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Abstract 

Measurement of hippocampal volume has proven useful to diagnose and track progression 

in several brain disorders, most notably in Alzheimer’s disease (AD). For example, an objective 

evaluation of a patient’s hippocampal volume status may provide important information that 

can assist diagnosis or risk stratification of AD. However, clinicians and researchers require 

access to age-related normative percentiles to reliably categorise a patient’s hippocampal 

volume as being pathologically small. Here we analysed effects of age, sex, and hemisphere 

on the hippocampus and neighbouring temporal lobe volumes, in 19,793 generally healthy 

participants in the UK Biobank. A key finding of the current study is a significant acceleration 

in the rate of hippocampal volume loss in middle age, more pronounced in females than in 

males. In this report, we provide normative values for hippocampal and total grey matter 

volume as a function of age for reference in clinical and research settings. These normative 

values may be used in combination with our online, automated percentile estimation tool to 

provide a rapid, objective evaluation of an individual’s hippocampal volume status. The data 

provide a large-scale normative database to facilitate easy age-adjusted determination of 

where an individual hippocampal and temporal lobe volume lies within the normal 

distribution. 
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One of the most common brain imaging markers used in clinical practice to assist in the 

diagnosis of Alzheimer’s Disease (AD) is hippocampal volume on a structural MRI scan (Frisoni 

et al. 2010; Ahmed et al. 2014). Both longitudinal and cross-sectional studies have reported 

reduced volume of the hippocampus in patients with AD or mild cognitive impairment (MCI) 

compared to healthy controls (Henneman et al. 2009; Shi et al. 2009; Frankó et al. 2013). In 

addition, a meta-analysis of nine studies found a 3.33% difference in atrophy rate between 

AD and controls (Barnes et al. 2009). Increased atrophy of the hippocampus has also been 

associated with neurofibrillary tangle and amyloid plaque deposition, which are considered 

to be the hallmark features of Alzheimer’s disease (Kril et al. 2002; Schuff et al. 2009). 

Similarly, using the rate of hippocampal atrophy, researchers have been able to distinguish 

between those with MCI who progressed to AD, and those who did not (Frankó et al. 2013). 

Importantly, the regions of the hippocampus with the highest atrophy rate also presented 

with the most severe amyloid deposition (Frankó et al. 2013). Hence, hippocampal volume is 

considered to be a useful – and widely available – proxy to measure disease burden and 

progression in AD, including in clinical trials (Mielke et al. 2012; Frankó et al. 2013; Kishi et al. 

2015; Choe et al. 2016).  

 

Precise estimations of hippocampal volume may also facilitate earlier diagnosis, with some 

researchers reporting that the rate of hippocampal atrophy deviated from a healthy 

trajectory about 5.5 years before the stage of clinical AD was reached (Chételat et al. 2005). 

Indeed, it appears that baseline hippocampal volume and atrophy rate may be more suitable 

than whole brain volume to distinguish between MCI and controls (Henneman et al. 2009).  
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It is now appreciated that estimation of hippocampal volume may also be useful for 

measuring disease burden or progression in other disorders. For example, hippocampal 

atrophy has been related to impaired episodic memory in patients with multiple sclerosis 

(Koenig et al. 2014) and temporal lobe epilepsy (Reyes et al. 2018), and can predict cognitive 

impairment in patients with Parkinson’s disease (Kandiah et al. 2014). Similarly, a cross-

sectional study in patients with autoimmune encephalitis (Chakos et al. 2005) reported that 

the severity of the disease course is associated with lower hippocampal volume, which also 

predicted worse cognitive outcome (Finke et al. 2017).  

 

In psychiatric disorders too, hippocampal volume has been implicated as an important 

imaging correlate. For example, reduced hippocampal volume has been repeatedly linked to 

depression (Campbell et al. 2004; Videbech and Ravnkilde 2004), and a meta-analysis has 

reported that smaller hippocampi in depressed patients predict lower response rates to 

antidepressant drugs (Colle et al. 2016). Similarly, in schizophrenia, hippocampal volume is 

reduced in chronic cases compared to healthy controls (Adriano et al. 2012). In addition, in a 

recent study on the effects of cognitive remediation therapy for cognitive impairment in 

schizophrenia, improvement was correlated with increased hippocampal volume post-

treatment (Morimoto et al. 2018). These findings demonstrate that hippocampal volume 

estimations have the potential to provide important information to assist diagnosis, risk 

stratification and possibly even monitor the effects of intervention. However, several key 

challenges in the processing, analysis, and interpretation of structural MRI scans outside of a 

research setting have so far prevented this method from being used in standard clinical 

practice.  

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2019. ; https://doi.org/10.1101/562678doi: bioRxiv preprint 

https://doi.org/10.1101/562678
http://creativecommons.org/licenses/by/4.0/


 5 

First, in order to calculate hippocampal volume from a structural MRI scan, the image has to 

be processed with software requiring expert knowledge. Automated brain segmentation 

tools (e.g. the FIRST tool in FMRIB Software Library (FSL) (Jenkinson and Smith 2001; 

Jenkinson et al. 2002), or FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), and openly 

available standardised processing pipelines (Alfaro-Almagro et al. 2018), now make the 

application of this method in a clinical setting feasible.  

