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ABSTRACT 

Do nose-to-brain pathways mediate the effects of peptides such as oxytocin (OT) on brain 

physiology when delivered intranasally? We addressed this question by contrasting two methods 

of intranasal administration (a standard nasal spray, and a nebuliser expected to improve OT 

deposition in nasal areas putatively involved in direct nose-to-brain transport) to intravenous 

administration in terms of effects on regional cerebral blood flow during two hours post-dosing. 

We demonstrate that OT-induced decreases in amygdala perfusion, a key hub of the OT central 

circuitry, are explained entirely by OT increases in systemic circulation following both intranasal 

and intravenous OT administration. Yet we also provide robust evidence confirming the validity 

of the intranasal route to target specific brain regions. Our work has important translational 

implications and demonstrates the need to carefully consider the method of administration in our 

efforts to engage specific central oxytocinergic targets for the treatment of neuropsychiatric 

disorders.  

 

 

 
KEY-WORDS: oxytocin; intranasal; intravenous; nose-to-brain transport; arterial spinal 
labelling 
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The oxytocin (OT) system has been a promising research area in translational neuroscience over 

the past decade (1, 2). Robust evidence from studies in preclinical models has demonstrated the 

importance of the central OT system in the development (3) and regulation of complex social 

behaviours (4, 5), the modulation of pain processing (6), feeding behaviour (7) and 

neuroinflammation after brain ischemia (8). Harnessing the central OT system has been identified 

as a potential strategy for the development of targeted pharmacological interventions to help to 

improve outcome in several conditions for which efficacious treatments do not currently exist 

(e.g autism spectrum disorder  (9), schizophrenia (10), migraine (11), stroke (8), obesity (12), 

Prader-Willi (13)).  

Human studies almost exclusively target the central OT system by administering synthetic 

OT using nasal sprays, despite a lack of understanding of the mechanisms underpinning its 

pharmacodynamic effects. OT is a hydrophilic cyclic nonapeptide and is unable to cross the 

blood-brain barrier (BBB) in significant amounts (14). When administered orally, OT is degraded 

in the gut. For these reasons, the intranasal administration of OT has been favoured under the 

assumption that once in the nasal cavity, OT can reach the brain directly, bypassing the BBB 

(15). Two main mechanisms have been suggested to underpin this putative direct nose-to-brain 

transport (16). The first mechanism postulates internalization of the peptide 

into olfactory or trigeminal neurons innervating the posterior and middle areas of the nasal cavity, 

followed by axonal transport and central exocytosis. However, this mechanism would be slow 

(17) and therefore unlikely to be responsible for the central and behavioural effects that we 

observe within 15-60 minutes (18) of administering intranasal OT in humans. The second 

mechanism postulates that the peptide reaches the cerebrospinal fluid (CSF) and brain 

parenchyma via passive diffusion through perineural clefts in the nasal epithelium, which provide 

a gap in the blood-brain barrier (19).  While some animal work is consistent with the existence of 
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the second mechanism (20), there is a lack of robust evidence to support the existence of nose-to-

brain transport in humans (17, 21). 

The lack of clarity regarding the mechanisms mediating the effects of intranasal OT in 

humans and the inconsistent results in existing studies and clinical trials using intranasal sprays to 

deliver OT (22) have raised questions about the validity of the intranasal route to administer OT 

to the brain. While very small amounts of intranasally administered OT have been reported to 

reach the CSF (17), peripheral concentrations in the blood are also concomitantly increased to 

supraphysiologic levels. The increase in plasma OT levels unavoidably engages OT receptors  

expressed throughout the body, including the gastrointestinal tract, heart, and reproductive tract 

(17). These systemic effects may impact indirectly on brain function and behaviour and could 

underlie, at least partially, the observed effects after intranasal OT. It is also possible that the 

small amount of synthetic OT that crosses the BBB from systemic circulation (17) may be 

sufficient to induce functional effects in the brain, either by directly activating receptors in the 

brain or by stimulating OT autoreceptors on OT-synthesizing hypothalamic neurons to induce the 

release endogenous OT in a positive feedback loop (23). These mechanisms might explain why 

OT when administered peripherally (e.g. intravenous infusion) can still impact behaviour (24-27).  

Intranasal drug delivery allows for fast absorption into the peripheral circulation of small 

molecules, avoiding undesirable first-order hepatic and intestinal metabolism (28, 29). However, 

this route comes with the disadvantage of poor and unreliable control of the amount of the drug 

absorbed (28, 29). Therefore, to maximize the chance of achieving significant translational 

advances, we need to confirm whether nose-to-brain pathways can be used to target the central 

OT system and whether they offer any advantage in relation to alternative methods. Otherwise, 

trials using intranasal OT may just result in a waste of scarce resources and missed opportunities 

to gain insight about whether OT presents a valuable drug therapy in humans. Once the validity 
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of the intranasal route to deliver synthetic OT to the brain is confirmed, a second step would 

require the optimisation of methods for nose-to-brain delivery of OT.  

The absence of a selective radiolabelled OT ligand in humans makes it impossible to 

directly examine the central penetration and distribution of synthetic OT after intranasal 

administration. An alternative strategy is to quantify and compare whole brain functional effects 

after OT administration. We have previously demonstrated the sensitivity of arterial spin 

labelling (ASL) magnetic resonance imaging (MRI) in quantifying changes in brain’s physiology 

after intranasal OT administration (18), as reflected in changes in regional cerebral blood flow 

(rCBF) at rest. Changes in rCBF provide a quantitative, non-

invasive pharmacodynamic marker of the effects of acute doses of psychoactive drugs  (30, 31), 

with high spatial resolution and excellent temporal reproducibility (32). As a result of neuro-

vascular coupling, changes in rCBF are likely to reflect changes in neuronal activity rather than 

vascular effects (33), and they capture relevant differential neurotransmitter activity of 

neurochemical systems (18, 34).  

In this study, we used ASL MRI to investigate and compare changes in rCBF over time 

that follow intranasal and intravenous OT administration. The use of an intravenous comparator 

can illuminate whether intranasal OT induced changes on brain perfusion in humans are 

associated with nose-to-brain pathways or result from concomitant increases in systemic OT 

circulation. Standard nasal sprays are the predominant method of intranasal OT administration in 

humans, yet they were not designed to maximise deposition in the olfactory and respiratory 

epithelia that is thought to mediate nose-to-brain transport (35).  For this reason, alongside a 

standard nasal spray, we used a nasal administration method (PARI SINUS nebuliser) that 

combines the production of small size droplets with vibration to maximize deposition in upper 
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and posterior regions of the nasal cavity where the direct nose-to-brain transport putatively occurs 

(36). 

First, we reasoned that if intranasal administration represents a privileged route for the 

central delivery of OT, then intranasal-induced changes in rCBF in brain regions typically 

associated with the effects of OT in the brain (e.g. the amygdala) (37-39) should not be explained 

by increases in plasmatic OT achieved after OT intravenous infusion. Second, if posterior regions 

of the nasal cavity are involved in direct nose-to-brain transport, then using a device that can 

increase deposition in these areas may result in a more robust pattern of changes in rCBF when 

compared to OT administration with a standard nasal spray.  

