In
parallel to such unsupervised learning rules, supervised learning and reinforcement learning have also been
explored to explain how biological systems can be trained to perform cognitive tasks, such as pattern
recognition [52, 21, 25].

The representation of the stimulus identity by the mean firing activity alone is, however, challenged by
two observations in biological neuronal networks. First, synaptic plasticity, the biophysical implementation
of learning, has been shown to depend on the relative temporal spiking activity of the presynaptic and
the postsynaptic neurons [33, 8], which can be formalized in terms of the covariance of the neuronal
activity [26, 18]. Examples of second-order statistics of the spiking activity that induce strong weight
specialization not only include the canonical example of spike patterns with reliable latencies, like spike
volleys following visual stimulation [34], but also a great variety of spiking statistics such as fast stereotypical
co-fluctuations even in the case of Poisson-like firing [19]. Nonetheless, the common feature to all those
input structures is the collective spiking behavior. Second, neuronal activity in cortex shows a considerable
amount of variability even if the very same experimental paradigm is repeated multiple times [2], even though
protocols with reliable responses were also observed [32]. This variability seems in conflict with supervised
learning schemes of spike trains with detailed timing that have attracted a lot of recent interest [21, 42,
49]. Previous studies have proposed that this variability may be related to probabilistic representations of
the environment in a Bayesian fashion [7, 39] and that variability is closely linked to behavior [44, 28].
Experimental and theoretical evidence thus points to a relation between the variability of neuronal activity
and the representation of the stimulus. This is the basis for the present study, which aims to make a
step toward an equivalent of STDP for supervised learning; for simplicity we study the new concept with
non-spiking neurons.

These observations raise several questions: How can a neuronal system perform its function not despite
this large amount of variability, but using variability itself? Consequently, how to train networks that
employ representations based on variability such as covariances? Finally, one may wonder if covariance-
based learning is superior to technical solutions that employ a mean-based representation, providing a reason
why it may have evolved in neuronal circuits. To address these questions, we consider the training of a
neuronal system that has to learn time series with structured variability in their activity.

Supervised learning in (artificial) neuronal networks is often formulated as a gradient descent for an
objective function that measures the mismatch between the desired and the actual outputs [9]. The most
prominent examples of such synaptic update rules are the delta rule for the “classical” perceptron that
is a neuronal network with an input layer and an output layer [45, 35, 54] and error back-propagation
for the multilayer perceptron [46]. These led to the modern forms of deep learning and convolutional
networks [30, 47]. Their success was only unleashed rather recently by the increased computational power
of modern computers and large amounts of available training data, both required for successful training. A
key for further improvement of neuronal information processing lies on evolving the theory, for example by
devising new and efficient paradigms for training.

A central feature of the training design is how the physical stimulus is represented in terms of neuronal
activity. To see this, consider the classical perceptron whose task is to robustly classify patterns of input
activities despite their variability within each category. For the case of two categories (or classes), it seeks
a plane within the vector space of input activities that best separates the classes and the classification
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performance depends on the overlap between the two clouds of sample data points. Applied to time series,
this paradigm can be used relying on the mean activity as the relevant feature of the input signals; the
variances of the input signals that measure departures from the respective means are then akin to noise that
might negatively affect the classification. For time-dependent signals, this scheme has been extended by
considering as representative pattern for each category the mean trajectory over time (instead of the average
activity as before); the variability then corresponds to meaningless fluctuations around the mean trajectory.
This view has led to efficient technical solutions to train neuronal networks by recurrent back-propagation
or by back-propagation through time [41, 55, 53, 40].

We here present a novel paradigm that employs the covariances of cofluctuating activity to represent
stimulus information, at the intersection between neuroscience and machine learning. We show how the
input-output mapping for covariances can be learned in a recurrent network architecture by efficiently
training the connectivity weights by a gradient-descent learning rule. To do so, we use an objective (or
cost) function that captures the time-series variability via its second-order statistics, namely covariances.
We derive the equivalent of the delta rule for this new paradigm and test its classification performance
using synthetic data as well as moving digits in the visual field.

The remainder of the article is organized as follows: Section 2 formalizes the concept behind our learning
paradigm based on the stochastic fluctuations and contrasts it with distinct concepts studied previously
like noise correlations. Section 3 considers a network with feed-forward connectivity that is trained —
following each stimulus presentation— to implement a desired mapping from the input covariance to the
output covariance. To this end, we derive a gradient-descent learning rule that adapts the feed-forward
connections and examine the network training in theory, for infinite observation time, as well as for time
series of limited duration. Section 4 extends the training of Section 3 to a network with both afferent and
recurrent connections. We show how recurrent connections allow us to exploit the temporal structure of
input covariances as an additional dimension for stimulus representation that can be mapped to output
representations. Importantly, we demonstrate the specific role played by the recurrent network connectivity
when the information to learn is in the temporal dimension of covariances, but not in its spatial dimension.
Last, Section 5 applies the covariance perceptron to moving digits, to illustrate its ability in capturing
dynamic patterns in data closer to real-life signals.

2 Time series and covariance patterns
Various types of correlations for time series have been studied in the literature, as illustrated in Fig. 1A.
We denote by xt,s1 and xt,s2 two time series, where the superscript t indicates time and the superscript s
the trial index. The situation in the left column of Fig. 1A corresponds to a stereotypical trajectory for xt,s1
across trials, which translates to positive correlation for two trials s and s′:

corrt

(
xt,s1 , xt,s

′

1

)
> 0, (1)

and similarly for xt,s2 . Here the subscript t indicates the ensemble over which correlations are computed.
We refer to this as ’signal correlation’ because the “information” to learn is the stereotypical trajectory that
can be evaluated by averaging over trials. Such reliable trajectories can be learned using back-propagation
through time [40]. In contrast, the situation in the middle columns illustrates correlation within each trial
between the two time series, either with zero lag for the same t

corrs
(
xt,s1 , xt,s2

)
> 0, (2)

or for distinct t and t′ with a fixed lag τ = t′ − t

corrs

(
xt,s1 , xt

′,s
2

)
> 0. (3)

Importantly, the middle plots illustrate that distinct trials may exhibit very different trajectories, even
though the within-trial correlations are the same; the latter can thus be the basis of information conveyed

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2020. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 10 20
time

−1

0

1

0 10 20
time

−1

0

1

0 10 20
time

−1

0

1

0 10 20
time

−1

0

1

0 10 20
time

−1

0

1

tr
ia

l 2

0 10 20
time

−1

0

1

tr
ia

l 1

Noise correlations“Signal” correlations Within-trial correlationsA

B

m
1

m
2

v
1

v
2

c
12

x
1

x
2

CovariancesTime series Means

zero-lag lagged

0 10 20
time

−1

0

1

0 10 20
time

−1

0

1

Figure 1: Cofluctuations of time series as a basis for stimulus discrimination. A Three types of
correlations for two time series (in light and dark brown). Signal correlations (left column) measure the
similarity of individual trajectories across trials up to some additional noise. Importantly, the light and dark
time series may be uncorrelated within each trial. Conversely, within-trial correlations (middle columns)
correspond to the situation where trials may be distinct, but the two time series within a trial are correlated
(positively here, the left configuration with zero lag and the right configuration with a lag of 3 for visual
legibility). This is the subject of the present study. Last, noise correlations (right column) concern the
means of the time series, as represented by the dashed lines, that are either both positive or both negative
within each trial. B For the discrimination of multivariate time series, as in panel A, we here consider
two categories (red and blue). The time series xt1 and xt2, displayed in the (x1, x2)-plane in the left plot,
show one example for each category. From each category example, one can calculate the mean (here a
vector of dimension 2), corresponding to a single dot in the right plot. Learning for classification aims to
find a separatrix between the red and the blue point clouds. The presence of noise correlations between
the means affects the overlap between the dot groups (e.g. positive for the shown example), hence the
classification performance. Alternatively, one can compute from the same time series their (within-trial)
variances and covariances, yielding points in a three-dimensional space here (middle plot, where v1 and
v2 are the respective variances, and c12 the cross-covariance). Here classification is based on the within-
trial covariances as features to learn, which conceptually differs from the mean-based learning and noise
correlations in the right panel.
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by time series to be learned. This is the paradigm examined in the present study, which can be thought as
cofluctuations of fast-varying firing rates that strongly interact with STDP [19]. It conceptually differs from
another type of correlation that has been much studied, referred to as noise correlations [3, 36]. For time
series, noise correlations concern the trial-to-trial correlation of the means of the time series, as represented
by the horizontal dashed lines in the right plot of Fig. 1A, formally given by

corrs
(
〈xt,s1 〉t, 〈x

t,s
2 〉t

)
> 0, (4)

where the angular brackets denote the average over time to compute the mean (it will be formally defined
later).

In the context corresponding to the examples in the middle columns of Fig. 1A, we consider the classifi-
cation problem of discriminating time series. Their within-trial correlations, as defined in Eqs. (2) and (3),
which are the “information” to learn. It is worth noting that ’signal correlations’ in the left column of
Fig. 1A can also lead to reliable correlation patterns in the sense of Eqs. (2) and (3) depending on their
average trajectories for pairs of inputs and on the time window used to calculate the correlations, as in the
example that will be studied in Section 5. The general situation corresponds to the middle plot in Fig. 1B,
where two groups (in red and blue, an example time series of each group being represented in the left plot)
have distinct (co)variances that can be used as features for classification. In comparison, the right plot in
Fig. 1B depicts the equivalent situation where the means of the time series are used for discrimination. In
this case noise correlations measure the spread of each dot cloud.

To implement the classification of time series based on their within-trial correlations, we examine the
problem of the propagation of this signal in a neuronal network, as illustrated in Fig. 2A. To deal with
representations of stimulus identity embedded in temporal (co)fluctuations within trials, we move from the
first-order statistics, the mean activity of each neuron within a trial, to the second-order statistics, the
covariance between the fluctuating activities for pairs of neurons. To fix ideas, we consider a discrete-time
network dynamics as defined by a multivariate autoregressive (MAR) process [31]. This linearization of
neuron dynamics is to explore principles. The activity of the m inputs xt1≤k≤m is described by a stochastic
process in discrete time t ∈ Z. The inputs drive the activity yt1≤i≤n of the n output neurons via connections
B ∈ Rn×m, which form the afferent connectivity. The outputs also depend on their own immediate past
activity (i.e. with a unit time shift) through the connections A ∈ Rn×n, the recurrent connectivity, as

yti =
∑

1≤j≤n

Aijy
t−1
j +

∑
1≤k≤m

Bikx
t
k , (5)

illustrated in Fig. 2A. We define the mean activities

Xk ≡ 〈xtk〉t (6)
Yi ≡ 〈yti〉t ,

where the angular brackets 〈· · · 〉t = d−1
∑d
t=1 · · · indicate the average over the period of duration d in

Fig. 2A. Likewise, the input and output covariances, with τ ∈ Z being the time lag, are defined as

P τkl ≡ 〈xt+τk xtl〉t − 〈xt+τk 〉t〈xtl〉t (7)
Qτij ≡ 〈yt+τi ytj〉t − 〈yt+τi 〉t〈ytj〉t .