 

Second, hippocampal atrophy has not only been described in pathological, but also in healthy 

ageing. A meta-analysis estimated the average yearly rate of hippocampal atrophy at 1.4% in 

healthy ageing, and 4.7% in AD (Barnes et al. 2009). Thus, in order to reliably categorise a 

patient’s hippocampal volume, clinicians and researchers require access to age-related 

normative percentiles to distinguish between healthy and pathological ageing. Few studies 

have attempted to provide such normative values – or nomograms – not least because of 

methodological obstacles. The acquisition of large MRI datasets is costly, time consuming, 

and involves highly specialised hardware and staff. Previously published studies on 

hippocampal volume in the general population are therefore often limited by small sample 

sizes, low statistical power, and cohort effects (Ioannidis 2011; Button et al. 2013; Fraser et 

al. 2015; Nord et al. 2017). In addition, other potentially confounding factors, such as method 

used, sex, head size, years of education, smoking status, and effects of normal ageing have to 

be considered when applying such normative percentiles.  

 

Here we report a first attempt to provide detailed normative information on the hippocampus 

and neighbouring temporal lobe volumes in relation to age, sex, total grey matter volume, 

and symmetry in 19,793 generally healthy older adults in the UK Biobank resource 
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(http://www.ukbiobank.ac.uk). We chose a model-free sliding window approach to study the 

relationships of temporal lobe volumes and total grey matter with age, as this method makes 

few assumptions and does not impose a linear relationship. While efforts to harmonize 

analysis across MRI datasets have not yet been successful, the large dataset analysed here 

allows an attempt to provide robust normative data when these are used with estimates 

obtained using the same, or similar, acquisition protocols, hardware and pre-processing 

pipelines. 

 

We also supply a webtool, where a patient’s estimated brain volume may be entered to 

calculate their hippocampal volume status as compared to age-matched norm values 

(http://www.smanohar.com/biobank). These norms will become especially useful with the 

acquisition of longitudinal health outcomes of participants in UK Biobank. The UK Biobank 

cohort includes over 500,000 participants aged 40-69 years, of which a subset of 100,000 

participants will undergo brain imaging. Within this subset, 6000 participants are likely to 

have developed AD by 2027 (Miller et al. 2016). UK Biobank has been granted access to the 

UK National Health Service records and can thus follow up on future health outcomes of 

participants, making it a powerful resource to study disease progression. In addition, both the 

acquisition and analysis of MRI are standardised across the scanning sites according to 

publicly available protocols designed by the UK Biobank Imaging Working Group 

(www.ukbiobank.ac.uk/expert-working-groups). This increases generalisability of results and 

resolves some of the issues of previous studies using different scanners and protocols. 
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Methods 

Participants   

The most recent release of brain imaging data of the UK Biobank includes scans of 20,542 

participants aged 45-80 years at the time of scanning. Participants with self-reported 

neurological and psychiatric disorders, substance abuse disorders or a history of head trauma 

were excluded from our analyses, leaving a sample of 19,793 generally healthy participants 

scanned in 2014-2018.  

 

MRI acquisition and analysis   

Image acquisition and pre-processing of MRI scans have been performed by UK Biobank. Brain 

images were acquired on a Siemens Skyra 3.0 T scanner (Siemens Medical Solutions, 

Germany) with a 32-channel head coil. T1-weighted images with 1 mm3 isotropic resolution 

were previously analysed with FMRIB Software Library (FSL) (http://fsl.fmrib.ox.ac.uk/fsl), 

with image-derived phenotypes (IDPs – imaging summary statistics such as brain volume and 

hippocampal volume) made available for general access. More detailed information on MRI 

acquisition and analysis have been reported elsewhere (Miller et al. 2016; Alfaro-Almagro et 

al. 2018). UK Biobank also published a standardised MRI analysis pipeline (FMRIB’s Biobank 

Pipeline version 1.0) that is freely available to the public, including the source code 

(https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1) (Alfaro-Almagro et al. 2018).  
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Statistics 

All calculations were performed in MATLAB 2017b with the exception of Joinpoint regression, 

which was computed with the Joinpoint Regression Program (version 4.6.0.0; Surveillance 

Research Program, National Cancer Institute) (Kim et al. 2000).  

 

Data preparation 

Outliers in brain volume estimations were identified and excluded based on a Median 

Absolute Deviation of > 5. Brain volumes were always corrected for scanning date, and when 

indicated, for head size and age. This was done with a General Linear Model, ‘regressing out’ 

variance accounted for by the confounds. Head size was corrected for using a head scaling 

variable obtained from the MRI scan, which is the volumetric scaling for the transformation 

of the native head image to standard space, with final scaling being driven by outer-skull 

surface (Smith et al. 2002, 2004). A number of studies have shown that global and regional 

brain volumes correlate positively with head size (Barnes et al. 2010). Thus, when 

investigating sex differences in brain volume, head size should be corrected for. This was  

done by regression  rather than using a ratio measure (e.g. brain volume/head size), as not all 

brain volumes scale proportionately with head size (Barnes et al. 2010). However, measures 

of head size related variables vary widely in the literature (e.g. total intracranial volume, total 

brain volume, MRI head scaling, or body height), leading to heterogenous results. We 

therefore report both head size corrected and un-corrected results.  