  

  

RESULTS 

Global CBF and subjective state ratings  

We observed a linear decrease over time in participants’ global CBF level and levels of alertness 

and excitement (Main effect of time-interval); however, there was no significant main effect of 

treatment or time-interval x treatment interaction (Figs. S1 and S2 and Table S1). A significant 

decrease in global CBF over time is commonly observed over long sessions in the scanner 

(probably due to decreases in the level of alertness, blood pressure, heart-rate or a combination of 

these factors (40)) and supports the inclusion of global CBF as a nuisance variable in all of our 

analyses. We did not observe any significant correlation between changes in global CBF and 

ratings of alertness or excitement over time (Fig. S3). 
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Whole brain flexible factorial analysis: treatment, time-interval and treatment x time-

interval effects  

We first computed a flexible factorial model to investigate changes in rCBF as a result of the 

main effects of treatment, time-interval and time-interval x treatment interaction. We did not 

observe a significant main effect of treatment, however we found a significant main effect of 

time-interval on rCBF in several clusters across the brain, likely reflecting decreases in alertness 

and attention. Importantly, we observed a significant treatment x time-interval interaction in three 

clusters. These clusters extended over a network of regions including: 1) the left superior and 

middle frontal gyri and the anterior cingulate gyrus; 2) the right occipital gyrus, cerebellum, 

lingual and fusiform gyri, calcarine cortex, cuneus and inferior temporal gyrus; 3) the left 

putamen, caudate nucleus, insula, amygdala, parahippocampal gyrus, rectus gyrus and medial 

orbitofrontal cortex (Fig. 2 and Table 1).  

Whole-brain characterization of the changes in rCBF associated with each method of 

administration for each time interval, using paired T-tests  

As our study is the first in man to investigate  the pharmacodynamics effects of synthetic 

oxytocin on resting rCBF over an extended period of time when administered with any of the 

three methods of administration using a double-blind placebo-controlled crossover design, we 

followed up the flexible factorial model with an exhaustive series of paired T-tests at each time 

interval to investigate the direction of potential OT-induced changes in rCBF specifically for each 

treatment route (compared to placebo). Overall, we observed significant changes in rCBF over 

two temporal intervals, reflecting early (15-43 mins) and late (75-104 mins) effects of OT, which 

we describe in detail for each method of administration below. Results are summarized in Fig. 3 

and Tables 2, 3 and 4. Given the novel and exploratory nature of these analyses we report the 
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exact FWE-corrected P-values for significant clusters without further adjustment for the number 

of paired t-tests using conservative Bonferroni correction, and denote in Tables 2-4 with an 

asterisk those few clusters with PFWE > .002 (P=0.05 / 24 tests = 0.002) following Bonferroni 

adjustment.  

Standard nasal spray vs placebo. We observed significant decreases in rCBF at 24-32 

mins post-dosing in a cluster extending over the left amygdala, left insula, left parahippocampal 

gyrus and hippocampus, and left temporal pole, and at 87-95 mins post-dosing in two clusters, 

one including the anterior cingulate and the right superior/medial frontal gyri and another cluster 

spanning over the brainstem and the right cerebellum. We further observed significant increases 

in rCBF at 15-23 min post-dosing, in one cluster spanning the left superior/middle frontal gyri, 

supplementary motor area and the precentral gyrus, at 35-43 mins post-dosing over a similar 

cluster (but restricted to the left middle/inferior frontal and precentral gyri), and at 87-95 mins 

post-dosing in two clusters, one spanning the superior/middle temporal gyri, the posterior insula 

and the postcentral gyrus and another one involving the superior/inferior parietal lobes, the 

postcentral and precentral gyri and the precuneus (all in the left hemisphere) (Table 2).  

Intravenous OT administration vs. saline. We observed decreases in rCBF over the 

same clusters and time-intervals as for the comparison between standard nasal sprays vs. placebo, 

but only in 2 time-intervals. Specifically, we observed significant decreases in rCBF at 15-23 min 

post-dosing in a cluster spanning the amydgala, insula, parahippocampal gyrus and globus 

pallidum (all left hemisphere), and at 87-95 mins post-dosing in a cluster extending over the 

anterior cingulate, the superior frontal gyrus and the orbitofrontal cortex bilaterally (Table 3).  

PARI SINUS OT administration vs. placebo. The administration of intranasal OT with 

the PARI SINUS nebuliser resulted in a different pattern of changes compared to standard nasal 
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spray. Specifically, we observed decreases in rCBF at 15-23 min post-dosing in a cluster 

spanning the left caudate, left putamen and pallidum, and at 75-83 min post-dosing in a cluster 

extending over the left caudate, putamen, pallidum, thalamus, amygdala, hippocampus, olfactory 

region and the insula. We also observed increases in rCBF at 24-32 min post-dosing in two 

clusters, one spanning the right superior/middle/inferior occipital gyri, the calcarine sulcus and 

the cuneus bilaterally, and the other one the right cerebellum, and at 75-83 min post-dosing in a 

cluster spanning the postcentral gyrus, the superior/middle/inferior occipital gyri, the superior 

parietal gyrus, the inferior/middle temporal gyri, the precuneus, the calcarine sulcus and the 

cuneus, all in the right hemisphere. Accounting for plasma OT AUC had no effect on the changes 

in rCBF observed following administration with PARI SINUS (Table 4).  

 

Investigation of the apparent overlap in rCBF decrease between standard nasal spray and 

intravenous OT administration. Decreases in rCBF observed after standard nasal spray and 

intravenous OT administration at 24-32 and 87-95 minutes post-dosing overlap anatomically to a 

substantial extent (Fig. 4). We thus followed up with a direct comparison of standard nasal spray 

vs. intravenous OT administration using paired sample T-tests for these time-intervals; we did not 

observe any significant differences in rCBF between the two administration methods. Individual 

differences in OT concentration (AUC over 120 min post-dosing) in plasma post-dosing were 

negatively correlated with OT-induced changes in rCBF in the two spatially overlapping clusters 

showing significant decreases in rCBF in the comparisons of nasal spray OT versus placebo and 

intravenous OT versus saline (Fig. 5), but not with any other OT-induced changes, irrespective of 

method of administration, time-interval or direction of effect (Table S3). Accounting for plasma 

OT AUC in the paired T-test for the standard nasal spray vs. placebo and the intravenous OT vs. 
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saline comparisons eliminated all significant decreases in rCBF that were observed for each of 

these administration methods. However, accounting for plasma OT AUC had no effect on the 

changes in rCBF uniquely observed in the standard nasal spray versus placebo comparison.  

 

Comparison of pharmacokinetic profiles among treatments.  

OT reached peak plasma concentration at the end of dosing when administered intravenously or 

via nasal spray, and by ~ 15min post-dosing when administered with the nebuliser (Fig. 6a). 