Here we implicitly assume stationarity of the statistics over the observation window.
As a first step, we consider the case of vanishing means for covariance-based classification, so the second

terms on the right-hand sides disappear in Eq. (7); considerations about a mixed scenario based on both
means and covariances will be discussed at the end of the article. In this setting, the goal of learning is to
shape the mapping from the input covariance P to the output covariance Q in the network in Fig. 2A in
order to perform the task, here classification. The most general case would consider the mapping of the
entire probability distributions. For the ensemble of Gaussian processes used here and the linear dynamics
in Eq. (5), the first two moments, however, uniquely determine the entire statistics. In the classification
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Figure 2: From mean-based to covariance-based time-series classification. A Network with n =
2 output nodes generates a time series (in dark brown on the right) from the noisy time series ofm = 10 input
nodes (in light brown on the left). The afferent (feed-forward) connections B (green links and green arrow)
and, when existing, recurrent connections A (purple dashed links and arrow) determine the input-output
mapping. We observe the time series over a window of duration d. B Each set of time series in panel A
corresponds to a covariance pattern, namely an m×m matrix for the inputs on the left-hand side and an
n×n matrix for the output on the right-hand side, where darker pixels indicate higher values. See Eq. (7) for
the formal definition of the averaging over the observation window of length d in panel A. As an example,
we define two categories (or classes) that are represented by larger variance of either of the two nodes,
node 1 for the red category and node 2 for the blue category. The classification scheme is implemented
by tuning the connectivity weights A and B such that several input covariance patterns are mapped to the
single output covariance pattern of the corresponding category. C As a comparison, considering the mean
activities instead of the within-trial covariances, corresponds to the mapping between input and output
vectors in Eq. (6), which can be formalized in the context of the classical perceptron (linear or non-linear).
There, the categories for the input pattern (m-dimensional vectors on the left-hand side) are defined by the
output pattern (n-dimensional vector on the right-hand side), the red category with neuron 1 highly active
and the blue category with neuron 2 highly active.
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example, correlated fluctuations across neurons —as defined by covariances in Eq. (7)— convey information
that can be used to train the network weights and then classify input time series into categories. The desired
outcome is illustrated in Fig. 2B, where the ‘red category’ of input covariance matrices P is mapped by the
network to an output, where neuron 1 has larger variance than neuron 2. Conversely, for the ‘blue category’
of input covariances matrices, the variance of neuron 2 exceeds that of neuron 1. This example thus maps
a bipartite set of patterns to either of the two stereotypical output patterns, each representing one class.
In doing so, we focus on the mapping between input and output, on which a threshold is then applied to
make the decision. This corresponds to the conditional probabilities relating input and output covariance
patterns given by

Pr
(
P τ |Qτij > θ

)
∝ Pr

(
Qτij > θ|P τ

)
Pr (P τ ) .

We thus need to derive a learning scheme that tunes the connectivity weights, A and B, to shape
the output covariance when a given input covariance pattern is presented, since the input-output mapping
governs Pr

(
Qτij > θ|P τ

)
. We term this paradigm the ‘covariance perceptron’, since it can be seen as

an extension of the classical perceptron in Fig. 2C. In the covariance perceptron, the objective or cost
function is changed to manipulate the covariance of time series rather than the mean. Note that there
is no non-linearity considered in the neuronal response here unlike what is typically used in the classical
perceptron [35], which will be discussed later.

Importantly, our approach feeds the entire time series into the network, which outputs time series
according to Eq. (5). This embodies a mapping from the input covariances to the output covariances,
which are defined in Eq. (7) and evaluated in practice using an observation window. The discrimination of
the time series based on their covariances thus results from the network dynamics itself. The parameters to
tune are the n2 + nm synaptic weights A and B. This is fundamentally different from a preprocessing of
the data in the context of machine learning, where a set of features like covariances is extracted first and
then fed to an (artificial) neuronal network that operates in this feature space (see Fig. 1B). In the latter
approach, each feature (m(m+1)/2 for a zero-lag covariance matrix) would come with an individual weight
to be tuned, then multiplied by the number n of outputs. For classification where the input dimensionality
m is typically much larger that the number n of categories, the use of resources (weights) is much lighter
in our scheme. Another difference worth noting is that the measures on the input and output activities is
of the same type in our scheme, so “information” is represented and processed in a consistent manner by
the network. This opens the way to successive processing stages as in multilayer perceptrons.

Last, we stress again that our viewpoint on signal variability radically differs from that in Fig. 2C,
where the information is conveyed by the mean signal and fluctuations are noise. Conceptually, taking
the second statistical order as the basis of information is an intermediate description between the detailed
signal waveform and the (oversimple) mean signal. The switch from means to covariances implies that richer
representations can be realized with the same number of nodes, thereby implementing a kernel trick [9]
applied to time series using the network dynamics themselves.

3 Learning input-output covariance mappings in feedforward
networks

This section presents the concepts underlying the covariance perceptron with afferent connections B only
(meaning absent recurrent connectivity A = 0). For the classical perceptron in Fig. 2C, the observed
output mean vector Y for the classification of the input mean vector X defined in Eq. (6) is given by the
input-output mapping

X 7→ Y = BX . (8)

For time series, the derivation of this consistency equation —with A = 0 in Eq. (5)— assumes stationary
statistics for the input signals. Under the similar assumption of second-order stationarity, the novel proposed
scheme in Fig. 2B relies on the mapping between the input and output covariance matrices, P 0 and Q0 in
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Eq. (7), namely
P 0 7→ Q0 = BP 0BT , (9)

where T denotes the matrix transpose, and the superscript 0 denotes the zero time lag. Details can be
found with the derivation of the consistency equation Eq. (21) in Appendix A. The common property of
Eqs. (8) and (9) is that both mappings are linear in the respective inputs (X and P 0). However, the second
is bilinear in the weight B while the first is simply linear. Note also that this section ignores temporal
correlations (i.e. we consider that P 1 = P−1T = 0); time-lagged covariances, in fact, do not play any role
in Eq. (21) when A = 0.

3.1 Theory for tuning afferent connectivity based on spatial covariance struc-
ture

To theoretically examine covariance-based learning, we start with the abstraction of the MAR dynamics
P 0 7→ Q0 in Eq. (9). As depicted in Fig. 3A, each training step consists in presenting an input pattern
P 0 to the network and the resulting output pattern Q0 is compared to the objective Q̄0 in Fig. 3B. For
illustration, we use two categories (red and blue) of 5 input patterns each, as represented in Fig. 3C-D. To
properly test the learning procedure, noise is artificially added to the presented covariance pattern, namely
an additional uniformly-distributed random variable with a magnitude of 30% compared to the range of
the noiseless patterns P 0, independently for each matrix element while preserving the symmetry of zero-lag
covariances; compare the noisy pattern in Fig. 3A (left matrix) to its noiseless version in Fig. 3C (top left
matrix). The purpose is to mimic the variability of covariances estimated from a (simulated) time series
of finite duration (see Fig. 2), without taking into account the details of the sampling noise. The update
∆Bik for each afferent weight Bik is obtained by minimizing the distance (see Eq. (23) in the Appendix)
between the actual and the desired output covariance

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
(10)

= ηB
(
Q̄0 −Q0

)
�
(
U ikP 0BT +BP 0U ikT

)
,

where U ik is an m×m matrix with 0s everywhere except for element (i, k) that is equal to 1; this update
rule is obtained from the chain rule in Eq. (24), combining Eqs. (25) and (28) with P−1 = 0 and A = 0 (see
Appendix B). Here ηB denotes the learning rate and the symbol � indicates the element-wise multiplication
of matrices followed by the summation of the resulting elements —or alternatively the scalar product of the
vectorized matrices. Note that, although this operation is linear, the update for each matrix entry involves
U ik that selects a single non-zero row for U ikP 0BT and a single non-zero column for BP 0U ikT. Therefore,
the whole-matrix expression corresponding to Eq. (10) is different from (Q̄0−Q0)P 0BT+BP 0(Q̄0−Q0)T,
as could be naively thought.

Before training, the output covariances are rather homogeneous as in the examples of Fig. 3C-D (initial
Q0) because the weights are initialized with similar random values. During training, the afferent weights
Bik in Fig. 3E become specialized and tend to stabilize at the end of the optimization. Accordingly, Fig. 3F
shows the decrease of the error E0 between Q0 and Q̄0 defined in Eq. (23). After training, the output
covariances (final Q0 in Fig. 3C-D) follow the desired objective patterns with differentiated variances, as
well as small cross-covariances.

As a consequence, the network responds to the red input patterns with higher variance in the first output
node, and to the blue inputs with higher variance in the second output (top plot in Fig. 4B). We use the
difference between the output variances in order to make a binary classification. The classification accuracy
corresponds to the percentage of output variances with the desired ordering. The evolution of the accuracy
during the optimization is shown in Fig. 4C. Initially around chance level at 50%, the accuracy increases
on average due to the gradual shaping of the output by the gradient descent. The jagged evolution is
due to the noise artificially added to the input covariance patterns (see the left matrix in Fig. 3A), but it
eventually stabilizes around 90%. The network can also be trained by changing the objective matrices to
obtain positive cross-covariances for red inputs, but not for blue inputs (Fig. 4D); in that case variances
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Figure 3: Learning variances in a feed-forward network. A Schematic representation of the input-
output mapping for covariances defined by the afferent weight matrix B, linking m = 10 input nodes to
n = 2 output nodes. B Objective output covariance matrices Q̄0 for two categories of inputs. C Matrix for
the 5 input covariance patterns P 0 (left column), with their image under the original connectivity (middle
column) and the final image after learning (right column). D Same as C for the second category. E
Evolution of individual weights of matrix B during ongoing learning. F The top panel displays the evolution
of the error between Q0 and Q̄0 at each step. The total error taken as the matrix distance E0 in Eq. (23)
is displayed as a thick black curve, while individual matrix entries are represented by gray traces. In the
bottom panel the Pearson correlation coefficient between the vectorized Q0 and Q̄0 describes how they are
“aligned”, 1 corresponding to a perfect linear match.
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Figure 4: Comparison between learning output patterns for variance and cross-covariance. A The
top matrices represent the two objective covariance patterns of Fig. 3B, which differ by the variances for the
two nodes. B The plots display two measures based on the output covariance: the difference between the
variances of the two nodes (top) and the cross-covariance (bottom). Each violin plot shows the distributions
for the output covariance in response to 100 noisy versions of the 5 input patterns in the corresponding
category. Artificial noise applied to the input covariances (see the main text about Fig. 3 for details)
contributes to the spread. The separability between the red and blue distributions of the variances indicates
a good classification. The dashed line is the tentative implicit boundary enforced by learning using Eq. (28)
with the objective patterns in panel A: Its value is the average of the differences between the variances of
the two categories. C Evolution of the classification accuracy based on the difference of variances between
the output nodes during the optimization. Here the binary classifier uses the difference in output variances,
predicting red if the variance of the output node 1 is larger than 2, and blue otherwise. The accuracy
eventually stabilizes above the dashed line that indicates 80% accuracy. D-F Same as panels A-C for two
objective covariance patterns that differ by the cross-covariance level, strong for red and zero for blue. The
classification in panel F results from the implicit boundary enforced by learning for the cross-covariances
(dashed line in panel E), here equal to 0.4 that is the midpoint between the target cross-covariance values
(0.8 for read and 0 for blue).