 

Analysis 

For comparison we also present analyses for volumes of some structures near the 

hippocampus within the temporal lobe. Available cortical grey matter volume IDPs within the 
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UK Biobank dataset that are reported here include superior temporal gyrus, middle temporal 

gyrus, inferior temporal gyrus, fusiform gyrus, parahippocampal gyrus and temporal pole. T-

tests (with Bonferroni-correction for resulting p-values) were calculated for sex differences in 

age and brain volume (unpaired t-test), as well as for differences in hemisphere (paired t-

test), hypertension status (unpaired t-test), and hippocampal volume estimations by method 

(FSL-FIRST, vs. FSL-FAST  within Atlas-based regions of interest; paired t-test). While FSL-FIRST 

is a segmentation/registration tool that estimates subcortical volumes based on shape and 

appearance models (Patenaude et al. 2011), FSL-FAST is a brain tissue segmentation tool 

(Zhang et al. 2001), with which subcortical volumes were estimated from grey matter within 

Atlas-based regions of interest. ANOVAs were run for the effects of level of education and 

smoking status on brain volumes. Education level was binarized into higher education degree 

(college/university degree, NVQ), and lower education degree (A levels, O levels, CSE). For 

visualisation purposes, volume differences based on sex, hemisphere, hypertension status, 

and education are plotted as proportional differences, calculated with  

 . 

All MATLAB analysis code will be made available on reviewer request or publication. 

 

Normative Percentiles 

The 2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97.5th percentiles for hippocampal volume 

(left and right) and total grey matter were calculated separately for males and females. This 

was done using residuals from a corresponding sliding-window analysis (see below), that were 

added back onto the mean of the brain volume estimations. These values were then used as 

the age-adjusted input to calculate the percentiles. 
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Sliding-window curves for relationship of volume and age 

To analyse trajectories and quantiles of measured volumes as a function of age, we applied a 

sliding-window, model-free analysis, in which an age-window of observations of fixed age-

quantile width was moved along the age distribution (based on function ‘conditionalPlot’ in 

https://osf.io/vmabg/; (Manohar 2019). The windows overlapped, so that each window 

contained 10% of the participants. The analysis of interest was performed for each window, 

providing in this case the mean volume of brain structure, such as hippocampal volume. The 

volumes were then smoothed using the moving average method with a gaussian kernel of 20. 

Results from using varying smoothing kernels and quantile widths can be found in the 

Supplementary Material. The mean brain volume was plotted against the mean bin centre of 

age, along with standard errors of the mean. This provided an estimate of mean brain volume 

that varied smoothly as a function of age. This method enables representative contours to be 

calculated for each quantile as a function of age, in a non-parametric, data-driven manner. 

Here, we present sliding-window curves across age for all available temporal lobe areas, and 

total grey matter volume. In addition, curves for the ratio of the individual temporal lobe 

volumes to the rest of grey matter volume are shown, as well as the slope of the hippocampal 

volume versus age (in Supplementary Material), using bootstrapped confidence intervals.  

 

We tested for differences in the peak of the ratio curves between males and females. This 

was performed using a permuted t-statistic, correcting p-values for false discovery rate. 

Specifically, we permuted matched age bins of the male and female groups, i.e. shuffling 

males and females within age-windows. We then calculated the p-value as the proportion of 

permuted datasets (n = 5000), which produced a mean difference between the peaks of the 

curves at least as extreme as the one observed from the actual data. 
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This data-driven analysis is particularly useful for large samples. As opposed to traditional 

curve fitting methods, it makes few assumptions, has only one free parameter (number of 

samples per bin), and improves visualisation and interpretation of results and corresponding 

errors. Note that as there are fewer participants at the minimum and maximum age limits 

compared to around the mean age, this method leads to wider age ranges for the lowest and 

highest percentile bins. As shown in Supplementary Figure S12, similar effects to our main 

analysis were observed when using windows of fixed age bins (5 years width), rather than 

bins of fixed numbers of observations. Again, the mean brain volume was computed within 

each age bin, and plotted against the mean bin centre of that bin, along with standard errors.  

 

Joinpoint regression  

To determine if there were significant points at which the rate of hippocampal atrophy 

changed across age, we used joinpoint regression. This is a regression analysis recommended 

by the National Cancer Institute (NCI, https://surveillance.cancer.gov/joinpoint/, (Kim et al. 

2000)) to estimate time points of change in trend data, often used for changes in cancer 

incidence rates. The analysis fits separate line segments to trend data, which are connected 

at positions called joinpoints. No joinpoints would suggest no changes in slope, and thus no 

changes in, for example, cancer incidence. Here we applied joinpoint regression to test for 

the presence of one or more joinpoints (i.e. inflection points) along the brain volume 

trajectories across age. Thus, instead of cancer incidence rate, here the dependent variable 

was mean volume per 1-year, non-overlapping age window. Bins of 1-year width were chosen 

to retain adequate accuracy with a feasible number of datapoints. Similarly, instead of 

diagnosis year, the independent variable used here was age group.  
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The Joinpoint Regression Program fits between zero and a chosen maximum number of 

joinpoints to the data. Starting from zero joinpoints, we tested whether more joinpoints are 

statistically significant (p < .05) using a Monte Carlo Permutation method, assuming 

uncorrelated errors. The maximum was chosen at 4 joinpoints, as recommended for our 

number of data points (Kim et al. 2000). This was done with hippocampal volume, rest of total 

grey matter volume (total grey matter minus hippocampal volume), superior temporal gyrus, 

middle temporal gyrus, inferior temporal gyrus, fusiform gyrus, parahippocampal gyrus, and 

temporal pole volume, for males and females separately. More detailed information on 

methods used within the Joinpoint Regression Program can be found at 

https://surveillance.cancer.gov/help/joinpoint/.  