Intravenous peak plasma OT concentrations (Cmax) were significantly higher than either 

intranasal administration method, while Cmax did not differ between the nasal administration 

methods (Table S2) (F(1.376, 22.02) = 92.39, p<0.0001, η2
p = 0.815; post-hoc tests: Spray vs 

Nebulizer - Mean difference = -0.5554, CI 95% [-6.866; 5.755], adjusted p = 0.972; Spray vs 

Intravenous - Mean difference = 49.56, CI 95% [-62.56; -36.56], adjusted p < 0.0001; Nebulizer 

vs Intravenous - Mean difference = 49.00, CI 95% [-60.89; -37.12], adjusted p < 0.0001). As 

intended, the intravenous OT infusion resulted in significantly higher AUC over the observation 

interval, while the intranasal methods did not differ in terms of AUC  (Fig. 6b) (Table S2) 

(F(1.1515, 24.24) = 20.47, p<0.001, η2
p = 0.746; post-hoc tests: Spray vs Nebulizer - Mean difference 

= 44.44, CI 95% [-8.252; 97.13], adjusted p = 0.1061, d = 0.769; Spray vs Intravenous - Mean 

difference = -125.0, CI 95% [-212.5;-37.54], adjusted  p = 0.0053, d = 1.303; Nebulizer vs 

Intravenous - Mean difference = - 169.5, CI 95% [-237.5; - 101.4], adjusted p < 0.0001, d = 

2.271). There were no significant differences in the absolute bioavailability of OT absorbed to the 

plasma between the standard nasal spray and PARI SINUS nebuliser (Fig. 6c) (Table S2) (T(15) = 

1.662, p = 0.129, d = 0.416). 
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Heart rate and heart-rate variability: treatment, time-interval and treatment x time-

interval effects   

There were no significant main effects of treatment or time-interval, and no significant treatment 

x time-interval effects on heart rate or on any time domain, frequency domain or non-linear 

measures of heart-rate variability (Table S5). 

 

DISCUSSION 

This is the first in man study to investigate  the pharmacodynamics of synthetic oxytocin on 

resting rCBF over an extended period of time when administered intravenously, with a nebuliser 

or a standard nasal spray. We used arterial spin labelling MRI as a pharmacodynamically 

sensitive signature and a double-blind placebo-controlled crossover design to achieve two aims.  

First, we wanted to understand whether intranasal OT-induced changes on brain physiology in 

humans reflect privileged nose-to-brain delivery or result from concomitant OT increases in 

peripheral circulation. We reasoned that if intranasal administration represents a privileged route 

for the central delivery of OT, then intranasally induced changes in rCBF in brain regions 

typically associated with the effects of OT in the brain would not be explained by concomitant 

increases in plasmatic OT achieved after OT intravenous administration. Second, we sought to 

test if a new device for nasal administration of OT, designed to achieve increased deposition in 

the posterior regions of the nasal cavity putatively involved in direct nose-to-brain transport, 

could maximize intranasal OT-induced changes in rCBF, resulting in a more robust pattern of 

changes in brain’s physiology. Our study yielded three key findings, which we discuss below in 

turn. 
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Our first key finding was the observation of OT-induced decreases in rCBF in the left 

amygdala and the anterior cingulate cortex with both the intravenous and standard nasal spray 

administration methods at overlapping temporal intervals. These decreases in rCBF in both the 

left amygdala and anterior cingulate cortex correlated with nasal spray or intravenous-induced 

increases in OT plasma concentrations, and became non-significant when these concomitant 

changes in OT plasma concentration were added as a covariate in the model. At the same time, 

concomitant change in plasma OT concentration did not correlate with or account for any of the 

remaining changes in rCBF, when OT was administered intranasally either with a standard nasal 

spray or the nebuliser.   

The suppression of amygdala’s activity constitutes one of the most robust findings in 

animal studies and intranasal OT studies in men (37, 41-43). For instance, the dampening of the 

amygdala BOLD response to negative affective stimuli after intranasal OT administration has 

been consistently shown in several studies using task-based fMRI (37, 44, 45). Similarly, human 

BOLD fMRI studies have implicated intranasal OT-induced decreases in BOLD in the anterior 

cingulate cortex in the modulation of social cognition (46), emotion (47) or fear consolidation 

(48) effects. These suppressive effects on BOLD match our observation of decreases in rCBF in 

these areas at rest – which we suggest is likely to reflect decreases in local metabolic demands 

associated with decreasing neural activity at rest. We provide first evidence that the intravenous 

infusion of OT echoes the effects of a standard spray administration on brain’s physiology within 

key neural circuits at rest. These effects are consistent with previous observations of improved 

repetitive behaviours and social cognition in ASD patients after intravenous administration of OT 

(24-27) and provide a possible mechanism by which these therapeutical effects on behaviour may 

arise. Therefore, our findings challenge the current assumption that key effects of intranasal OT 

on brain function and behaviour are entirely derived by direct nose-to-brain transport. 
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 With respect to changes in rCBF induced by the intravenous administration of OT, 

there may be three possible mediating mechanisms. First, it is possible that the direct peripheral 

effects of OT on OT receptors expressed in vegetative territories, such as the heart, may be an 

indirect source of changes in areas of the interoceptive/allostasis network in the human brain, 

where the dorsal amygdala and the pregenual anterior cingulate cortex assume the role of 

visceromotor hubs (49). However, as we did not observe any effects of OT (irrespective of 

administration method) on heart rate or heart rate variability, possible OT-induced changes in 

cardiac physiology cannot explain the decreases in rCBF we observed in this study. Second, it is 

possible that the small amounts of OT that cross the BBB (17)  (or a metabolite of OT that 

remains functional) is sufficient to induce changes in rCBF in brain regions of high density of the 

OT receptor, such as the amygdala, but not in other regions where the lower availability of the 

receptor would require higher local concentrations of the ligand to produce measurable effects 

(50). This hypothesis is in line with two recent studies. The first study reported that the 

intravenous infusion of labelled synthetic OT increased synthetic OT levels in the CSF in 

primates (51). The second study showed that circulating OT can be transported into the brain by a 

receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells and 

that this receptor mediated-transport is critical for some behavioural actions of OT such as 

parenting and bonding (52). Third, related to the above, it is possible that the small amount of 

synthetic OT crossing the BBB is sufficient to engage OT autoreceptors on the OT-synthesising 

neurons in the hypothalamus, inducing the release of endogenous OT in the brain in a positive 

feedback loop mechanism (53). However, convincing evidence supporting this hypothesis 

remains elusive. In fact, a recent study in primates that administered labelled OT and examined 

whether concomitant increases in the concentration of OT in plasma and CSF reflected synthetic 

(labelled) or endogenous OT reported that both plasma and CSF increases were driven by 
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increases in the concentration of the synthetic labelled OT (51).  

Our second key finding was the observation of increases in rCBF following intranasal 

administration (using either a standard nasal spray or the nebulizer) which could not be explained 

by concomitant increases in plasma OT. Indeed, there were no significant increases in rCBF 

(even at a lower threshold) when OT was administered intravenously. This finding provides up-

to-date pharmacodynamic evidence consistent with the contribution of direct nose-to-brain 

pathways for these effects of intranasal OT in humans. Intranasal OT-induced increases in rCBF 

at rest are likely to reflect OT-induced increases in local energetic demand resulting from 

enhanced neural activity. These are compatible with at least some of the reported enhancing 

effects of intranasal OT on facial processing (54), empathy and mentalizing (55), salience 

attribution (56) and their neural underpinnings.  

 Our third key finding was that while the application of the same nominal dose of 

intranasal OT (40IU) with the standard nasal spray and the nebuliser resulted in identical 

pharmacokinetic profiles, the patterns of OT-induced changes in rCBF were markedly different 

across the two method of intranasal administration. Given the similarity in pharmacokinetic 

profiles, we hypothesize that the difference in the patterns of OT-induced rCBF changes achieved 

with each method can only be explained by differences in the deposition of OT in the olfactory 

and respiratory regions and the parasinusal cavities which receive innervation from the olfactory 

and trigeminal nerves and may thus constitute important points of entry to the brain. It is possible 

that, as expected, the nebulizer achieved higher OT deposition in these areas (35) and hence 

resulted in increased amounts of OT reaching the brain (compared to the standard nasal spray). 