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2020. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


are identical for the two categories. The output cross-covariances have separated distributions for the two
input categories after training (bottom plot in Fig. 4E), yielding the good classification accuracy in Fig. 4F.

As a sanity check, the variance does not show a significant difference when training for cross-covariances
(top plot in Fig. 4E). Conversely, the output cross-covariances are similar and very low for the variance
training (bottom plot in Fig. 4B). These results demonstrate that the afferent connections can be efficiently
trained to learn categories based on input (co)variances, just as with input vectors of mean activity in the
classical perceptron.

3.2 Discriminating time series observed using a finite time window

Now we turn back to the configuration in Fig. 2A and verify that the learning procedure based on the
theoretical consistency equations also works for simulated time series. This means that the sampled activity
of the network dynamics itself is presented, rather than their statistics embodied in the matrices P 0 and
Q0, as done in Figs. 3 and 4 and as a classical machine-learning scheme would do with a preprocessing
step that converts time series using kernels. Again, the weight update is applied for each presentation of
a pattern such that the output variance discriminates the two categories of input patterns. The setting is
shown in Fig. 5A, where only three input patterns per category are displayed.

To generate the input time series, we use a superposition of independent Gaussian random variables ztl
with unit variance (akin to white noise), which are mixed by a coupling matrix W :

xtk =
∑

1≤l≤m

Wkl z
t
l . (11)

We randomly draw 10 distinct matrices W with a density of f = 10% of non-zero entries, so the input time
series differ by their spatial covariance structure P 0 = WWT. At each presentation, one of the 10 matrices
W is chosen to generate the input time series using Eq. (11). Their covariances are then computed using
an observation window of duration d. The window duration d affects how the empirical covariances differ
from their respective theoretical counterpart P 0, as shown in Fig. 5C. This raises the issue of the precision
of the empirical estimates required in practice for effective learning.

As expected, a longer observation duration d helps to stabilize the learning, which can be seen in the
evolution of the error in Fig. 5D: the darker curves for d = 20 and 30 have fewer upside jumps than the
lighter curve for d = 10. To assess the quality of the training, we repeat the simulations for 20 network
and input configurations (W and z, resp.) , then calculate the difference in variance between the two
output nodes as in Fig. 4B-C. Training for windows with d ≥ 20 achieve very good classification accuracy
in Fig. 5E. This indicates that the covariance estimate can be evaluated with sufficient precision from only
a few tens of time points. Moreover, the performance only slightly decreases for denser input patterns
(Fig. 5F). Similar results can be obtained while training the cross-covariance instead of the variances.

3.3 Discrimination capacity of covariance perceptron for time series

The efficiency of the binary classification in Fig. 4 relies on tuning the weights to obtain a linear separation
between the input covariance patterns. Now we consider the capacity of the covariance perceptron, evalu-
ated by the number p of input patterns (or pattern load) that can be discriminated in a binary classification.
For the classical perceptron and for randomly-chosen binary patterns that must be separated in two cate-
gories, the capacity is 2m, twice the numberm of inputs [12, 15]. An analytical study of the capacity of the
covariance perceptron using Gardner’s theory of connections from statistical mechanics is performed in a
sister article [13]. That study shows that a single readout cross-covariance can in theory discriminate twice
as many patterns per synapse as the classical perceptron, but that this capacity does not linearly scale with
the number of outputs. Finding such optimal solutions is an NP-hard problem in general and optimization
methods like the gradient descent employed here may only achieve suboptimal capacities in practice. In
addition, an important difference compared to that study, which focused on “static” patterns, concerns the
time series used for training and testing here, which involves empirical noise (see Fig. 5C). Thus, we here
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Figure 5: Learning input covariances by tuning afferent connectivity. A The same network as in
Fig. 3A is trained to learn the input spatial covariance structure P 0 of time series governed by the dynamics
in Eq. (11). Only 3 matrices P 0 = WWT out of the 5 for each category are displayed. Each entry in each
matrixW has a probability f = 10% of being non-zero, so the actual f is heterogeneous across the different
matrices W . The objective matrices (right) correspond to a specific variance pattern for the output nodes.
B Example of simulation of the time series for the inputs (light brown traces) and outputs (dark brown). An
observation window (gray area) is used to calculate the covariances from simulated time series. C Sampling
error as measured by the matrix distance between the covariance estimated from the time series (see panel
B) and the corresponding theoretical value when varying the duration d of the observation window. The
error bars indicate the standard error of the mean over 100 repetitions of randomly drawn W and afferent
connectivity B. D Evolution of the error for 3 example optimizations with various observation durations d
as indicated in the legend. E Classification accuracy at the end of training (cf. Fig. 4C) as a function of
d, pooled for 20 network and input configurations. For d ≥ 20, the accuracy is close to 90% on average,
mostly above the dashed line indicating 80%. F Similar plot to panel E when varying the input density of
W from f = 10 to 20%, with d = 20.
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Figure 6: Numerical evaluation of capacity. A Evolution of the classification accuracy over the optimiza-
tion epochs. During each epoch, all p = m patterns are presented in a random order. We use the same
network as in Fig. 5, but with distinct input numbersm as indicated in the legend. The observation duration
is d = 20. The error bars correspond to the standard error of the mean accuracy over 10 configurations.
B Comparison of the classification accuracies as a function of the relative pattern load p/m (x-axis). Note
that 2 corresponds to the theoretical capacity p = 2m of the classical perceptron with a single output,
but the architecture considered here has 2 outputs; for an in-depth study of the capacity and its scaling
with the number of output nodes, please refer to our sister paper [? ] whose results are discussed in the
main text. The plotted values are the mean accuracies for each configuration, averaged over the last three
epochs in panel A. The error bars indicate the standard error of the mean accuracy over 10 repetitions for
each configuration. C Similar plot to panel B when varying the observation duration d for two cases p = m
and p = 2m.

employ numerical simulation to get a first insight on the capacity of the covariance perceptron with “noisy
inputs”, varying in the same manner the number of input neurons and patterns to learn.

Here we consider the same optimization of output variances on which the discrimination is based
as in Fig. 5, instead of the cross-covariances studied using Gardner’s theory [13]. The evolution of the
classification accuracy averaged over 10 configurations is displayed in Fig. 6A, where darker gray levels
correspond to larger network sizes as indicated in the legend. For each configuration, the mean accuracy
of the last three epochs is plotted in Fig. 6B where the observation duration is d = 20. At the load p = m,
the performance decreases with the network size: for instance, it remains in the case of m = 100 inputs
(darker curve) around 75% for a load of m patterns and way above 50% for 2m patterns. Interestingly,
the performance significantly increases when using larger d, for example improving by roughly 10% for
m = 50 and 100 in each of the two plots of Fig. 6C. This means that the empirical noise related to the
covariance estimation over the observation window (see Fig. 5B) becomes larger when the number m of
inputs increases, but it can nonetheless be compensated by using a larger window.
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4 Learning spatio-temporal covariance mapping with both af-
ferent and recurrent connectivities

We now extend the learning scheme of Section 3 to the tuning of both afferent and recurrent connectivities
in Eq. (5) with the same application to classification. We also switch from spatial to spatio-temporal
covariance structures, corresponding to a non-zero lag τ in Eq. (7). As a model of input, we simulate time
series that differ by their hidden dynamics. By “hidden dynamics” we simply mean that time series obey
a dynamical equation, which determines their spatio-temporal structure that can be used for classification.
Concretely, we use

xtk =
∑
l

Wklx
t−1
l + ztk , (12)

with ztk being independent Gaussian random variables of unit variance. This dynamical equation replaces the
superposition of Gaussians in Eq. (11) for generating temporally correlated input signals, where P 0 satisfies
the discrete Lyapunov equation P 0 = WP 0WT + 1m. Here, 1m is the identity matrix, and P 1 = WP 0

denotes the 1-lag covariances. In this context, a category consists of a set of such processes, each with a
given matrix W in Eq. (12) as before with P 0 in Fig. 3. Note that the matrix W itself is not known to the
classifier, only the resulting statistics of x that obeys Eq. (12); thus we call this setting “classification of
hidden dynamics”.

4.1 Stability of ongoing learning

Before examining classification, we consider the problem of stability of ongoing learning (or plasticity).
Unsupervised Hebbian learning applied to recurrent connections is notoriously unstable and adequate means
to prevent ongoing plasticity from leading to activity explosion are still under debate [57, 50] —note that,
if those studies concern especially spiking networks, their conclusions also apply to non-spiking networks as
considered here. Supervised learning, however, can lead to stable weight dynamics [51, 16]. Stability can
be directly enforced in the objective function, but can also be a consequence of the interplay between the
learning and network dynamics. Because our objective functions are based on the output covariances, we
test whether they also yield stability for the weights and network activity.

The learning procedure is tested with simulated time series as in Fig. 5. The weight updates are
given by equivalent equations to Eq. (10) that determine the weight updates for the afferent and recurrent
connectivities (B and A; see Eqs. (28), (30), (31) and (31) in Appendix B). We recall that they rely on the
consistency equations (21) and (22), which are obtained in Appendix A under the assumption of stationary
statistics. Fig. 7 illustrates the stability of the learning procedure, while the error decreases to the best
possible minimum. As a first example, we want to map 10 input patterns —corresponding to 10 distinct
matrices W in Eq. (12), each giving a specific pair of input covariance matrices

(
P 0, P 1

)
— to the same

objective covariance matrix Q̄0, thereby dealing with a single category as illustrated in Fig. 7A. Note that
with the choice of W with small weights here, all input covariance matrices P 0 are close to the identity
and the optimized connectivity must generate cross-correlations between the outputs. Simplifying Eq. (47)
for the current configuration, the weight updates are given by

∆Aij = ηA
(
Q̄0 −Q0

)
� ∂Q0

∂Aij
, (13)

∆Bik = ηB
(
Q̄0 −Q0

)
� ∂Q0

∂Bik
,

where the derivatives are given by the matrix versions of Eqs. (28) and (30) in Appendix B:
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Figure 7: Stability of ongoing learning for both afferent and recurrent connectivities. A Network
configuration with m = 20 inputs and n = 5 outputs. Each input pattern corresponds to a randomly chosen
m×m matrix W with 10% density of non-zero connections that determines the input covariance matrices(
P 0, P 1

)
of the time series generated from Eq. 12. The objective Q̄0 is a randomly-drawnm×m symmetric

matrix (also ensuring its definite positivity). Here we consider a single category (in red) to test whether the
weight learning rule can achieve a desired input-output mapping, leaving aside classification for a moment. B
Example evolution of the afferent and recurrent weights (green and purple traces, respectively). Simulation
of the time series as in Fig. 5, observed for a duration d = 50. The network has to map 10 input pattern pairs(
P 0, P 1

)
similar to the example in panel A to a single output Q̄0. C Evolution of the tuning of the network

output. The learning procedure aims to reduce the normalized error between the output covariance Q0 and
its objective Q̄0 (left plot, similar to Fig. 3F), here calculated as ||Q̄0 − Q0||/||Q̄0|| where || · · · || is the
matrix norm. We also compute the Pearson correlation coefficient between the vectorized matrices Q0 and
Q̄0 (right plot). The thick black traces correspond to the mean over 10 repetitions of similar optimizations
to panel A, each gray curve corresponding to a repetition. D-E Similar plots to panels A-B for the tuning
of both

(
Q̄0, Q̄1

)
for a single repetition. The input time series are generated in the same manner as before.