 

Results 

Demographics  

Demographics as well as means and standard deviations for uncorrected hippocampal 

volume, with respect to head size, by hemisphere and sex are summarised in Table 1.  
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Mean age was 62.95 years (std = 7.48 years), with males slightly older than females (p < .001, 

Hedges’ g = .18). Mean total grey matter volume (uncorrected for head size) was significantly 

larger in males than females (p < .001, Hedges’ g = .95), as was the case for uncorrected 

average hippocampal volume (p < .001, Hedges’ g = .52).  

 

Effects of hypertension, smoking, higher BMI and lower education on brain volume 

Before further analysing the demographic information, brain volumes were corrected for 

head size as described above. As effects of hypertension status, Body-Mass-Index (BMI), 

education, and smoking status on brain volumes may also be confounded by age, variance 

introduced by age was also regressed out for the following results on effects of hypertension, 

BMI and education only.  

 Age 

(Mean ± std) 

Total grey matter  

(Mean ± std) 

Average 

hippocampus  

(Mean ± std) 

N 

Female 62.31 ± 7.34 years 594,250 ± 48,028 

mm3 

3765.18 ± 366.75 

mm3 

10463 

Male 63.67 ± 7.58 years 641,307 ± 51,379 

mm3 

3972.97 ± 431.03 

mm3 

9330 

Total 62.95 ± 7.48 years 616,484 ± 54,917 

mm3 

3863.94 ± 411.56 

mm3 

19793 

Table 1: Demographics of sample 
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Participants with self-reported hypertension had significantly lower hippocampal (p < .001, 

Hedges’ g = .06) and total grey matter volumes (p < .001, Hedges’ g = .17), than participants 

without self-reported hypertension, though with small effect sizes (Suppl. Figure S1). There  

was a significant, but very small negative correlation between BMI and hippocampal volume 

(r =- .03, p < .001, n = 18,653), as well as between BMI and total grey matter volume (r =- .11, 

p < .001, n = 18,653), with larger BMI being weakly associated with smaller volumes. There 

was also a small significant positive effect of level of education on average hippocampal 

volume (p < .001, Hedges’ g = .07, n = 19,646). Higher education levels were associated with 

larger volumes than lower level education levels. There was no significant effect of education 

on total grey matter volume (p = .77, n = 19,646, Suppl. Figure S2).  

 

Hippocampal (F = 8.26, p < .001, n = 19,646) and total grey matter volume (F = 60.12, p < .001, 

n = 19,646) were significantly smaller for current smokers than for people who have never 

smoked, and people who have previously smoked. In addition, previous smokers had larger 

hippocampal and total grey matter volumes than current smokers (Suppl. Figure S3).  

 

Supplementary Tables 1-3 present data for means, standard deviations, and significance tests 

of hypertension, BMI, education level, and smoking status for all temporal lobe volumes as 

well as total grey matter volume. Percent differences for all temporal lobe volumes are shown 

in Supplementary Figures S1-3. 

 

Normative percentiles 

Example nomograms for the 2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97.5th percentiles 

for left and right hippocampal volume in women and men, uncorrected for head size, are 
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shown in Figures 1-4. Overlapping, age-adjusted windows of 10% of observations are plotted, 

with age on the x-axis corresponding to the median age of participants within the overlapping 

quantile windows. Because there are fewer observations within particularly young (starting 

at 45 years) and particularly old (up to 80 years) participants, quantile bins for the youngest 

and oldest participants are wider, and thus have a median age around 50 and 75 years, 

respectively. Additional moving average smoothing with a gaussian kernel of 20 resulted in 

percentiles plotted across ages 51 years to 72 years (52 years to 73 years for males). 

The nomograms are provided separately for females and males as the previous analyses have 

shown differential sex by age trajectories. Additional nomograms split by hemisphere and sex 

for total grey matter, as well as plots with volumes corrected for head scaling can be found in 

the Supplementary Material (Suppl. Figures S4-11).  

 

The provided nomogram webtool (http://www.smanohar.com/biobank/) enables clinicians 

to quickly calculate a patient’s percentile by entering the volume estimation from the 

automated analysis pipeline. For example, a female aged 64 years with a left hippocampal 

volume of 3.15 cm3 (corrected for head size) would score within the 5th percentile. This 

means that 95% of the women closest to her age in the current sample had a larger volume, 

highlighting potentially pathological atrophy and providing additional information for the 

diagnosing clinician.  
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Figure 1: Nomogram of uncorrected left hippocampal volume for females 
Figures show the quantiles of hippocampal volume for the group of individuals in each age 
window.  The x-axis indicates the median age of the window. The mid line indicates the 
median. For someone with a given age and volume, a percentile can be read off the chart, 
indicating the proportion of the Biobank cohort who have a hippocampal volume below that 
of the person. 
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Figure 2: Nomogram of uncorrected left hippocampal volume for males 
Figures show the quantiles of hippocampal volume for the group of individuals in each age 
window.  The x-axis indicates the median age of the window. The mid line indicates the 
median. For someone with a given age and volume, a percentile can be read off the chart, 
indicating the proportion of the Biobank cohort who have a hippocampal volume below that 
of the person.  
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Figure 3: Nomogram of uncorrected right hippocampal volume for females 
Figures show the quantiles of hippocampal volume for the group of individuals in each age 
window.  The x-axis indicates the median age of the window. The mid line indicates the 
median. For someone with a given age and volume, a percentile can be read off the chart, 
indicating the proportion of the Biobank cohort who have a hippocampal volume below that 
of the person. 
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Figure 4: Nomogram of uncorrected right hippocampal volume for males 
Figures show the quantiles of hippocampal volume for the group of individuals in each age 
window.  The x-axis indicates the median age of the window. The mid line indicates the 
median. For someone with a given age and volume, a percentile can be read off the chart, 
indicating the proportion of the Biobank cohort who have a hippocampal volume below that 
of the person. 
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Brain volume characteristics 