Consistent with this hypothesis, we found that when administered with the nebuliser, OT robustly 

decreased rCBF in the basal ganglia, an area highly enriched in the expression of OT receptors 

(OTR); moreover, OT induced increases in rCBF in brain regions more posterior and distant from 
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the point of entry (compared to the standard nasal spray), such as the visual cortices. These areas, 

although expressing relatively low levels of the OTR, are enriched in the expression of the 

vasopressin receptor 1 (V1aR) mRNA (Supplementary Fig. 4); OT has considerable affinity for 

the V1aR in higher concentrations (57). The higher central concentrations of OT achieved with 

the nebulizer may have allowed the peptide to diffuse farther and hence activate the V1aR that 

would not have been targeted by lower local concentrations of the peptide.  

 The fact that the nebuliser resulted in a different pattern of rCBF changes, with null or 

minimal overlap with the changes observed after the standard spray, instead of simply observing 

changes in the magnitude of the effects within the same areas, is surprising to some extent. Our 

initial hypothesis was that the nebuliser would result in a more robust pattern of changes that 

would be comparable to the spray but of higher magnitude and eventually include areas that 

could not be targeted neither by the spray nor by the intravenous administrations. However, we 

should acknowledge that this prediction would have mostly been valid if the pharmacodynamics 

of the rCBF response to OT followed a linear model – which does not seem to be the case at least 

for some brain areas. The few studies that have inspected the dose-response effects of intranasal 

OT on the BOLD response in the amygdala support an inverted-U shape curve of response by 

showing that deviating from an “optimal” dose may in fact result in lower or null effects (38, 58). 

We believe the complexity of the central OT signalling machinery (59) should be considered to 

interpret these findings. The OTR has been described to recruit different intracellular G protein 

(Gs or Gi) pathways, depending on ligand, receptor and G protein type distribution and abundance 

(50, 59). Gs and Gi activation typically result in opposite effects in terms of cellular function (60), 

meaning that in areas of high density of Gi proteins higher amounts of OT may in fact result on 

inhibition of neuronal activity or null effects (50, 59). This complexity might explain, for 

instance, why we did not observe changes in rCBF with the nebuliser in regions where the 
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standard nasal spray produced effects, at our predefined statistical thresholds for this analysis. 

Until a ligand allowing for direct quantification of in vivo penetration of OT in the brain after 

intranasal administration might be produced, a dose-response study using the nebuliser may allow 

us to gain further indirect insights about whether using the nebuliser may confer certain 

advantages regarding targeting the central OT system.  

While our findings are consistent with the idea that direct nose-to-brain pathways could 

explain some of the changes in rCBF induced by intranasal OT, our study cannot provide 

evidence regarding the precise mechanisms underlying these effects. We believe that most 

evidence to date concurs on the idea that OT, when administered intranasally, may diffuse from 

the olfactory and respiratory epithelia in the middle and upper posterior regions of the nasal 

cavity along ensheathed channels surrounding the olfactory and trigeminal nerve fibre pathways 

to the CSF and/or the central brain compartment (61). Research in rodents and monkeys has 

shown that molecules administered intranasally can be transported to the olfactory bulb within a 

time-frame of 45–90 min (62, 63), and possibly much faster (64-66). A recent comparison of 

intranasal and intravenous administration of a new OT receptor tracer in mice supported this 

hypothesis by showing uptake of the intranasally administered tracer to the olfactory bulb, while 

increases in this area after the intravenous administration of the tracer were almost negligible 

(67). The increases of the concentration of the tracer in the olfactory bulb following its intranasal 

administration could be observed as soon as 30 minutes post-dosing, which fits the time-frame of 

the effects we report in our study. While our findings cannot illuminate the precise pathway 

through which intranasal OT may reach the brain, the fact that we observe distinct patterns of 

changes in rCBF with two different intranasal methods suggests that the changes we see in the 

brain are unlikely to be explained by local effects of intranasal OT in the nasal cavity. Expression 

of the OT receptor has been reported in human taste buds (68) and in the rat olfactory epithelium 
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(69). Direct actions of OT on olfactory and trigeminal nerve bundles could parsimoniously 

explain the discrepancies between the changes observed after intranasal and intravenous 

administration of OT. If direct modulation of activity in these nerve bundles would account for 

all the changes we report for our intranasal administration methods, then one would expect that 

the changes observed in rCBF after intranasal administration of synthetic OT would be mostly 

restricted to the olfactory/trigeminal pathways and respective connected areas, which is not 

entirely supported by our data (for example, we have little evidence to believe that modulation of 

activity in olfactory or trigeminal nerves would result in changes in rCBF in the frontal gyrus). In 

fact, the effects we observed after synthetic OT map to areas where expression of receptors for 

OT (either the OTR or the AVPR1A) seem to be present, as per our current understanding of the 

distribution of these receptors in the human brain (70, 71). While we cannot exclude that some of 

the effects we observed after intranasal OT may relate to direct modulation of activity in nerves 

bundles, this mechanism is unlikely to fully account for all the effects we report herein.  

From a translational perspective, our findings emphasize the inadequacy of a one-fits-all 

approach in the administration of synthetic OT to target the central OT system in humans for the 

treatment of brain’s disorders. Our findings indicate that some specificity may be achieved 

depending on the route used to deliver OT. Given that enhacement of brain’s metabolism in areas 

such as the frontal gyrus, insula or occipital cortices may be restricted to the intranasal route, 

clinical applications aiming to target these circuits should thus prefer this route. An example 

could be, for instance, autism spectrum disorder, where the insula has been consistenly identified 

as a locus of hypoactivity (72). However, we should not completely discard the potential utility of 

the peripheral route - specially if the desired effect is to specifically decrease amygdala and 

anterior cingulate’s metabolic activity in a targeted way, with minimal effects on other brain 

areas. This may be the case, for instance, of mood and anxiety disorders , where heightened 
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amygdala/fear systems response has been consistently described (73, 74). Systems of controlled 

sustained drug release for the peripheral circulation (i.e. transdermal controlled release (75)) 

already in place may provide an excellent opportunity to explore the clinical value of this route 

during chronic administrations in patients. 

 Our study faces certain limitations that we would like to acknowledge. First, the amount 

of OT administered intravenously was not chosen to mimic exactly the plasmatic concentrations 

achieved after intranasal administration, which would require the intravenous administration of a 

dose about 5 times lower (2IU) (58). Instead, we adopted a proof-of-concept approach, aiming to 

achieve consistently higher plasmatic concentrations of OT during the full period of scanning, 

eliminating the hypothesis that negative findings could be ascribed to insufficient dosing. Our 

approach increases our confidence in our interpretation that the unique changes in rCBF observed 

following intranasal administration cannot be explained by concomitant increases in plasmatic 

OT concentrations. Future studies should include an intravenous comparator that achieves 

pharmacokinetic profiles that are similar to those achieved with the intranasal methods. Second, 

our findings cannot be readily extrapolated to women, given the known sexual dimorphism of the 