Contrary to panel A, the output objective pair
(
Q̄0, Q̄1

)
is chosen as two homogeneous diagonal matrices

with larger values for Q̄0 than Q̄1, corresponding to outputs with autocorrelation and no cross-correlation
—this example is inspired by previous work on whitening input signals [11]. The observation duration is
d = 100.
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∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (14)

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT

+U ikP−1TBTAT +BP−1TU ikTAT .

Both formulas have the form of a discrete Lyapunov equation that can be solved at each optimization step
to evaluate the weight updates for A and B. Also recall that the derivation of the consistency equations in
Appendix A assumes P 2 = 0 and is thus an approximation because we have P 2 = W 2P 0 here. As the input
matrix W must have eigenvalues smaller than 1 in modulus to ensure stable dynamics, our approximation
corresponds to ||P 2|| = ||WP 1|| � ||P 1||. The purpose of this example is thus to test the robustness of
the proposed learning in that respect. The weight traces appear to evolve smoothly in Fig. 7B. In the left
plot of Fig. 7C, the corresponding error between the output Q0 and the objective Q̄0 firstly decreases and
then stabilizes. The evolution of the Pearson correlation (right plot of Fig. 7C) further indicates that the
matrix structure of the output Q0 remains very close to that of Q̄0, once it reached saturation, even though
the network may not perfectly converge towards the objectives as indicated by the residual error.

A second and more difficult example is explored in Fig. 7D-E, where the objective is a pair of matrices
Q̄0 and Q̄1. The weight optimization then involves the equivalent of Eq. (14) for Q1. The issue of whether
there exists a solution for the weights A and B to implement the desired mapping is more problematic
because the defined objectives imply many constraints, namely Eqs. (21) and (22) must be satisfied for
all ten pairs

(
P 0, P 1

)
with

(
Q0, Q1

)
=
(
Q̄0, Q̄1

)
with the same weight matrices. This results in less

smooth traces for the weights (Fig. 7D) and a weak decrease for the normalized error (left plot in Fig. 7E),
suggesting that there is not even an approximate solution for the weights A and B. Nonetheless, the weight
structure does not explode and the Pearson correlation between the output covariances and their respective
objectives indicate that the objective structure is captured to some extent (right plot in Fig. 7E).

4.2 Computational and graph-local approximations of the covariance-based
learning

First, we consider an approximation in the calculation of the weight updates that does not require solving
the Lyapunov equation. An important question is which role the elements that quantify the non-linearity
due to the recurrent connectivity A play in determining the weight updates. As explained in Appendix B.1,
we consider the approximation of Eq. (14) that ignores second-order terms in the recurrent connectivity
matrix A in the Lyapunov equation

∂Q0

∂Aij
= V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (15)

∂Q0

∂Bik
= U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT + U ikP−1TBTAT +BP−1TU ikTAT .

Now the calculation of the weight updates is much simpler, involving only a few matrix multiplications and
additions. To test the validity of this approximation, we repeat the same optimization as in Fig. 7A with
10 input patterns to map to a single output pattern with objective Q̄0. As illustrated for an example in
Fig. 8A, the comparison of Eq. (15) (red trace) with Eq. (14) (black trace) hardly show any difference in
the performance. This is confirmed in Fig. 8B for 10 repetitions of the same training with randomly chosen
input and output patterns. Although the approximation for the solution of the Lyapunov equation may
seem coarse, it yields a very similar trajectory for the gradient descent. This gives the intuition that this
computational approximation gives the correct general direction in the high-dimensional space and, since
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Figure 8: Approximations of the gradient descent. A Comparison of the evolution of the error in
optimizing Q0 for three flavors of the gradient descent: the “full” solution (in black) using Eq. (14), the
computational approximation (in red) using Eq. (15) and the local approximation (in purple) using Eq. (16).
Network and pattern configuration similar to Fig. 7A, involving 10 input patterns to map to a single output
pattern by training both afferent and recurrent connections in a network of m = 20 inputs and n = 5
outputs. Here the network has sparse connectivity, corresponding to a probability of existence for each
connection equal to 30%; weights for absent connections are not trained and kept equal to 0 at all times.
B Asymptotic error estimated from the last 10 optimization steps in panel A for 10 repetitions of similar
configurations to panel A. C Schematic representation of the local approximation in Eq. (16) to compute
the weight updates of afferent connections and recurrent connections targeting neuron i (here with two
examples Bik and Aij): only covariances from network neurons with a connection to neuron i (like i′ via
the dashed blue arrow) are taken into account. D Example of network connectivity (binary matrices in
black on the right) that determine which elements of the covariance error matrix (in color on the left) are
used to calculate the weight update in Eq. (16). Crosses in the left matrix indicate discarded elements,
that correspond to absent recurrent connections. Note that variances are never discarded.
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the weight updates are computed at each optimization step and these steps are small, the gradient descent
does not deviate from the “correct” direction. Even though this example involves non-full connectivity
where only about 30% of the weights are trained (others being kept equal to zero), the same simulation
with full connectivity (not shown) gives similar results with no distinguishable difference between the full
computation and the computational approximation.

Second, we consider a local approximation where the information necessary to compute the weight
updates is only accessible from presynaptic neighbor neurons in the network as illustrated in Fig. 8C:

∆Aij = ηA
∑
i′∈Si

(
Q̄0
ii′ −Q0

ii′
) ∂Q0

ii′

∂Aij
, (16)

∆Bik = ηB
∑
i′∈Si

(
Q̄0
ii′ −Q0

ii′
) ∂Q0

ii′

∂Bik
,

where Si is the subset of neurons with a connection to neuron i. The rationale here is that information
related to the activities of a neuron pair can be evaluated at the point of contact that are recurrent synapses.
Of course, this only makes a difference in the case of non-full connectivity (around 30% density in Fig. 8)
and this local approximation requires the computational approximation since solving the Lyapunov equation
in the full calculation of Eq. (14) requires the knowledge of all connections within the network. An example
of the matrix elements in the covariance error that contribute to the weight update is displayed in Fig. 8D.
Although the performance decreases compared to the computational approximation as illustrated in Fig. 8A
and B, this local optimization still performs reasonably well.

4.3 Classification of time series with hidden dynamics

From the dynamics described in Eq. (5), a natural use for A is the transformation of input spatial covariances
(P 0 6= 0 and P 1 = 0) to output spatio-temporal covariances (Q0 6= 0 and Q1 6= 0), or vice-versa (P 0 6= 0,
P 1 6= 0, Q0 6= 0 and Q1 = 0). The Appendices C.1 and C.2 provide examples for these two cases that
demonstrate the ability to tune the recurrent connectivity together with the afferent connectivity (from now
on with 100% density), which we further examine now.

We consider input time series that are temporally correlated and spatially decorrelated, meaning that
P 1 conveys information about the input category (i.e. reflecting the hidden dynamics), but not P 0. The
theory predicts that recurrent connectivity is necessary to extract the relevant information to separate the
input patterns. To our knowledge this is the first study that tunes recurrent connectivity in a supervised
manner to specifically extract temporal information from lagged covariances when spatial covariances are
not informative about the input categories. Concretely, we here use 6 matrices W (3 for each category) to
generate the input time series that the network has to classify based on the output variances, illustrated
in Fig. 9A. Importantly, we choose W = exp(µ1m + V ) with exp being the matrix exponential, V an
antisymmetric matrix and µ < 0 for stability. As a result, the zero-lag covariance of the input signals
P 0 = 1

1−e2µ1m is exactly the same for all patterns of either category, proportional to the identity matrix as
illustrated in Fig. 9B. This can be seen using the discrete Lyapunov equation P 0 = WP 0WT + 1m, which
is satisfied because WWT = exp(2µ1m + V + V T ) = e2µ1m. In contrast, the time-lagged covariances
P 1 = WP 0 differ across patterns, which is the basis for distinguishing the two categories.

The output is trained only using Q0 according to Eq. (14), meaning that the input spatio-temporal
structure is mapped to an output spatial structure —also following the above considerations about the
existence of adequate weights to implement the desired input-output covariance mapping. The covariances
from the time series are computed using an observation window of duration d in the same manner as
before in Fig. 5B. Note that it is important to discard an initial transient period to remove the influence of
initial conditions on both xt and yt. In practice, we use a larger window duration d compared to Fig. 5,
as it turns out that the output covariances are much noisier here. The influence of d can also be seen
in Fig. 9C, where the evolution of the error for the darkest curves with d ≥ 60 remain lower on average
than the lighter curve with d = 20. To assess the quality of the training, we repeat the simulations
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Figure 9: Learning input spatio-temporal covariances with both afferent and recurrent connectivi-
ties. A Network architecture with m = 10 input nodes and n = 3 output nodes, the latter being connected
together by the recurrent weights A (purple arrow). The network learns the input spatio-temporal covari-
ance structure, which is determined here by a coupling matrix W between the inputs as in Eq. (12). Here
we have 3 input patterns per category. The objective matrices (right) correspond to a specific variance for
the output nodes. B The matrices W are constructed such that they all obey the constraint P 0 ∝ 1m. C
Evolution of the error for 3 example optimizations with various observation durations d as indicated in the
legend. D Classification accuracy after training averaged over 20 network and input configurations. For the
largest d = 100, the accuracy is above 80% on average (dashed line). The color contrast corresponds to
the three values for d as in panel D. E Accuracy similar to panel D with no recurrent connectivity (A = 0).
F Same as panel D with a random fixed matrix A and switching off its learning. G Same as panel D with
the computational approximation in Eq. (15) that does not require solving the Lyapunov equation.
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for 20 network and input configurations and then calculate the difference in variance between the two
output nodes for the red and blue input patterns. The accuracy gradually improves from d = 20 to 100
in Fig. 9D. When enforcing A = 0 in Fig. 9E, classification stays at chance level. This is expected and
confirms our theory, because the learning for B only captures differences in P 0, which is the same for all
patterns here. When A is sufficiently large (but fixed), it contributes to some extent to Q0 such that the
weight update for B can extract relevant information as can be seen in Eq. (14), raising the performance
above chance level in Fig. 9F. Nonetheless, the performance remains much worse than when the recurrent
connections are optimized. These results demonstrate the importance of training recurrent connections in
transforming input spatio-temporal covariances into output spatial covariances. Last, Fig. 9G shows that
the computational approximation in Eq. (15) performs as well as the full gradient in Eq. (14) that involves
solving the Lyapunov equation for this task.