Temporal lobe volumes differed between hemispheres 

A paired t-test resulted in a significant difference between right and left hippocampal volume 

(uncorrected for head size) with right larger than left volume asymmetry (see Figure 5 for 

percent difference, p < .001, Hedges’ G = .24). The same effect was found in the superior 

temporal gyrus (p < .001, Hedges’ G = .80) and inferior temporal gyrus (p < .001, Hedges’ G = 

.12). On the other hand, there was a significant left larger than right volume asymmetry for 

the fusiform gyrus (p < .001, Hedges’ G = 1.30) and parahippocampal gyrus (p < .001, Hedges’ 

G = .48). Asymmetry effects of the same direction in the temporal pole were also significant, 

however with a very small effect size (Hedges’ G = .04). There was no significant difference 

between left and right hemisphere for middle temporal gyrus (p = .61). See Supplementary 

Table 4 for means, standard deviations, and significance tests for all temporal lobe volumes.  

Head size was not corrected for as left/right differences are within-subject, and will be largely 

unaffected by head size. There was no correlation between handedness and asymmetry for 

any of the tested volumes (calculated by asymmetry = left volume - right volume; all p > a/7 

= .007).  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2019. ; https://doi.org/10.1101/562678doi: bioRxiv preprint 

https://doi.org/10.1101/562678
http://creativecommons.org/licenses/by/4.0/


 21 

 

 

Figure 5: Percent differences between left and right volumes.  

Negative percentage differences correspond to larger right volumes, positive percent 

differences correspond to larger left volumes. 

Percent differences are shown for visualisation, black bars indicate a significant 

corresponding t-test for absolute volume differences at p < .001 (Bonferroni-corrected a = 

.05/8 = .006). 
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Temporal lobe volumes by sex 

Means, standard deviations, and significance tests for all brain volumes by sex, corrected for 

head size and age, can be found in Supplementary Table 5. There was no significant 

difference of mean (average) hippocampal volume between males and females (p > .05). Sex 

differences for the remaining temporal lobe volumes, and for total grey matter volume were 

significant in different directions, though effect sizes were mostly very small (See Figure 6 for 

percent differences). Small-to-medium effect sizes were seen in total grey matter volume 

(females larger than males), parahippocampal gyrus (males larger than females), and 

temporal pole (males larger than females).  
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Figure 6: Percent differences between males and females.  

Positive percent differences correspond to larger volumes in males, negative percent 

differences correspond to larger volumes in females. 

Black bars indicate a significant corresponding t-test for absolute volume differences at p < 

.001 (Bonferroni-corrected a = .05/8 = .006). 
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Method of estimation did not alter Hippocampal volume  

Mean hippocampal volumes differed between methods. On average FSL-FAST estimates 

(mean = 4285.08 mm3, std = 309.32 mm3) were larger than estimates calculated with FSL-

FIRST (mean = 3863.40 mm3, std = 353.61 mm3, p < .001, Hedges’ g = 1.27). Estimates were 

corrected for head size, scanning date, and age. However, there were no differences in the 

overall results from the joinpoint and sliding-window analyses between the two hippocampal 

volume estimates (see sections below). As FSL-FIRST is the recommended and most widely 

used method for subcortical segmentation, we present analyses throughout using the IDPs 

that were generated using FSL-FIRST.  

 

Trajectory of mean hippocampal volume with age demonstrate an inflection 

We plot mean  hippocampal volume, total grey matter volume (both corrected for head size), 

and hippocampal volume as a percentage of grey matter volume as a function of age. To plot 

this we used a sliding-window method, using windows of 10% of the population (Figure 7). 

Age on the x-axis corresponds to the median age of participants within the overlapping 

quantile windows. Because there are fewer observations within particularly young and 

particularly old participants, the median ages of the quantile bins for the youngest and oldest 

participants are around 50 and 75 years, respectively. Plots for left and right hippocampal 

volumes, as well as plots for fixed 5-year age-bins rather than fixed quantiles for bilateral 

hippocampal volume, are provided in the Supplementary Material (Suppl. Figures S12-13).  
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Figure 7: Trajectory of hippocampal volume with age. 
 
Dashed lines indicate points of maximum ratio. A. Mean bilateral hippocampal volume 

including standard errors as a function of age, corrected for head size. B. Mean total grey 

matter volume including standard errors as a function of age, corrected for head size. C. Mean 

hippocampal volume to rest of grey matter ratio including standard errors as a function of 

age.  
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Whereas whole brain volume appears to decline linearly as a function of age for both men 

and women (Figure 7B), in women the rate of hippocampal volume loss increases at ~60 years 

(Figure 7A). This inflection point (i.e. maximum slope), can be calculated by numerical 

differentiation, as shown in Supplementary Figure S14 (females: bin(max slope) = 58.67 – 

61.28 years, max slope =  -0.27; males: bin(max slope) = 44.56 – 52.73 years, max slope = -

2.52).  