OT system in the brain and behavioural responses to OT in humans (76-78). Third, although we 

tested for the potential effects of synthetic OT on cardiac physiology as a confounder, we 

acknowledge that potential effects on other peripheral systems need also be considered in the 

future, e.g. the reproductive or gastrointestinal tracts. Future studies need to compare the 

intranasal and intravenous administration of OT with the parallel administration of a specific non-

brain penetrant OT receptor antagonist to clarify the potential contribution of OT’s signalling in 

the periphery to its effects on brain and behaviour. Fourth, we relied on a biomarker of brain 

physiology (rCBF) to probe the effects of different methods of administration of OT on brain 

function. This method exploits the well-established phenomenon of neuro-vascular coupling as a 
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means of obtaining an indirect but sensitive signature of regional neuronal activity (79, 80), but it 

is theoretically susceptible to potential confounding vascular effects (81). While we cannot 

exclude the presence of such effects, we do not believe they are an important confounder of our 

results for two reasons: first, if the effects we observed after synthetic oxytocin solely reflected 

drug effects on vasculature, then we should expect to see the same effects when administering 

OT intranasally and intravenously as both routes of administration substantially increase the 

concentration of the peptide in the systemic circulation to supraphysiologic levels - this is not 

what we found; second, vascular effects are likely to be reflected on changes in global brain 

perfusion, but our results did not show any significant effects of any treatment on global CBF – 

in fact, we conservatively included global perfusion values as a nuisance variable in all of our 

analyses, therefore accounting for unspecific global vascular effects on CBF. The idea that the 

reported effects of OT on rCBF do not reflect unspecific vascular effects on global perfusion is 

further supported by preclinical data showing that the modulation of rCBV by intranasal OT in 

rodents is accompanied by changes in hippocampal local field potential recordings (82). This 

finding further supports the neuronal origin of the changes in rCBV observed after synthetic OT 

administration. Finally, the univariate analyses we present in this paper should not be used to 

define the temporal dynamics of the effects of synthetic OT on rCBF (as has been previously 

explored using pattern recognition analyses)(18). Univariate analyses allow us to localise rCBF 

effects in contrast to pattern recognition analyses where each voxel makes a weighted 

contribution to classification.  

 In conclusion, we provide the first robust physiological evidence supporting the 

existence of direct nose-to-brain pathways in humans, while also demonstrating that some of the 

key effects of synthetic OT in the human brain, when delivered by standard nasal sprays, can be 

explained by concomitant increases in peripheral OT levels post-dosing. Our results emphasize 
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the inadequacy of a one-fits-all approach in the administration of synthetic OT to modulate brain 

function for the treatment of psychiatric or neurological conditions in humans, while highlighting 

the importance of optimizing the delivery of peptides to the brain through nose-to-brain 

pathways. 

 

MATERIALS AND METHODS 

Participants 

We recruited 17 healthy male adult volunteers (mean age 24.5, SD = 5, range 19-34 years). One 

participant did not complete one of the four visits and for this reason was excluded from all 

analyses. We screened participants for psychiatric conditions using the Symptom Checklist-90-

Revised (83) and the Beck Depression Inventory-II (84) questionnaires. Participants were not 

taking any prescribed drugs, did not have a history of drug abuse and tested negative on a urine 

panel screening test for recreational drugs, consumed <28 units of alcohol per week and <5 

cigarettes per day. We instructed participants to abstain from alcohol and heavy exercise for 24 

hours and from any beverage or food for 2 hours before scanning. Participants gave written 

informed consent. King’s College London Research Ethics Committee (PNM/13/14-163) 

approved the study. We determined sample size based on our previous validation study 

demonstrating that N=16 per group was sufficient to quantify standard nasal spray OT-induced 

changes in rCBF in a between-subjects design (18, 85). 

Study design 

We employed a double-blind, placebo-controlled, triple-dummy, crossover design. Participants 
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visited our centre for 4 experimental sessions spaced 8.90 days apart on average (SD = 5.65, 

range: 5-28 days). In each session, participants received treatment via all three administration 

routes, in one of two fixed sequences: either nebuliser/intravenous infusion/standard nasal spray, 

or standard nasal spray/intravenous infusion/nebuliser, according to the treatment administration 

scheme presented in Fig. 1. In 3 out of 4 sessions only one route of administration contained the 

active drug; in the fourth session, all routes delivered placebo or saline.  Participants were 

randomly allocated to a treatment order (i.e. a specific plan regarding which route delivered the 

active drug in each experimental session) that was determined using a Latin square design. 

Unbeknown to the participants, the first treatment administration method in each session always 

contained placebo (see Administration 1 in Fig. 1), while intranasal (spray or nebuliser) OT was 

only delivered with the third treatment administration. This protocol maintained double-blinding 

while avoiding the potential washing-out of intranasally deposited OT (as might be the case if OT 

had been administered at the first treatment administration point and placebo at the third 

administration point).  

Intranasal OT administration 

For the intranasal administrations, participants self-administered a nominal dose of 40 IU OT 

(Syntocinon; 40IU/ml; Novartis, Basel, Switzerland), one of the highest clinically applicable 

doses (86). We have shown that 40IU delivered with a standard nasal spray induce robust rCBF 

changes in the human brain in a between-subjects, single-blind design study (18). For the 

intranasal administration, we used specially manufactured placebo that contained the same 

excipients as Syntocinon except for oxytocin. 

Standard nasal spray administration. Participants self-administered 10 puffs, each containing 

0.1ml Syntocinon (4IU) or placebo, one puff every 30s, alternating between nostrils (hence 40IU 
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OT in total). The aerosol droplet size of three Syntocinon spray bottles was assessed by laser 

diffraction (Malvern Spraytec, Malvern Panalytical, Worcestershire, UK). The mass median 

diameter (MMD) of the aerosol plume was 37 ± 2.5 µm.  

PARI SINUS nebuliser. Participants self-administered 40IU OT (Syntocinon) or placebo, by 

operating the SINUS nebulizer for 3 minutes in each nostril (6 min in total), according to 

instructions. The correct application of the device was confirmed by determining gravimetrically 

the administered volume. Participants were instructed to breathe using only their mouth and to 

keep a constant breath rate with their soft palate closed, to minimize delivery to the lungs. The 

PARI SINUS (PARI GmbH, Starnberg, Germany) is designed to deliver aerosolised drugs to the 

sinus cavities by ventilating the sinuses via pressure fluctuations. The SINUS nebuliser produces 

an aerosol with 3 µm MMD which is superimposed with a 44 Hz pulsation frequency. Hence, 

droplet diameter is roughly one tenth of a nasal spray and its mass is only a thousandth. The 

efficacy of this system was first shown in a scintigraphy study by (87). Since the entrance of the 

sinuses is located near the olfactory region, an improved delivery to the olfactory region was 

expected compared to nasal sprays. Other studies (35) have shown up to 9.0% (±1.9%) of the 

total administered dose to be delivered to the olfactory region, 15.7 (±2.4%) to the upper nose.  

Intravenous OT administration 

For the intravenous administration, we delivered 10 IU OT (Syntocinon injection formulation, 

10IU/ml, Alliance, UK) or saline via slow infusion over 10 minutes (1IU/min). A 50-ml syringe 

was loaded with either 32 ml of 0.9% sodium chloride (placebo) or 30 ml of 0.9% sodium 

chloride with 2 ml of Syntocinon (10IU/ml). A Graseby pump was used to administer 16 ml of 

the compound (hence 10 IU of OT in total) over 10 minutes, at a rate of 96 ml/h. The ECG was 

monitored during the intravenous administration interval. We selected the intravenous dose and 
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rate of administration to assure high plasmatic concentrations of OT throughout the observation 

period while restricting cardiovascular effects to tolerable and safe limits. A rate of 1IU per 

minute is typically used in caesarean sections and is considered to have minimised side effects 

(88, 89).  