5 Application to the recognition of moving digits
Finally, we examine the robustness of the covariance perceptron applied to the recognition of objects that
move in the visual field by a network of sensory (input) and downstream (output) neurons. To this end, we
use the MNIST database of handwritten digits 0 to 4 [29]. As illustrated with the digit 0 in Fig. 10, each
digit moves horizontally in the visual field either to the right or the left. The goal is to train readout neurons
to detect both the digit identity and the motion direction. The digits pass through the receptor fields of
two “vertical columns” of input neurons (m = 18), which results in delayed activity between the columns
(light and dark brown in Fig. 10B). For each digit, the traces “viewed” by an input neuron exhibit large
variability across presentations, see Fig. 10C for digits 0 and 2 moving right. The goal of this demonstration
is not so much to find the best classification tool, but to see how our proposed learning and classification
scheme performs with “real-life” data, in particular when the Gaussian assumption for inputs is violated.
Note that we use in this section the non-centered moments instead of the centered moments that are the
rigorous definition of the covariances.The image of the digit is swept over a two-dimensional receptor array.
As a result, information about both motion direction and digit identity is transformed into only spatial
covariances between the inputs. In the example of Fig. 10D, we see distinct mean patterns for the left and
right moving digit 0 (see the upper left and lower right quadrants), as well as yet another pattern for digit
2. In other words, both variances and cross-covariances are required for correct classification, the former
being strongly related to the digit identity and the latter to the motion direction. We now test whether
the covariance perceptron can efficiently extract the relevant information from the second-order statistics
of those patterns, while comparing it to other classification networks.

The confusion matrices in Fig. 10E represent the predictions for the training set throughout the opti-
mization procedure using Eq. (10). For each moving digit (a category for each row), the diagonal matrix
element increases over epochs, corresponding to the improvement of the classification performance. Con-
versely, off-diagonal elements become smaller, indicating a reduction of the prediction errors. Importantly,
the same is true for the test set in Fig. 10F. The similarity between the confusion matrices underlines that
the covariance perceptron generalizes very well to unseen samples of the same category, which is crucial for
practical applications.

We vary the number of samples in the training and in the test set and repeat the procedure in Fig. 10
to further evaluate the robustness of our covariance-based classification. The evolution of the classifica-
tion performance is displayed in Fig. 11A for 500 to 50000 training samples (light to dark gray curves).
The classification performance improves faster with more samples, but appears to saturate for 5000 and
50000 training samples at the same value, around 71%. Importantly, the test accuracy is equal to the
training accuracy when sufficiently many samples are used, indicating an absence of overfitting and a good
generalization to unseen data.

A technical point here is discarding output cross-covariances in the training to only tune the output
variances that are used for the classification. This improves the classification performance by more than 10%
in the example of Fig. 11B (gray versus green traces). The result can be intuitively understood by the fact
that cross-covariances add further constraints on the weights. In particular, enforcing zero cross-covariances
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Figure 10: Learning moving digits. A Moving digit in the visual field, where the input neurons are
represented at the center of their respective receptor fields (vertical lines of dark and light brown dots).
Each input neuron has a receptor field of 3× 3 pixels, which amounts to downscaling the MNIST dataset
from its original size 28×28 to 9×9. The 10 output neurons (one per category, the largest output variance
indicates the predicted category) only have afferent connections (in green), which are trained using Eq. (10)
as in Fig. 3. B Responses of the input to the digit 0 in panel A moving to the right. The activity of the
neurons in the left column (indexed from 1 to 9, in light brown) increases before that for the neurons of
the right column (from 10 to 18, in dark brown). C Mean activity traces for input neuron 5 (see arrow in
panel B) for 10 samples of digits 0 and 2, both moving left or right as indicated above. The colored areas
correspond to the standard deviation of the time-varying activity over all patterns of each category. D The
information relative to the moving stimulus is reflected by specific patterns in the input covariance matrices
P 0 (averaged over all patterns of each category), left for moving from the left and right for moving from the
right for digit 0. Differences are located in the cross-covariances between neurons from different columns
(upper left and lower right quadrants). The covariance structure is also digit specific, as illustrated by the
comparison with digit 2. E Confusion matrices of the covariance perceptron for the train set (5000 samples
with digits 0 to 4, balanced over the categories) before learning, after 2 epochs and after 20 epochs. The
category labels indicate the digit and the direction (’r’ for right and ’l’ for left). As before, the classification
is based on the higher variance among two outputs, one per category (digit and motion). Diagonal matrix
elements correspond to correct classification, others to errors. F Same as panel E for the test set (500
samples with different digits from the train set).
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Figure 11: Comparison with machine learning techniques like the classical perceptron. As in Fig. 10,
five digits from 0 to 4 are considered with left or right motion, yielding 10 categories. A Evolution of the
performance of the covariance perceptron during training for various sizes for train and test sets: the light
to dark gray curves correspond to 500, 5000, and 50000 patterns, respectively. The test set has 10 times
fewer samples (50, 500 and 5000, resp.). During each epoch, all respective patterns are used for training
and testing. The curves indicate the mean over 10 repetitions and the surrounding area the corresponding
standard error of the mean (which is in fact small); the solid and dotted curves correspond to the train and
test sets (see legend). The dashed horizontal line indicates chance-level accuracy. B Comparison between
the accuracy of the covariance perceptron when training the full output covariance matrix (‘full’) or only
the variances on the diagonal (‘masking’) that are used for the classification of categories. The traces
correspond to an example with 5000 training samples and the accuracies for the train and test sets are
represented as in panel A. C Comparison of classification accuracy between the covariance perceptron (’cov
perc’), mean-based perceptron processing time series (’mean perc’), the multinomial logistic regression
(MLR) that corresponds to the classical perceptron with a sigmoidal function to implement its non-linearity
and the recurrent neural network (RNN). The mean perceptron and the covariance perceptron have the
same architecture with 18 inputs and 10 outputs. The RNN has 18 inputs, 10 outputs and either h = 6 or
10 hidden neurons, the first version involving roughly as many weights as the covariance perceptron. The
RNN-based classification relies on the mean activity of the output neurons calculated over an observation
window (see main text for details). The MLR is trained in three configurations: using the mean patterns
over the observation window for train and test (’mean MLR’); covariance patterns for train and test (’cov
MLR’); time samples that are passed to the non-linear sigmoid before being averaged over the observation
period in order to capture second-order statistics as described in the main text (’time MLR’). D Confusion
matrix for for the time MLR, corresponding to the test set at the end of learning. Note the errors on the
secondary diagonal within the upper left and lower right quadrants, corresponding to error in classifying
the direction. E Schematic diagrams of the networks’ configuration for the covariance perceptron (left),
the RNN (middle) and the MLR applied to covariance patterns (right). The total numbers of weights (or
optimized parameters) to tune for each classifier is indicated above the connections, in terms of number
m = 18 of inputs in the time series and n = 10 outputs for each category, plus h = 6 or 10 hidden neurons
for the RNN.
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between the output means decorrelating them “spatially”, which is not primarily useful for classification.
Therefore, we use some masking here to only retain information about the output variances in Q̄0 − Q0

when calculating the weight updates.
The performance for 50000 test samples is summarized in Fig. 11C (’cov perc’) and compared with

a classical machine-learning tool, multinomial logistic regression (MLR) that corresponds to the classical
non-linear perceptron with a sigmoidal function, applied to the same covariance input patterns (’cov MLR’).
The MLR for patterns of covariances is quasi perfect at 98%, confirming the expected outcome that the
covariances provide all the necessary information to classify the digits with their motion direction. Beside
the non-linearity, a main reason for the difference in the performances between the covariance perceptron
and the MLR is that the MLR uses many more resources: a regression coefficient (equivalent to a weight to
optimize, we ignore the bias here) per element of the input covariance matrix P 0, as illustrated in Fig. 11E,
totaling m(m+ 1)n/2 = 1530 weights to train since m = 18 and n = 10 here after taking into account the
symmetry of P 0. In contrast, the covariance perceptron only uses mn = 180 afferent weights per output
for the classification. To match the number of resources, we repeat the MLR classification by randomly
subsampling 180 distinct matrix elements of P 0, reducing the performance to 81%. The difference in
performance of 10% between the covariance perceptron and the MLR with matched resources indicates
that the covariance perceptron makes a efficient use of resources for the classification.

We then compare the previous results to classification procedures based on mean output activity. The
linear version of the classical perceptron corresponds to the network architecture in Fig. 10A where the
learning rule is based on patterns corresponding to mean activity of each input over the observation window,
as described around Eq. (38) in the Appendix, gives a performance of 33%. In contrast, the performance of
the MLR, corresponding to the classical perceptron with a non-linear sigmoidal function, applied to the same
patterns is 42% (supposedly thanks to the non-linearity). For both classifiers, the left and the right directions
are not distinguished. This is expected because the two directions give the same mean for the input over the
observation period, see the two examples for digit 0 in Fig. 10C. However, the results may be different when
considering the output activity of the network in Fig. 10A at each time point of the observation window
with the classical perceptron with a non-linearity determined by a function φ. Considering the general
situation of a MLR with given coefficients w (equivalent to the weights B), the response at each time point
of the presented stimulus xt is given by yt = φ(wTxt). If the data xt ∈ RN are distributed with some
distribution p(xt), the output of the network also depends on potentially all moments of this distribution,
which can be seen in the Taylor expansion of the non-linearity. This leads to the mean output over the
observation window 〈yt〉 =

∫
p(xt)φ(wTxt) dxt ' φ(0) + φ′(0)wT〈xt〉+ 1

2φ
′′(0)wT〈xtxtT〉w + . . . for a

Taylor expansion around the value 0, where the angular brackets correspond to the general averaging over
the distribution of xt. Then, the last term is related to the covariance matrix P 0 = 〈xtxtT〉t − 〈xt〉t〈xt〉Tt
where the angular brackets are defined as in Eqs. (6) and (7); the relevant information here corresponds to
the mean trajectories in Fig. 10C and the noise is to be understood as the variability over the samples of
the same categories (note that this can be related to the ’signal correlations’ in the left column of Fig. 1A).
The difference between this application of the MLR and our paradigm is, though, that the mean and the
covariance additively contribute to the mean of the output activity. Our setup allows us to consider these two
terms in isolation. Regarding the mapping by the network activity pointwise in time, non-linearities can thus
also be regarded as a mechanism that transforms information contained in the covariance into information
in the mean. Applied to the present case of time series, the information needed for the classification is in
the covariances 〈xkxTl 〉t '

∫
xtkx

t
ldt where the input product is integrated over the observation window.

We can thus train a MLR to perform the classification based on the mean output activity, averaged over
the observation period 〈yi〉t '

∫
ytidt. If the input covariances can be significantly captured thanks to the

non-linearity, then the MLR should be able to discriminate between the two directions. We find, however,
a similar performance for the MLR trained using Eq. (41) with category-specific objectives that correspond
to constant activity over the window (see ’time MRL’ in Fig. 11C), where the motion direction is not well
captured as indicated by the the confusion matrix in Fig. 11D. This suggests that the first-order statistics
override the second-order statistics in the learning procedure. This confirms that the qualitative difference
of our approach from a direct application of classical machine-learning tools also has practical implications
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in terms of classification performance.
Last, we compare the same classification with a recurrent neural network (RNN) trained by basic back-

propagation through time (BPTT) to test in a different manner whether the mean trajectories as those in
Fig. 10C can be used for prediction. The learning rules apply with L = 5 steps backward in time and the
network comprises additional output neurons from the recurrently connected hidden neurons, as described
in Fig. 11E. The objective of the training is for the RNN to have a larger activity in the output neuron
corresponding to the stimulus category. Details are given in Appendix, see Eqs. (43) to (46). Among the
two implementations of the RNN, the version with h = 6 involves roughly the same number of weights
to optimize than the covariance perceptron, namely mh + hh + hn = 204 as illustrated in Fig. 11E, and
yields a poorer performance of 64% compared to the covariance perceptron. The other version with h = 10
corresponding to mh+ hh+ hn = 380 weights yields 73%, only slightly better than that of the covariance
perceptron. Further comparison with refinements of RNN like long-short-term memory units is left for
future work, in particular to explore with these moving digits which measure applied to the input time series
yield the best discrimination.