 

To compare hippocampal volume more directly to the rest of the grey matter, the ratio 

between these two volumes was calculated. In females, the ratio of hippocampal volume to 

the rest of grey matter (Figure 7C) peaks around age 67 years (bin(max ratio) = 66.33 years -

68.44 years), suggesting that the rate of volume loss in the hippocampus is smaller relative to 

the rest of grey matter. As age increases further, this pattern is then reversed.  In males the 

ratio of hippocampal volume relative to the rest of grey matter peaks around age 63 years 

(bin(max ratio) = 61.69 years – 64.32 years), before declining thereafter. These sex differences 

in the age of transition (maximum ratio) were significant. Males reached peak hippocampal 

ratio at a significantly younger age than females, calculated by permuting matched age bins 

of the male and female groups to compute the null distribution of the difference in the peak 

(n(permutations) = 5000, p < .001). This p-value represents the proportion of permuted 

datasets that produced a mean difference between the peaks of the curves at least as 

extreme as the one observed from the actual data. These results were replicated using no 

smoothing (Suppl. Fig S15), a smoothing kernel of 10 rather than 20 (Suppl. Fig S16), as well 

as quantile bins with 25% (Suppl. Fig S17-S18) instead of 10% of participants (range of median 

age at ratio maxima for females: 67.37 – 68.21 years; for males: 62.48 – 63.32 years). 
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In order to confirm that there was a significant change in slope of the trajectory of 

hippocampal volume, joinpoint regression (Kim et al. 2000) was applied. This method tests 

statistically for the presence of zero, or up to four inflection points (joinpoints) in the slope 

of mean hippocampal volume across age. The maximum number of joinpoints tested for is 

selected based on the number of observations. There was one inflection point for both 

males and females (Figure 8A-B). In females, there was a significant change in slope at age-

group 64-65 years (change of slope Dm = -32.44mm3; age 95% CI [61-62 years, 67-68 years], 

p < .0001). In males, the change in slope was significant at age-group 63-64 years (change of 

slope Dm = -26.45m 95% CI [58-59 years, 66-67 years], p < .0001; see Table 2 for Model 

estimates).  
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Figure 8: Joinpoint analysis for hippocampal and total grey matter volume 

A. Joinpoint (change of slope) in bilateral hippocampal volume over age in females B. 

Joinpoint bilateral hippocampus in males. C. Joinpoint in rest of grey matter volume (total 

grey matter – bilateral hippocampus) in females D. Joinpoint in rest of grey matter for 

males. 
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 Female Male 

DF 21 21 

Joinpoint 64-65 years 63-64 years 

Joinpoint 95% LCL 61-62 years 58-59 years 

Joinpoint 95% UCL 67-68 years 66-67 years 

Slope Change Estimate -32.44 mm3 -26.45 mm3 

Slope Change Std Error 4.04 mm3 4.94 mm3 

Slope Change Test Statistic* -8.03 -5.35 

Slope Change p-value  <.0001 < .0001 

Table 2: Model Estimates from joinpoint regression of hippocampal volume  
 

* the slope change test statistic is the parameter estimate divided by the standard   

   error that follows a t distribution with 21 degrees of freedom.  
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For the rest of the grey matter, there was one joinpoint in the slope (total grey matter – 

bilateral hippocampus) across age for females (Figure 8C), with a significant change in slope 

of Dm = -1273.98mm3 at age-group 56-57 years (t(21) = -2.98, 95% CI [53-54 years, 58-59 

years], p =.007). By contrast, there was also a small, but significant change in slope for the 

rest of grey matter across age in males at age-group 62-63 years (Dm = -754.14mm3, t(21) = 

-4.87, 95% CI [57-58 years, 66-67 years], p < .0001) (Figure 8D). 

 

Trajectories of other temporal lobe volumes with age 

Next, we aimed to demonstrate that these inflections were specific to the hippocampus. 

Mean volumes (corrected for head size) were plotted for the remaining brain areas within 

the temporal lobe available from UK Biobank, namely parahippocampal gyrus, fusiform 

gyrus, superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, and 

temporal pole (Figure 9). The same sliding-window and joinpoint regression methods were 

used. All these temporal lobe regions show a largely linear negative relationship with age. In 

keeping with this, and in contrast to the findings for the hippocampus, there were no 

significant joinpoints or changes in slope for either males or females in superior temporal 

gyrus, middle temporal gyrus, inferior temporal gyrus and fusiform gyrus (p > .05). However, 

there was a significant joinpoint for both males and females in parahippocampal gyrus 

volume, similar to the joinpoints found for the hippocampus (females: Dm = -26.97mm3 at 

age-group 66-67 years, t(21) = -5.40, 95% CI [62-63 years, 70-71 years], p < .0001; males: Dm 

= -30.81mm3 at age-group 59-60 years, t(21) = -3.77, 95% CI [56-57 years, 64-65 years], p = 

.001) (Figure 8D). There was also a significant joinpoint in volume of temporal pole in males, 

at age-group 55-56 years ( Dm = -76.97mm3, t(21) = -2.57, 95% CI [53-54 years, 57-58 years], 

p = .02). 
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In addition, the ages of the peak ratios with respect to the rest of grey matter differs between 

regions. For example, the ratios of superior (female: bin(max ratio) = 52.73 years - 55.85 

years; male: bin(max ratio) = 44.45 years – 52.73 years) and middle temporal gyrus volume 