Procedure 

Each experimental session began with the treatment administration protocol that lasted about 22 

minutes in total (Fig. 1).  After drug administration, participants were guided to the MRI scanner, 

where eight pulsed continuous arterial spin labelling scans (each lasting approx. eight minutes) 

where acquired, spanning 15-104 minutes post-dosing, as detailed in Fig. 1. Participants were 

instructed to lie still and maintain their gaze on a centrally placed fixation cross during scanning. 

We assessed participants’ levels of alertness (anchors: alert-drowsy) and excitement (anchors: 

excited-calm) using visual analogue scales (0-100) at 3 different time-points during the scanning 

session (the first one immediately before the first scan – around 15 mins post-dosing, the second 

one immediately after the fourth scan – around 55 mins post-dosing and the last one immediately 

before the seventh scan – around 92 mins post-dosing) to evaluate subjective drug effects across 

time. An 8-minute resting state BOLD fMRI scan was obtained at about 60 min post-dosing (data 

not presented here). 

Blood sampling and plasmatic OT quantification 

We collected plasma samples at baseline and at five time-points post-dosing (as detailed in Fig. 

1) to measure changes in the concentration of OT. Plasmatic OT was assayed by 

radioimmunoassay (RIAgnosis, Munich, Germany) after extraction, currently the gold-standard 

technique for OT quantifications in peripheral fluids (90). Details of the protocol for sample 

processing and radioimmunoassay quantification of plasmatic OT can be found elsewhere (91). 
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MRI data acquisition  

We used a 3D pseudo-continuous Arterial Spin Labelling (3D-pCASL) sequence to measure 

changes in regional Cerebral Blood Flow (rCBF) over 15-120 min post-dosing. Labelling of 

arterial blood was achieved with a 1525ms train of Hanning shaped RF pulses in the presence of 

a net magnetic field gradient along the flow direction (the z-axis of the magnet). After a post-

labelling delay of 2025ms, a whole brain volume was read using a 3D inter-leaved “stack-of-

spirals” Fast Spin Echo readout (92), consisting of 8 interleaved spiral arms in the in-plane 

direction, with 512 points per spiral interleave. TE was 11.088 ms and TR was 5135 ms. 56 slice-

partitions of 3mm thickness were defined in the 3D readout. The in-plane FOV was 240×240 

mm. The spiral sampling of k-space was re-gridded to a rectangular matrix with an approximate 

in-plane resolution of 3.6mm. The sequence acquired 5 control-label pairs. Individual CBF maps 

were computed for each of the perfusion weighted difference images derived from every control-

label (C-L) pair, by scaling the difference images against a proton density image acquired at the 

end of the sequence, using identical readout parameters. This computation was done according to 

the formula suggested in the recent ASL consensus article (93). The sequence uses four 

background suppression pulses to minimise static tissue signal at the time of image 

acquisition. We performed eight of these 3D-pCASL sequence acquisitions, the acquisition time 

of each sequence was 8:20 min. A 3D high-spatial-resolution, Magnetisation Prepared Rapid 

Acquisition (3D MPRAGE) T1-weighted scan was acquired. Field of view was 270mm, 

TR/TE/TI = 7.328/3.024/400 ms. The final resolution of the T1-weighted image was 1.1 x 1.1 x 

1.2 mm. 

MRI data preprocessing 
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A multi-step approach was performed for the spatial normalization of the CBF maps computed 

for each C-L pair to the space of the Montreal Neurological Institute (MNI): (1) co-registration of 

the proton density image from each sequence to the participant’s T1-image after resetting the 

origin of both images to the anterior commissure. The transformation matrix of this co-

registration step was then applied to the CBF map from each C-L pair, to transform the CBF map 

to the space of the T1-image; (2) unified segmentation of the T1 image;  (3) elimination of extra-

cerebral signal from the CBF map, by multiplication of the “brain only” binary mask obtained in 

step [2], with each co-registered CBF map; (4) normalization of the subject’s T1 image and the 

skull-stripped CBF maps to the MNI152 space using the normalisation parameters obtained in 

step [2]. Finally, we spatially smoothed each normalized CBF map using an 8-mm Gaussian 

smoothing kernel. All of these steps were implemented using the ASAP (Automatic Software for 

ASL processing) toolbox (version 2.0) (94). The resulting smoothed CBF maps from each C-L 

pair were then averaged, using the fslmaths command implemented in the FMRIB Software 

Library (FSL) software applications (http://www.fmrib.ox.a.c.uk/fsl), to obtain a single averaged 

CBF map for each of the time-intervals depicted in Fig. 1.  

Physiological data acquisition and processing 

Heart rate was continuously monitored during the scanning period using MRI-compatible 

finger pulse oximetry while the participant rested in supine position, breathing spontaneously in 

the scanner. The data were recorded digitally as physiologic waveforms at a sampling rate of 50 

Hz. Heart beats were firstly automatically detected using an in-house script and then visually 

inspected and manually cleaned for misidentified beats.  Inter-beat interval values were then 

calculated. The resulting cleaned data were then transferred to Kubios HRV analysis software 

(MATLAB, version 2 beta, Kuopio, Finland) and a set of time domain (heart-rate (HR) and the 
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root mean square of the successive differences (RMSSD), frequency domain (low (LF) and high 

(HF) frequencies spectral powers and high/low frequency spectral power ratio (HF/LF)) and non-

linear (Approximate entropy (ApEn), the SD1 and SD2 lines from the Poincare Plot and the 

detrended fluctuation scaling exponents DFAα1 and DFAα2) analysis measures were calculated. 

A detailed description of the analysis methods used to calculate these measures have been 

described elsewhere (95, 96). We decided to examinate a wide-range of different heart variability 

measures because previous studies have diverged in the metrics where they found effects of OT 

on heart rate variability (95). For instance, there is currently debate whether time and frequency 

analysis measures can be sufficiently sensitive to capture important (nonlinear) changes in heart 

rate time series, including those changes associated with OT administration (96-98). In addition 

to the manual cleaning of the data, we also employed a threshold-based method of artefact 

correction, as provided by Kubios, where artefacts and ectopic beats were simply corrected by 

comparing every RR interval value against a local average interval. The threshold value used was 

0.35 seconds. Following current recommendations for heart rate data processing and analysis, if 

more than 5% of the beats required correction, then we decided to exclude these periods of 

observation (99). All of these metrics were calculated based on the data recorded for the whole 

duration of each scan (8 min).  In some rare cases where artefacts could not be corrected, we only 

included the data if at least 5 min of acquisition free of artefacts could be analysed. We based our 

decision on the fact that at least 5 min of observation are required for pulse plethysmography to 

reflect heart rate variability as assessed by electrocardiography (100). The percentages of the total 

amount of available data used for this analysis after data quality control can be found in 

Supplementary Table S4. 
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Statistical analyses 

Global CBF Measures  

We extracted mean global CBF values within an explicit binary mask for grey-matter (derived 

from a standard T1-based probabilistic map of grey matter distribution by thresholding all voxels 

with a probability >.20) using the fslmeants command implemented in the FSL software suite. 