6 Discussion
This paper presents a new learning theory for the tuning of input-output mappings of a dynamic linear
network model by training its afferent and recurrent connections in a supervised manner. The proposed
method extracts regularities in the spatio-temporal fluctuations of input time series, as quantified by their
covariances. As an application, we showed how this can be used to categorize time series: networks
can be trained to map several input time series to a stereotypical output time series that represents the
respective category, thus implementing a ’covariance perceptron’. We stress that, beyond the application to
classification, our results can be regarded as information compression for the input patterns and our theory
could also be used for other supervised learning schemes like autoencoders.

The conceptual change of perspective compared to many previous studies is that variability in the time
series is here the basis for the information to be learned, namely the second-order statistics of the co-
fluctuating inputs. This view, which is based on dynamical features, thus contrasts with classical and more
“static” approaches that consider the variability as noise, potentially compromising the information conveyed
in the mean activity of the time series. Beyond asking whether time series can be robustly classified despite
their variability, we instead provide a positive answer to the question if variability can even be employed
to represent information in its covariance structure. Importantly, covariance patterns can involve time lags
and are a genuine metric for time series, describing the propagation of activity between nodes. In contrast
to the application of a measure to time series as a preprocessing step for machine-learning algorithms like
the perceptron, our scheme opens the door to a self-consistent formulation of information processing of
time series in recurrent networks, where the source signal and the classifier output have the same structure.

A main result is that the covariance perceptron can be trained to robustly classify time series with
various covariance patterns, while observing a few time points only (Fig. 5). For practical applications, the
transformation of dynamical information about stimuli into spatial covariances that can be learned turns
out to be powerful, as illustrated for the detection of both digit identity and motion direction with the
MNIST digits (Figs. 10 and 11). Importantly, our covariance-based detection can be robustly implemented
by networks with limited resources (number of weights to train, see Fig. 11). The other main result is the
demonstration that the covariance perceptron can classify time series with respect to their hidden dynamics,
based on temporal covariance structure only (Fig. 9). Taken together, these results demonstrate that the
covariance perceptron can distinguish the statistical dependencies in signals that obey different dynamical
equations.

6.1 Covariance-based decoding and representations

The perceptron is a central concept for classification based on artificial neuronal networks, from logistic
regression [9] to deep learning [30, 47]. The mechanism underlying classification is the linear separability
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of the input covariance patterns performed by a threshold on the output activity, in the same manner as
in the classical perceptron for vectors. All “dimensions” of the output covariance can be used as objectives
for the training, cross-covariances and variances in Q0, as well as time-shifted covariances in matrix Q1.
As with the classical perceptron, classification relies on shaping the input-output mapping, for example
by potentiating afferent weights from an input with high variance to two outputs to generate correlated
activity between the outputs. Note that, in general, the existence of an achievable mapping between the
input patterns and the objective patterns is not guaranteed, even when tuning only afferent connections
with Q̄0. Nonetheless, the weight optimization aims to find the best solution as measured by the matrix
distance with respect to the objectives (Fig. 7). Nonetheless, our results lay the foundation for covariance
perceptrons with multiple layers, including linear feedback by recurrent connectivity in each layer. The
important feature in its design is the consistency of covariance-based information from inputs to outputs,
which enables the use of our covariance-based equivalent of the delta rule for error back-propagation [46].
The generalization to higher statistical orders seems a natural extension for the proposed mathematical
formalism, but requires dedicated input structures and is thus left for future work.

Although our study is not the first one to train the recurrent connectivity in a supervised manner, our
approach differs from previous extensions of the delta rule [35] or the back-propagation algorithm [46], such
as recurrent back-propagation [41] and back-propagation through time [55, 53, 40]. Those algorithms focus
on the mean activity based on first-order statistics and, even though they do take temporal information into
account (related to the successive time points in the trajectories over time), they consider the inputs as
statistically independent variables. Moreover, unfolding time corresponds to the adaptation of techniques
for feedforward networks to recurrent networks, but it does not take the effect of the recurrent connectivity
as in the steady-state dynamics considered here. We have shown that this stationary assumption is not an
issue for practical applications, even though signals may strongly deviate from Gaussian distributions like
the MNIST dataset. Further study about finding the best regularities in input signals for classification, like
comparing covariances and profiles of the average trajectories for MNIST digits, is left for future work. In
the context of unsupervised learning, several rules were proposed to extract information from the spatial
correlations of inputs [38] or their temporal variance [5]. Because the classification of time-warped patterns
can be based on the second-order statistics of the input signals [5], we foresee a potential application
of our supervised learning scheme, as the time-warping transformation preserves the relative structure of
covariances between the input signals (albeit not their absolute values).

The reduction of dimensionality of covariance patterns —from many input nodes to a few output nodes—
implements an “information compression”. For the same number of input-output nodes in the network, the
use of covariances instead of means makes a higher-dimensional space accessible to represent input and
output, which may help in finding a suitable projection for a classification problem. It is worth noting that
applying a classical machine-learning algorithm, like the multinomial linear regressor [9], to the vectorized
covariance matrices corresponds to nm(m−1)/2 weights to tune, to be compared with only nm weights in
our study (with m inputs and n outputs). We have made here a preliminary exploration of the “capacity” of
our covariance perceptron by numerically evaluating its performance in a binary classification when varying
the number of input patterns to learn (Fig. 6). The capacity for the classical perceptron has been the
subject of many theoretical studies [15, 4, 48]. For the binary classification of noiseless patterns based
on a single readout, the capacity of the classical perceptron is equal to 2m, twice as much as its number
of inputs. In contrast, we have used a network with two outputs that classifies based on the covariance
or the variance difference in Fig. 4. A formal comparison between the capacities of the covariance and
classical perceptrons has been made in a separate paper [13]. Note that a theory for the capacity in the
“error regime” was also developed for the classical perceptron [10], which may be relevant here to deal with
non-perfect classification and noisy time series (Figs. 5 and 6).

6.2 Learning and functional role for recurrent connectivity

Our theory shows that recurrent connections are crucial to transform information contained in time-lagged
covariances into covariances without time lag (Fig. 9). Simulations confirm that recurrent connections
can indeed be learned successfully to perform robust binary classification in this setting. The corresponding

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2020. ; https://doi.org/10.1101/562546doi: bioRxiv preprint 

https://doi.org/10.1101/562546
http://creativecommons.org/licenses/by-nc-nd/4.0/


learning equations clearly expose the necessity of training the recurrent connections. For objectives involving
both covariance matrices, Q̄0 and Q̄1, there must exist an accessible mapping (P 0, P 1) 7→ (Q0, Q1)
determined by A and B. The use for A may also bring an extra flexibility that broadens the domain
of solutions or improve the stability of learning, even though this was not clearly observed so far in our
simulations. A similar training of afferent and recurrent connectivity was used to decorrelate signals and
perform blind-source separation [11]. This suggests another possible role for A in the global organization of
output nodes, like forming communities that are independent of each other (irrespective of the patterns).

The learning equations for A in Appendix B can be seen as an extension of the optimization for recurrent
connectivity recently proposed [17] for the multivariate Ornstein-Uhlenbeck (MOU) process, which is the
continuous-time version of the MAR studied here. Such update rules fall in the group of natural gradient
descents [1] as they take into account the non-linearity between the weights and the output covariances.
We have shown that a much simpler approximation of the solution of the Lyapunov equation for the
weight updates gives a quasi identical performance (Fig. (8)). This approximation greatly reduces the
computational cost of the covariance-based learning rule. It is expected that it may be insufficient when
the recurrent connectivity grows and results in strong network feedback, in which case Eq. (34) may be
expanded to incorporate higher orders in A.

Another positive feature of our supervised learning scheme is the stability of the recurrent weights A
for ongoing learning, even when there is no mapping that satisfies all input-output pairings (Fig. 7). This
is in line with previous findings [16, 49] and in contrast with unsupervised learning like STDP that requires
stabilization or regularization terms, in biology known as “homeostasis”, to prevent the problematic growth
of recurrent weights that often leads to an explosion of the network activity [57, 58, 50]. It also remains
to be explored in more depth whether such regularizations can be functionally useful in our framework, for
example to improve classification performance.

6.3 Extensions to non-linear neuronal dynamics and continuous time

In Section 3.3 the capacity has been evaluated only for the case of linear dynamics. Including a non-
linearity, as used for classification with the classical perceptron [35], remains to be explored. Note that for
the classical perceptron a non-linearity applied to the dynamics is in fact the same as applied to the output;
this is, however, not so for the covariance perceptron. The MAR network dynamics in discrete time used
here leads to a simple description for the propagation of temporally-correlated activity. Several types of
non-linearities can be envisaged in recurrently connected networks of the form

dxti = ψ(xti) + φ

∑
j

Cijx
t
j

+ dζti . (17)

Here the local dynamics is determined by ψ and interactions are transformed by the function φ. Such non-
linearities are expected to vastly affect the covariance mapping in general, but special cases, like the rectified
linear function, preserve the validity of the derivation for the linear system in Appendix A in a range of
parameters. Another point is that non-linearities cause a cross-talk between statistical orders, meaning that
the mean of the input may strongly affect output covariances and, conversely, input covariances may affect
the mean of the output. This opens the way to mixed decoding paradigms where the relevant information
is distributed in both, means and covariances. Extension of the learning equations to continuous time MOU
processes requires the derivation of consistency equations for the time-lagged covariances. The inputs to
the process, for consistency, themselves need to have the statistics of a MOU process [6]. This is doable,
but yields more complicated expressions than for the MAR process.

6.4 Learning and (de)coding in biological spiking neuronal networks

An interesting application for the present theory is its adaptation to spiking neuronal networks. In fact,
the biologically-inspired model of spike-timing-dependent plasticity (STDP) can be expressed in terms of
covariances between spike trains [26, 18], which was an inspiration of the present study. The weight
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structure that emerges because of STDP is determined by and reflects the the spatio-temporal structure of
the input spike trains [19, 20]. STDP-like learning rules were used for object recognition [27] and related
to the expectation-maximization algorithm [37]. Although genuine STDP relates to unsupervised learning,
extensions were developed to implement supervised learning with a focus on spike patterns [21, 42, 22, 14,
49, 56]. A common trait of those approaches is that they mostly apply to feedforward connectivity only,
even though recently also recurrently-connected networks have been considered.