(female: bin(max ratio) = 49.30 years – 53.11 years; male: bin(max ratio) = 48.30 years – 53.11 

years) to rest of grey matter peak in the youngest age groups of the sample. By contrast, ratios 

for inferior temporal gyrus (female: bin(max ratio) = 71.92 years – 80.65 years; male: bin(max 

ratio) = 73.41 years – 80.27 years), temporal pole (female: bin(max ratio) = 70.22 years – 

73.45 years; male: bin(max ratio) = 72.25 years – 75.56 years) and parahippocampal volume 

(female: bin(max ratio) = 71.92 years – 80.65 years; male: bin(max ratio) = 73.41 years – 80.27 

years) to the rest of the grey matter peak at the oldest age groups. The ratio of fusiform gyrus 

volume to the rest of grey matter volume does not show pronounced change over age. There 

were no significant differences in the age of peak ratio between males and females for any of 

these temporal lobe regions, calculated by permutation testing (n(permutations) = 5000, all 

p > .05), except for fusiform gyrus (p = .004). 
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Figure 9: Trajectory of temporal lobe volumes with age, corrected for head-size.  
 
Dashed lines indicate points of maximum ratio. A. Bilateral superior temporal gyrus volume. 

AA. Bilateral superior temporal gyrus ratio to rest of grey matter. B. Bilateral middle temporal 

gyrus volume. BB. Bilateral middle temporal gyrus ratio to rest of grey matter. C. Bilateral 

inferior temporal gyrus volume. CC. Bilateral inferior temporal gyrus ratio to rest of grey 

matter.  
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Figure 9 cont.: Trajectory of temporal lobe volumes with age, corrected for head-size.  
 
D. Bilateral fusiform gyrus volume. DD. Bilateral fusiform gyrus ratio to rest of grey matter. E. 

Bilateral parahippocampal gyrus volume. EE. Bilateral parahippocampal gyrus ratio to rest of 

grey matter. F. Bilateral temporal pole volume. FF. Bilateral temporal pole ratio to rest of grey 

matter.  
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Discussion 

Data from the UK Biobank Imaging were analysed to provide normative information on 

hippocampal volume as a function of age using the largest sample size published to date 

(N=19,793). We used a model-free sliding window approach to examine absolute and relative 

hippocampal volume, as well as neighbouring temporal lobe volumes, as a function of age. 

This approach was deemed most appropriate as it makes few assumptions, and does not 

impose a linear relationship between brain volume and age. The analysis resulted in 

normative reference percentiles – or nomograms – for total grey matter and hippocampal 

volume along the age distribution, facilitating assessment of an individual’s hippocampal 

volume in relation to their age-group (see our online tool at 

(http://www.smanohar.com/biobank/). 

 

For comparison, it is noteworthy that estimated hippocampal volumes from previous studies 

on patients with MCI or AD fall far below the 50th percentile in the healthy population 

presented here. For example, mean uncorrected hippocampal volume (bilateral) was 5.55 

cm3 in an amnestic MCI group with an average age of 70.7 years (Vos et al. 2013). This would 

fall below the 2.5th percentile in our sample. In a sample of controls and patients with MCI 

and AD of similar mean age as in our sample (67 years, 71 years, and 67 years, respectively), 

controls would score between our 50th and 75th percentiles, while patients score below the 

5th percentile (Henneman et al. 2009). Volumes compatible with our current results for 

healthy controls (3.57 cm3; mean age 75 years), but with far less dramatic reductions for MCI 

(3.26 cm3; mean age 73 years) and AD (2.97 cm3; mean age 72.6 years), were reported using 

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Mulder et al. 
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2014). These would likely correspond to healthy controls scoring around our 50th percentile, 

but with patients scoring between the 5th and 25th percentiles. 

 

It is likely that different methods, including sample selection as well as image acquisition, 

image processing, and hippocampal segmentation tool used, underlie these discrepancies. 

These issues highlight the importance of large datasets and unified analysis pipelines. Before 

efforts to harmonize analysis across MRI datasets solve some of these concerns, the 

nomograms presented here provide a robust comparator, when used with estimates 

obtained using the same, or similar, acquisition protocols, hardware and pre-processing 

pipeline. 

 

It can also currently not easily be disambiguated whether a low percentile on the nomogram 

is due to pathological atrophy or is simply constitutional, e.g., due to an unusually small 

volume from birth. However, future research with longitudinal data from the UK Biobank may 

facilitate the resolution of some of these constraints. 

 

Associations of hippocampal volume with education, smoking, and hypertension were 

significant, but effect sizes were small, and deconfounding for these variables did not 

effectively change any of the reported results. Since significant findings with small effect sizes 

are not necessarily practically relevant with big data, we decided not to correct for these 

factors in the calculations of percentiles in favour of generalisability. However, it should be 

noted that participants in UK Biobank appear to smoke less, have lower BMIs, and are 

generally healthier than would be expected in the general population of the United Kingdom 

(Fry et al. 2017).   
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The results of two different types of analysis revealed a slight acceleration of hippocampal 

volume loss around age 60-65 years for females, whereas for males the rate of hippocampal 

volume loss may increase earlier around 50 years (Figures 7 and 8). In addition, for both 

women and men, there was an increase in rate of hippocampal volume loss relative to the 

rest of the grey matter from around ages 67 and 63 years, respectively. Thus, hippocampal 

volume declined slower than the rest of grey matter until around age 67 in women, and age 

63 in men, after which hippocampal volume declined faster than the rest of grey matter. This 

may indicate a particular vulnerability of the hippocampus in ageing, as this effect was specific 

to the hippocampus and was not found to this extent in neighbouring brain areas such as 

parahippocampal gyrus or temporal gyrus (Figure 9). While our method does not allow for 

precise age estimations, we show a robust age-range for the ratio peak with different window 

bins and smoothing kernels. 