We tested for the main effects of treatment and time-interval and for the interaction between both 

factors on global CBF signal in a repeated measures analysis of variance Treatment and Time as 

factors, implemented in SPSS 24 (http:// www-01.ibm.com/software/uk/analytics/spss/), using 

the Greenhouse-Geisser correction against violations of sphericity.  

 

Subjective ratings 

For the two subjective ratings of alertness and excitement collected at the three time points post-

dosing, we initially tested for the main effects of treatment and time interval and for the 

interaction between both factors, as previously described for global CBF.  Second, we 

investigated the association between changes in global CBF signal and self-ratings of alertness 

and excitement over time, using within-group pooled correlation coefficients. For equal variances 

of the correlated variables in the four subgroups, pooled within-group correlation coefficients 

represent a weighted mean of the within-group correlation coefficients, weighted by the number 

of observations in each subgroup (101). They correspond to the result of statistically eliminating 

subgroup differences from the total group correlation coefficient. Since we only collected ratings 

at three time points, for this analysis we selected the global values of the scans that were closer in 

time to the moment of the ratings acquisition. We firstly inspected the equality of the covariance 

matrixes for each rating scale across the four treatment groups to decide whether to pool the four 
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groups or not, using the mconvert command at SPSS. We then calculated the association between 

each rating scale and global CBF for each participant and averaged the covariance matrices to 

estimate the pooled within-group Pearson correlation coefficients.  Results are reported at a level 

of significance α = 0.05. 

 

Whole-Brain Univariate Analyses 

We firstly implemented an analysis of covariance design, controlling for global effects on CBF, 

using a flexible factorial model in SPM12 software 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) where we specified the factors Subjects, 

Treatment, and Time interval. We used an F test to investigate the main effect of treatment, i.e. 

identify brain regions where any treatment induced persistent changes in rCBF (regardless of 

direction) across time and the main effect of time interval, i.e. identify brain regions where any 

time-interval induced changes in rCBF (regardless of direction), despite treatment. We also used 

an F test to investigate the interaction of Treatment × Time-interval i.e. identify for brain regions 

showing specific treatment-induced changes in rCBF as a function of time interval, regardless of 

direction.  

Our study is novel in multiple ways: it is the first study to investigate the pharmacodynamics 

effects of synthetic oxytocin on resting brain physiology over an extended period of time when 

administered with any of the three methods of administration we used in a double-blind placebo-

controlled crossover design. It is also the first in man study regarding the effects of OT 

administered intravenously or with a nebuliser on rCBF. Since our study maps uncharted 

territory, we followed up the flexible factorial model with an exhaustive series of paired T-tests at 
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each time interval to investigate the direction of potential OT-induced changes in rCBF 

specifically for each treatment route (compared to placebo).  

We conducted whole-brain cluster-level inference for all analyses, reporting clusters significant 

at α = 0.05 using familywise error (FWE) correction and a cluster-forming threshold of P = 0.005 

(uncorrected).  Our statistical thresholds were determined a priori based on our own previous 

work investigating the effects of intranasal spray OT on rCBF in humans (18) and are standardly 

applied in pharmacological ASL studies measuring rCBF (102-107). For the paired T-tests, in 

recognition of the increased risk of false positives given the large number of paired t-tests (3 x 8 

= 24), we mark clusters that do not survive correction for multiple testing following adjustment 

of the P value using conservative Bonferroni correction for the 24 paired-T tests performed with 

an asterisk (*) (Padjusted=0.05/24=0.002) (see Tables 2-4). Given the well-known decrease in 

global CBF across time (and in the absence of a treatment x time interval interaction on global 

CBF values – see Results) (18), we included global CBF values as a nuisance covariate in our 

general linear model to enhance sensitivity to detect OT-induced changes in regional 

CBF/neuronal activation. 

 

Pharmacokinetic analysis 

From the plasmatic concentrations of OT at several time-points after dosing we calculated the 

area under the curve (AUC) using the trapezoidal rule for each subject and session. AUC 

provides a single metric that reflects variations in plasma levels of OT concentration following 

OT/placebo administration for each session and each participant. We also determined the 

absolute bioavailability of OT in systemic circulation for each of the intranasal methods of 

administration, calculated as the dose-corrected AUC of each intranasal administration divided 

by the dose-corrected AUC of the intravenous administration. Mean AUCs were compared 
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between the 3 methods of administration with a repeated measures one-way analysis of variance, 

using the Greenhouse-Geisser correction against violations of sphericity. Post-hoc comparisons 

between methods were implemented using Tukey’s correction for multiple comparisons. Mean 

absolute bioavailabilities were compared between the standard nasal spray and the PARI SINUS 

nebulizer using a two-tailed paired T-test. 

 

Association between OT-induced changes in rCBF and plasma OT concentration  

To investigate if concomitant increases in peripheral OT were related to treatment-induced 

changes in rCBF, we extracted data from each significant rCBF cluster (adjusting for each 

treatment comparison contrast) in the paired sample T-tests and calculated Spearman correlation 

coefficients between these contrasts estimates and the AUCs reflecting individual differences in 

treatment-induced OT plasma concentrations for the corresponding method of administration. In 

this specific case, we employed the Spearman correlation coefficient because the number of 

observations used to estimate the correlation is small, which does not allow for an accurate 

verification of all implicit parametric analysis assumptions. 

 

OT effects on cardiac physiology 

Previous human studies have shown the ability of OT to affect cardiac physiology. Specifically, 

these studies have suggested that intranasal OT increases HRV at rest (108). HRV is an important 

index for the heart-brain interaction (109). Changes in HRV are accompanied by changes in the 

activity of several areas of the brain, including the amygdala (one of the areas of the brain most 

commonly implicated in OT effects on brain function and behaviour) (110, 111). Thus, OT-

induced changes in HRV, if existent, could account for, at least, some of the OT-induced changes 

in rCBF we identify herein. We compared mean HR, RMSSD, HF, LF, HF/LF ratio, ApEN, SD1, 
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SD2, DFAα1 and DFAα2  between methods of administration to examine the extent to which OT 

administration induced changes in HR or heart rate variability, by using a repeated measures two-

way analysis of variance. We used treatment and time interval as factors. We determined main 

effects of time interval and treatment, as well as their interaction, and used the Greenhouse-

Geisser correction against violations of sphericity. We contained the family-wise error (FWE) 

rate at α=0.05 using the Benjamini-Hochberg procedure, which is a more powerful version of the 

Bonferroni adjustment that allows non-independence between statistical tests (112). Original p 

values (two-tailed) are reported alongside with values obtained after accounting for FWE. 

 

All the analyses were conducted with the researcher unblinded regarding treatment condition. 

Since we used a priori and commonly accepted statistical thresholds and report all observed 

results at these thresholds – the risk of bias in our analyses is therefore minimal, if not null. 

 

LIST OF SUPPLEMENTARY MATERIALS: 

Fig. S1 – Global CBF measures across time.  

Fig. S2 – Subjective ratings of alertness (A) and excitement (B) across time.  

Fig. S3 – Correlation between CBF measures and subjective ratings of alterness and excitement 

across time-points. 

Fig. S4 – Spatial high-resolution maps of the human whole- brain distribution of the OTR (A) 

and V1aR (B) mRNA(113). 

Table S1 - Effects of treatment, time-interval and treatment x time-interval on global CBF and 
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subjective ratings. 

Table S2 – Pharmacokinetics analysis.  