Instead of focusing on the detailed timing in spike trains in output, our supervised approach could be
transposed to shape the input-output mapping between spike-time covariances, which are an intermediate
description between the full probability distribution of spike patterns (too complex) and firing rate (too
simple). As such, our approach allows for some flexibility concerning the spike timing (e.g. jittering) and
characterization of input-output patterns, as was explored before for STDP [19]. An important property for
covariance-based patterns is that they do not require a reference start time, because the coding is embedded
in relative time lags. Our theory thus opens a promising perspective to learn temporal structure of spike
trains and provides a theoretical ground to genuinely investigate learning in recurrently connected neuronal
networks.

In addition to the computational approximation of the covariance-based learning rule, another key
question for biological plausibility is whether our scheme can be implemented in a local rule, meaning that
the weight updates should be calculated from quantities available by the pre- and post-synaptic neurons.
Moreover, the empirical covariances should ideally be computed online. In the learning equations such as
Eq. (10), the matrix U ikP 0BT involved in the update of weight Bik can be reinterpreted as a product of
input and output, since its matrix element indexed by (i′, j′) is simply

(
U ikP 0BT

)
i′j′

= δi′i〈xtk (Bxt)
T
j′〉 =

δi′i〈xtkytj′〉 after using yt = Bxt according to Eq. (5) with A = 0. Such average quantities can be obtained
in an online manner by smoothing the product of activities xtky

t
j over several time steps. Following, the

same term terms
(
U ikP 0BT

)
i′j′

in Eq. (28) (see Appendix) in the presence of recurrent connectivity can

also be rewritten as δi′i〈xtk (Bxt)
T
j′〉, but now Bxt = yt − Ayt−1. It remains to be explored in this case

how to compute or approximate such quantities in a local manner in the network.
Here we have used arbitrary covariances for the definition of input patterns, but they could be made

closer to examples observed in spiking data, as was proposed earlier for probabilistic representations of
the environment [7]. It is important noting that the observed activity structure in data (i.e. covariances)
can not only be related to neuronal representations, but also to computations that can be learned (here
classification). Studies of noise correlation, which is akin to the variability of spike counts (i.e. mean firing
activity), showed that variability is not always a hindrance for decoding [3, 36]. Our study instead makes
active use of activity variability and is in line with recent results about stimulus-dependent correlations
observed in data [43]. It thus moves variability into a central position in the quest to understand biological
neuronal information processing.
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Example Python scripts to reproduce some key figures are available at https://github.com/MatthieuGilson/covariance_perceptron.

A Network dynamics describing activity propagation
Here we recapitulate well-known calculations [31] that describe the statistics of the activity in discrete time
in a MAR process in Eq. (5), which we recall here:

yti =
∑
j

Aijy
t−1
j +

∑
k

Bikx
t
k . (18)

Our focus are the self-consistency equations when the multivariate outputs yti are driven by the multivariate
inputs xtk, whose activity is characterized by the 0-lag covariances P 0 and 1-lag covariances P 1 = (P−1)T,
where T denotes the matrix transpose. We assume stationary statistics (over the observation period)
and require that the recurrent connectivity matrix A has eigenvalues in the unit circle (modulus strictly
smaller than 1) to ensure stability. To keep the calculations as simple as possible, we make the additional
hypothesis that P±n = 0 for n ≥ 2, meaning that the memory of xtk only concerns one time lag. Therefore,
the following calculations are only approximations of the general case for xtk, which is discussed in the main
text about Fig. 9. Note that this approximation is reasonable when the lagged covariances Pn decrease
exponentially with the time lag n, as is the case when inputs are a MAR process.

Under those conditions, we define Rτik = 〈yt+τi xtk〉 and express these matrices in terms of the inputs as
a preliminary step. They obey

Rτ = ARτ−1 +BP τ . (19)

Because we assume P±n = 0 for n ≥ 2, we have the following expressions

R−n = 0 for n ≥ 2 , (20)
R−1 = BP−1 ,

R0 = ABP−1 +BP 0 .

Using the expression for R, we see that the general expression for the zero-lagged covariance of yti depends
on both zero-lagged and lagged covariances of xtk:

Q0 = AQ0AT +BP 0BT +AR−1BT +BR−1TAT (21)
= AQ0AT +BP 0BT +ABP−1BT +BP−1TBTAT .

The usual (or simplest) Lyapunov equation [31] in discrete time corresponds to P−1 = P 1T = 0 and the
afferent connectivity matrix B being the identity with n = m independent inputs that are each sent to a
single output. Likewise, we obtain the lagged covariance for yti :

Q1 = AQ1AT +BP 1BT +AR0BT +BR−2TAT (22)
= AQ1AT +BP 1BT +ABP 0BT +AABP−1BT .

Note that the latter equation is not symmetric because of our assumption of ignoring P±n = 0 for n ≥ 2.

B Theory for weight updates
We now look into the gradient descent to reduce the error Eτ , defined for τ ∈ {0, 1}, between the network
covariance Qτ and the desired covariance Q̄τ , which we take here as the matrix distance:

Eτ =
1

2
||Qτ − Q̄τ ||2 ≡ 1

2

∑
i1,i2

(Qτi1i2 − Q̄
τ
i1i2)2 . (23)
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The following calculations assume the tuning of B or A, or both.
Starting with afferent weights, the derivation of their updates ∆Bik to reduce the error Eτ at each

optimization step is based on the usual chain rule, here adapted to the case of covariances:

∆Bik = −ηB
∂Eτ

∂Bik
= −ηB

∑
i1,i2

∂Eτ

∂Qτi1i2

∂Qτi1i2
∂Bik

= −ηB
∂Eτ

∂Qτ
� ∂Qτ

∂Bik
, (24)

where ηB is the learning rate for the afferent connectivity and the symbol � defined in Eq. (10) corresponds
to the sum after the element-wise product of the two matrices. Note that we use distinct indices for B and
Qτ . Once again, this expression implies the sum over all indices (i′, j′) of the covariance matrix Qτ . The
first terms ∂Eτ

∂Qτi1i2
can be seen as an n× n matrix with indices (i1, i2):

∂Eτ

∂Qτ
= Qτ − Q̄τ . (25)

The second terms in Eq. (24) correspond to a tensor with 4 indices, but we now show that it can be
obtained from the above consistency equations in a compact manner. Fixing j and k and using Eq. (21),
the “derivative” of Q0 with respect to B can be expressed as

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+

∂B

∂Bik
P 0BT +BP 0 ∂B

∂Bik

T

+A
∂B

∂Bik
P−1BT +ABP−1

∂B

∂Bik

T

(26)

+
∂B

∂Bik
P−1TBTAT +BP−1T

∂B

∂Bik

T

AT .

Note that the first term on the right-hand side of Eq. (21) does not involve B, so it vanishes. Each of the
other terms in Eq. (21) involves B twice, so they each give two terms in the above expression —as when
deriving a product. The trick lies in seeing that

∂Bi′k′

∂Bik
= δi′iδk′k (27)

where δ denotes the Kronecker delta. In this way we can rewrite the above expression using the basis n×m
matrices U ik that have 0 everywhere except for element (i, k) that is equal to 1. It follows that the n2

tensor element for each (i, k) can be obtained by solving the following equation:

∂Q0

∂Bik
= A

∂Q0

∂Bik
A+ U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT (28)

+U ikP−1TBTAT +BP−1TU ikTAT ,

which has the form of a discrete Lyapunov equation:

X = AXAT + Σ (29)

with the solution X = ∂Q0

∂Bij
and Σ being the sum of 6 terms involving matrix multiplications. The last step

to obtain the desired update for ∆Bik in Eq. (24) is to multiply the two n× n matrices in Eqs. (28) and
(25) element-by-element and sum over all pairs (i1, i2) —or alternatively vectorize the two matrices and
calculate the scalar product of the two resulting vectors.

Now turning to the case of the recurrent weights, we use the same general procedure as above. We
simply substitute each occurrence of A in the consistency equations by a basis matrix (as we did with U ik

for each occurrence of B), once at a time in the case of matrix products as with the usual derivation. The
derivative of Q0 in Eq. (21) with respect to A gives

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT , (30)
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where V ij is the basis n × n matrix with 0 everywhere except for (i, j) that is equal to 1. This has the
same form as Eq. (29) and, once the solution for the discrete Lyapunov equation is calculated for each pair
(i, j), the same element-wise matrix multiplication can be made with Eq. (25) to obtain the weight update
∆Aij .

Likewise, we compute from Eq. (22) the following expressions to reduce the error related to Q1:

∂Q1

∂Bik
= A

∂Q1

∂Bik
A+ U ikP 1BT +BP 1U ikT +AU ikP 0

k1k2B
T +ABP 0U ikT (31)

+AAU ikP−1BT +AABP−1U ikT ,

and

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT + V ijABP−1BT +AV ijBP−1BT .(32)

(33)

These expressions are also discrete Lyapunov equations and can be solved as explained before.
In numerical simulation, the learning rates are fixed to 0.01.

B.1 Computational approximation of covariance-based learning rule

The weight updates are given by solutions of the Lyapunov equation (29), which can be expressed in terms
of power of the recurrent connectivity A. We consider the drastic approximation that only retains the zeroth
order and ignores all powers of A in the solution:

X =
∑
p

ApΣApT ' Σ . (34)

It follows that the weight updates thus computed are simply given by matrix products, which dramatically
reduces the computational cost of their calculation. Practically, this approximation consists in discarding
the terms A ∂Q0

∂Bik
AT , A ∂Q0

∂Aij
AT , A ∂Q1

∂Bik
AT and A ∂Q1

∂Aij
AT in Eqs. (28), (30), (31) and (32), respectively.

For the case where P 0 6= 0, P 1 6= 0 and Q0 6= 0 (while Q1 = 0), Eqs. (28) and (30) simply become after
using the approximation in Eq. (34)

∂Q0

∂Bik
= U ikP 0BT +BP 0U ikT +AU ikP−1BT +ABP−1U ikT + U ikP−1TBTAT +BP−1TU ikTAT

∂Q0

∂Aij
= V ijQ0AT +AQ0V ijT + V ijBP−1BT +BP−1TBTV ijT . (35)

Eq. (35) can thus be seen as a cut at the second order in A. It is worth noting that the approximation for
the weight update of A still involves the terms V ijQ0AT +AQ0V ijT that come from AQ0AT in Eq. (21)
following the stationarity assumption.

B.2 Classical perceptron rule for mean patterns

As a comparison, we now provide the equivalent calculations for the weight update for the tuning of the
mean activity of the network by considering Eq. (18) without recurrent connections (Aij = 0). We thus
define for each output neuron the mean activity Yi =

∑
t y
t
i in the observation window (1 ≤ t ≤ T ).