 

A previous cross-sectional study with results from 1100 participants reported a similar 

acceleration of rate of hippocampal volume loss (Fjell et al. 2013). Relationships of age and 

several brain volumes were analysed using a nonparametric smoothing spline approach. The 

authors reported an acceleration of rate of hippocampal volume loss starting around 50 years 

of age, with a marked increase in rate of hippocampal volume loss around 60 years. In 

agreement with our findings, no such acceleration point was found in grey matter. However, 

in this study no sex differences in these curves were calculated. In contrast, other cross-

sectional studies using linear regression to estimate associations of age with hippocampal 

volume found an acceleration of volume loss at a slightly later age of 72 years (Zhang et al. 

2010), or no acceleration point (Knoops et al. 2012).  
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In the analyses presented here, the significant slope changes at the estimated joinpoints 

suggest, however, that a linear fit is not the most appropriate approach to measure the 

association between age and relative hippocampal volume in our sample. Importantly, the 

trajectories of other temporal lobe volumes, as well as the rest of grey matter across age do 

not show the same acceleration of volume loss as observed in hippocampal volume. This may 

underlie the specific vulnerability of hippocampal volume loss in older age. Yet, the findings 

presented here vary slightly depending on method used (e.g. sliding window or joinpoint), 

and need to be validated with longitudinal rather than cross-sectional data. For example, the 

current data do not allow for conclusions of whether those with the fastest decline, or those 

with the lowest baseline volume, are at more risk of developing dementia. With the 

availability of longitudinal health outcomes, future studies may also explore the role of the 

dementia-associated APOE ε4 allele on hippocampal volume across age.  

 

In the absence of differential age-effects on grey matter volume between males and females, 

we found significantly larger mean total grey matter, and middle temporal gyrus volumes in 

females after correcting for head size and age.  However, effect sizes were small. On the other 

hand, males had moderately larger parahippocampal and temporal pole volumes.  The data 

presented here also indicate hemispheric asymmetry of the tested brain volumes. The right 

hippocampus was slightly, but significantly, larger than the left hippocampus for both men 

and women. Right-larger-than-left asymmetry was also found in the superior and inferior 

temporal gyri. In contrast, there was considerable left-larger-than-right asymmetry for both 

the parahippocampal and fusiform gyrus. The observed asymmetries, and the differences in 

asymmetry direction, may be the result of noise in the MRI signals and imperfections of the 

automated volume segmentation and quality control tools used here. For example, the 
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algorithm that the segmentation uses to determine which voxel is classified as 

'parahippocampal' versus 'hippocampal' may be the reason for the differences in asymmetry 

direction between the two volumes. Thus, while these results suggest some structural 

differences between hemispheres, such as asymmetry of convolutions, it is unclear what 

these differences entail precisely. However, the right-larger-than-left asymmetry of the 

hippocampus has been reported previously in smaller cohorts of younger and older adults 

(Zhang et al. 2010; Wellington et al. 2013; Pedraza et al. 2018), as well as in patients with AD 

and MCI (Shi et al. 2009). A recent study reporting on 400 participants from the ADNI dataset 

also found increasing right-larger-than-left hippocampus asymmetry going from healthy 

controls, to patients with MCI, to patients with AD (Alberich-Bayarri et al. 2018). As the left 

hippocampus is smaller even in healthy ageing, the increasing asymmetry in the course of AD 

may be explained by greater vulnerability to pathology of the left compared to the right 

hippocampus. What is less clear is how the left-larger-than-right asymmetries of the 

parahippocampal and fusiform gyri may be affected by ageing and AD pathology.  

 

Functional lateralisation has been shown for a number of brain processes, such as language 

(Vigneau et al. 2006), face perception (Zhen et al. 2015), or visual processing (Zhen et al. 

2017), which may explain the asymmetries observed here in other areas such as the inferior 

and superior temporal gyri. However, the precise nature of the relationship between brain 

structural lateralisation and function remains unclear (Bishop 2013; Batista-García-Ramó and 

Fernández-Verdecia 2018), highlighting the importance of considering confounding factors 

for the analysis of norm values. We therefore provide separate nomograms for left and right 

hippocampus, as well as for males and females.  
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Conclusion 

Analysis of 19,793 generally healthy participants in the UK Biobank revealed effects of age, 

sex, and hemisphere on selected temporal lobe volumes. The data provide normative values 

for hippocampal and total grey matter volume as a function of age for reference in research 

and clinical settings, based on an unprecedented sample size. These norm values may be used 

together with automated percentile estimation tools such as the one described here to 

provide a rapid, but objective, evaluation of the patient’s hippocampal volume status. While 

the current findings are based on cross-sectional data, the longitudinal health outcomes that 

will become available in UK Biobank over the next years will add invaluable information to 

the role of hippocampal atrophy in ageing. 
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