Optimizing the output mean vector Y to match a desired objective Ȳ corresponds to the linear version of
the classical perceptron [9], which can be achieved relying on a gradient descent to reduce the error Em:

Em =
1

2
||Y − Ȳ ||2 ≡ 1

2

∑
j

(Yj − Ȳj)2 . (36)
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We restrict our calculations to a feedforward network with only afferent connections, B. In this case the
network dynamics simply correspond to Y = BX, see Eq. (8) in the main text. The derivation of their
updates ∆Bik to reduce the error Em at each optimization step is based on the usual chain rule:

∆Bik = −ηB
∂Em

∂Bik
= −ηB

∑
j

∂Em

∂Yj

∂Yj
∂Bik

= −ηB
∂Em

∂Yi

∂Yi
∂Bik

= −ηB
(
Yi − Ȳi

)
Xk , (37)

for the learning rate ηB . It turns out that, in the case of feedforward networks (afferent connectivity only),
only the output Yi depends on Bik and ∂Yi

∂Bik
= Xk. This leads to the simplification above, after also using

∂Eτ

∂Y = Y − Ȳ . We obtain an update rule for B that can be expressed in matrix form:

∆B = ηB
(
Ȳ − Y

)
XT . (38)

This corresponds to the (linear) mean perceptron in Fig. 11C. Note that this is different from rewriting the
sum over j in Eq. (37) as ∂Eτ

∂Y �
∂Y
∂Bik

, with the symbol � corresponding to the sum after the element-wise
product of the two vectors here —as with matrices in Eq. (10).

Now we consider a non-linear function φ as typically involved in the classical perceptron [9]:

yti = φ

(∑
k

Bikx
t
k

)
. (39)

We can tune the weights Bik to reduce the error in Eq. (36) based on the mean activity over the observation
window, but we can alternatively define an error that considers the output activities as time-dependent
trajectories, that is, in a time resolved manner. In practice, we fix an observation window defined by
1 ≤ t ≤ T and a desired objective ȳt that is a multivariate time series, then define the error Ets of the
output yt as the sum of vector difference between the actual and desired trajectories:

Ets =
1

2
||yt − ȳt||2 =

1

2

∑
j

∑
t

(ytj − ȳtj)2 . (40)

To take into account the non-linearity related to φ, we adapt the weight update in Eq. (38) since the
derivative of the output with respect to the weight becomes ∂yti

∂Bik
= φ′(ŷti)x

t
k with ŷti =

∑
k Bikx

t
k being

the input argument of the nonlinear function (commonly referred to as ’net’):

∆Bik = ηB
∑
t

(
ȳtj − yti

)
φ′
(
ŷti
)
xtk , (41)

which is simply the summation of the weight updates for the corresponding errors over time. This learning
rule can also be used with a constant objective ȳtj = ȳi, in which case the goal of training is to tune
the output mean, see the classical perceptron for time samples (’time MLR’) in Fig. 11C. Note that the
non-linearity may capture correlations present in the inputs, as explained in the main text. In numerical
simulation, we use the the logistic function for φ.

The MLR corresponds to the expression in Eq. (39) when ignoring the time superscript. In that case,
the weights Bik can be trained according to Eq. (41) for “static” vectors of either mean activity calculated
over the observation window (’mean MLR’) of the vectorized covariance matrix (’cov MLR’). In numerical
simulation, we use the scikit-learn library (https://scikit-learn.org).

B.3 Back-propagation through time (BPTT) in recurrent neural network (RNN)

Going a step further, we consider the same non-linearity applied to the recurrent dynamics in Eq. (18) to
build a recurrent neural network (RNN), which also typically involves readout neurons with connections
from the recurrently connected neurons:
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yti = φ
(∑

j Aijy
t−1
j +

∑
k Bikx

t
k

)
,

zti = φ
(∑

j Cijy
t
j

)
.

(42)

Following the literature [55, 53], we refer for this RNN to the neurons with activity yti and z
t
i as hidden and

output neurons, respectively. Back-propagation through time (BPTT) applies the same type of learning
rule as Eq. (41) to reduce the error Ets = 1

2

∑
j,t(z

t
j − z̄tj)2. For the “feedforward” connections Bik and

Cij , it simply yields:

∆Cij = ηC
∑
j,t

(
z̄tj − zti

)
φ′(ẑti) y

t
j , (43)

∆Bik = ηB
∑
j,t

εti φ
′(ŷti)x

t
k ,

where the error related to the activity of the hidden neuron ytj is the back-propagation from the output
error, εtj =

∑
i Cij(z̄

t
i−zti), and the arguments of the nonlinear functions are ŷti =

∑
j Aijy

t−1
j +

∑
k Bikx

t
k

and ẑti =
∑
j Cijy

t
j , respectively. For the recurrent connections Aij between the hidden neurons, the weight

update involves the past activity of yti :

∆Aij = ηA
∑
j,t

εti φ
′(ŷti) y

t−1
j . (44)

Here the learning rule can be repeated a number L of steps backward in time to take into account temporal
effects in how the recurrent connectivity shapes the network activity:

∆Aij = ηA
∑
j

∑
L ≤ t ≤ T
0 ≤ u < L

εt,ui φ′(ŷt−ui ) yt−u−1j , (45)

εt,0i = εti ,

εt,ui =
∑
i

Aijγ
t,u−1
j for 1 ≤ u < L ,

where the error εti = γt,0i is back-propagated via the recurrent connectivity at each step 0 ≤ u < L.
Likewise, the afferent connections Bik are updated to reduce the error using

∆Bik = ηB
∑
j

∑
L ≤ t ≤ T
0 ≤ u < L

γt,ui φ′
(
ŷt−ui

)
xt−uk . (46)

In numerical simulation, we use the hyperbolic tangent for φ in the RNN. The learning rates are all equal
ηA = ηB = ηC = 0.01 and the depth for BPTT is L = 5. We define the desired objective for each category
as a constant time series with 1 for the output neuron corresponding to the category and to 0 for all others.
Moreover, we discard the L first time points that depend on initial conditions, meaning that we only use
t ∈ [L, T ] in Eq. (40).

C Supplementary results

C.1 Shaping output spatio-temporal covariances

As shown in Fig. S1A, we want to tune both B and A to obtain a desired spatio-temporal structure in
output. We consider inputs xtk with spatial covariances only (since P 1 = 0) to be mapped to spatio-
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Figure S1: Shaping output spatio-temporal covariances with both afferent and recurrent con-
nectivities. A Network architecture with m = 10 input nodes and n = 3 output nodes, the latter being
connected together by the recurrent weights A (purple arrow). B Objective covariance matrices for two
categories (red and blue). The categories differ by their respective Q̄0, but they have the same Q̄1. C
Evolution of the afferent and recurrent weights (green and purple traces, respectively). D Two examples
after training of output patterns Q0 and Q1 in response to two input patterns P 0, among the 5 in each
category. E Evolution of the error for the two output covariance matrices. F After training, the covariances
in Q0 allow for the discrimination between the two categories, while the structure of Q1 is similar for the two
categories (as imposed by the objectives). The plot is similar to Fig. 4. The black surrogate corresponds
to forcing A = 0 with the trained B and presenting the blue inputs, demonstrating that the trained A is
important in shaping the output structure.
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temporal covariances for yti . For this purpose, we generalize Eq. (10) to calculate the weight updates for
A and B from the errors of both Q0 and Q1:

∆Bik = ηB

[(
Q̄0 −Q0

)
� ∂Q0

∂Bik
+
(
Q̄1 −Q1

)
� ∂Q1

∂Bik

]
, (47)

∆Aij = ηA

[(
Q̄0 −Q0

)
� ∂Q0

∂Aij
+
(
Q̄1 −Q1

)
� ∂Q1

∂Aij

]
.

The matrix derivatives are given by Eq. (28), Eq. (31), Eq. (30) and Eq. (32) in Annex A while setting
P 1 = P−1T = 0, which read in matrix form:

∂Q0

∂Bik
= A

∂Q0

∂Bik
AT + U ikP 0BT +BP 0U ikT , (48)

∂Q1

∂Bik
= A

∂Q1

∂Bik
AT +AU ikP 0BT +ABP 0U ikT ,

∂Q0

∂Aij
= A

∂Q0

∂Aij
AT + V ijQ0AT +AQ0V ijT ,

∂Q1

∂Aij
= A

∂Q1

∂Aij
AT + V ijQ1AT +AQ1V ijT + V ijBP 0BT .

The key to evaluate the weight update for A is seeing that the third and fourth lines correspond to the
discrete Lyapunov equation that can be solved at each optimization step. As before, we randomly draw
10 input patterns to be classified into 2 categories of 5 each, whose objective matrices Q0 and Q1 are
represented in Fig. S1B. A positive outcome is that the weight updates lead to rather stable learning
dynamics, even for the recurrent connectivity in Fig. S1C. The stability of ongoing learning while leaving
classification aside is examined in Annex 4.1, see Fig. 7. Meanwhile, the errors for both Q0 and Q1 decrease
and eventually stabilize close to zero in Fig. S1E.

After training, the network maps the input patterns P 0 in the desired manner for Q0 and Q1, see
the two examples in Fig. S1D and the robustness test in Fig. S1F —in a similar manner to Fig. 4. The
surrogates (black distribution in Fig. S1F) correspond to setting A = 0 with the trained B, which strongly
affects the output covariance (here for blue input patterns). This illustrates the importance of tuning the
recurrent connectivity in shaping Q1, as well as with the discrimination capability for Q0.

C.2 Learning input spatio-temporal covariances

Now we consider the “converse” configuration of Fig. S1A where each input pattern is formed by a pair of
non-zero P 0 and P 1, see Fig. S2A. The output is trained only using Q0, meaning that the input spatio-
temporal structure is mapped to an output spatial structure. This time simplifying Eq. (47), the weight
updates are given by Eq. (14), which corresponds to discrete Lyapunov equations that can be solved at
each optimization step to evaluate the weight update for A and B.

We first examine the specialization in terms of covariances in Q0 as defined by the objectives in Fig. S2C.
Here we take input patterns P 0 that are all identical (left matrices in Fig. S2B) such that the weight
specialization must be based on the discrepancies between P 1 across inputs, even though this configuration
may not be realistic for simulated time series. The desired outcome after training is obtained as illustrated
in Fig. S2C. The surrogates (in black) indicate the importance of the trained recurrent connectivity A,
although it appears less strong here than in Fig. S1F. Despite incidental troughs, the classification accuracy
increases and eventually stabilizes around 90%. Second, Fig. S2D uses the same procedure for specializing
the variances in Q0 and shows similar conclusions. Together, these results demonstrate a useful flexibility
in tuning the input-output covariance mapping using the MAR network.
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Figure S2: Learning input spatio-temporal covariances with both afferent and recurrent connectiv-
ities. A Similar network to Fig. S1A with m = 10 input nodes and n = 2 output nodes. B Two examples
of input patterns corresponding to a pair P 0 and P 1, among the 5 in each category. The P 0 matrices are
identical for all patterns. C Classification based on specializing covariances for the two categories: absent
for red and positive for blue (top matrices, same as Fig. 4D). The middle plot is similar to Fig. 4, where the
separability of the red and blue distributions indicates the performance of the classification. The comparison
between the black and blue distribution shows the importance of the recurrent connectivity A, which is
forced to 0 for the surrogates. The bottom plot indicates the evolution of the classification accuracy during
the optimization. The binary classification uses the same boundary as in Fig. 4E. D Same as panel C for
specializing the variances of the output nodes, with the same objective matrices and classification procedure
as in Fig. 4A-B.
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