Table S3 – Spearman correlations between drug-induced changes in rCBF and variations of the 

concentration of OT in the plasma post-dosing (AUC) for all clusters identified as significant in 

the comparisons drug vs placebo for the three treatment methods of administration 

Table S4 – Percentage of observations satisfying our quality control criteria for the pulse 

plethysmography analysis. 

Table S5 – OT effects on heart rate or heart rate variability during the period of observation;  
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FIGURE LEGENDS 

 

 

Fig. 1 – Study design, drug administration and blood sampling procedures (NB – Nebulizer; IV – Intravenous; PLC – Placebo; pK

– Pharmacokinetics).  

Upper panel – Drug allocation scheme: In each session, participants received treatment via all three administration routes, in one o

two fixed sequences: either nebuliser/intravenous infusion/standard nasal spray, or standard nasal spray/intravenous infusion/nebuliser
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In 3 out of 4 sessions only one route of administration contained the active drug; in the fourth session, all routes delivered placebo or 

saline. Unbeknown to the participants, the first treatment administration method in each session always contained placebo, while 

intranasal (spray or nebuliser) OT was only delivered with the third treatment administration. The second administration was an 

intravenous nfusion of either saline or oxytocin. 

Lower panel - Study protocol: After drug administration, participants were guided to the MRI scanner, where eight pulsed continuous 

arterial spin labelling scans (each lasting approx. eight minutes) where acquired, spanning 15-104 minutes after last drug 

administration offset. We assessed participants’ levels of alertness and excitement  using visual analogue scales at 3 different time-

points during the scanning session to evaluate subjective drug effects across time. We collected plasma samples at baseline and at five 

time-points post-dosing to measure changes in the concentration of OT and perform pharmacokinetics analysis.
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Fig. 2 – Whole-brain univariate analysis: treatment, time-interval and treatment x time-

interval effects. We firstly implemented an analysis of covariance design, controlling for global

effects on CBF, using a flexible factorial model in SPM12 where we specified the factors

Subjects, Treatment, and Time interval. We present the results of an F test to investigate the main

effects of treatment, i.e. identify brain regions where any treatment induced persistent changes in

rCBF (regardless of direction) across time, and time-interval, i.e. identify brain regions where

time induced persistent changes in rCBF (regardless of direction) across treatments. We also

present the results of an F test to investigate the interaction of Treatment × Time-interval i.e.

identify brain regions showing specific treatment-induced changes in rCBF as a function of time

interval, regardless of direction. We conducted cluster-level inference, reporting clusters
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significant at p<0.05 FWE-corrected (cluster-forming threshold: p<0.005, uncorrected). Images 

are shown as F-statistics in radiological convention. 
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Fig. 3 – Detailed whole-brain univariate characterization of the changes in rCBF associated with each method o

administration. For each time-point, we compared CBF maps between treatment and placebo using Paired T-contrasts, accounting fo

global CBF as a nuisance variable. We conducted cluster-level inference, reporting clusters significant at p<0.05 FWE-corrected

(cluster-forming threshold: p<0.005, uncorrected). Images are shown as T-statistics in radiological convention.  Blue and red indicate

decreases and increases in rCBF, respectively
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Fig. 4 – Intravenous and Spray OT produced decreases in rCBF in areas overlapping

anatomically at two coincident time-points. (A) 24-32 mins post-dosing; (B) 87-95 mins post

dosing. In yellow we present the voxels where OT intravenous administration decreased rCBF at

these time-points, while blue refers to the voxels where OT administered with a spray decreased

rCBF at the same time-points. We conducted cluster-level inference, reporting clusters significant

at p<0.05 FWE-corrected (cluster-forming threshold: p<0.005, uncorrected). Images are shown as

binary clusters in radiological convention.  
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Fig. 5 – Drug-induced changes in rCBF associated with systemic OT are predicted by the

changes in the concentration of OT in the plasma post-dosing. To investigate if concomitant

increases in peripheral OT were related to treatment-induced changes in rCBF, we extracted data

from each significant rCBF cluster in the paired sample T-tests and calculated Spearman

correlation coefficients between these contrasts estimates and the areas under the curve (AUCs)

reflecting individual differences in treatment-induced OT plasma concentrations for the

corresponding method of administration. We present the results for: (A) Decreases in rCBF after

spray OT (24-32 mins post-dosing); (B) Decreases in rCBF after spray OT (87-95 mins post

dosing); (C) Decreases in rCBF after intravenous OT (24-32 mins post-dosing); (D) Decreases in

47

he 

ant 

ata 

an 

s) 

the 

ter 

-

 in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/563056doi: bioRxiv preprint 

https://doi.org/10.1101/563056


 48

rCBF after intravenous OT (87-95 mins post-dosing); r corresponds to the Spearman coefficient

of correlation. Statistical significance was set to p<0.05. 

 

Fig. 6 – Spray and nebulized OT result in similar pharmacokinetics profiles in the plasma.  

From the plasmatic concentrations of OT at several time-points after dosing, we calculated the

area under the curve (AUC) using the trapezoidal rule for each subject and session. We also

determined the absolute bioavailability of OT in systemic circulation for each of the intranasal

methods of administration, calculated as the dose-corrected AUC of each intranasal

administration divided by the dose-corrected AUC of the intravenous administration. Mean

AUCs were compared between the 3 methods of administration with a repeated measures one-

way analysis of variance, using the Greenhouse-Geisser correction against violations of

sphericity. Post-hoc comparisons between methods were implemented using Tukey’s correction
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for multiple comparisons. Mean absolute bioavailabilities were compared between the standard 

nasal spray and the PARI SINUS nebulizer using a two-tailed paired T-test. (A) Variations of the 

concentrations of OT in plasma across time; (B) Comparison of AUCs between treatments; (C) 

Comparison of absolute plasmatic bioavailability between spray and nebulizer. Data are 

presented as mean ± 1SEM. Statistical significance was set to p<0.05. 

 

TABLES 

Table 1 - Whole-brain univariate flexible factorial analysis. Clusters showing a significant 

main effect of treatment, time or treatment x time-interval interaction in rCBF in the 15-104 

minutes post-administration period, as identified in F contrasts (not capturing the direction of the 

change in rCBF). Global CBF was used as a nuisance variable. We conducted cluster-level 

inference, reporting clusters significant at p<0.05 FWE-corrected (cluster-forming threshold: 

p<0.005, uncorrected). 

 

Cluster Description Hemisphere K PFWE Peak Coordinates Description 
x y z 

MAIN EFFECT: METHOD 

No cluster survived correction 

MAIN EFFECT: TIME INTERVAL 

Cluster 1 Bilateral 295660 <0.001 38 -84 -8 Right Inferior 

Occipital gyrus 30 -90 -2 

28 -82 14 Right Superior 

Occipital gyrus 

Cluster 2 Left 2127 <0.001 -14 -18 -4 Left ventral 

diencephalon 

-30 -2 -6 Left Putamen 

-18 -6 26 Left Caudate 

Cluster 3 Left 2271 <0.001 -48 -52 40 Left Angular 
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gyrus 

-56 -34 18 Left Planum 

temporale -42 -32 12 

Cluster 4 Left 854 <0.001 -46 -70 -42 Left Cerebellum 

-18 -70 -36 

-30 -64 -38 

Cluster 5 Bilateral 2389 <0.001 -12 28 50 Left Superior 

Frontal gyrus 

-40 16 52 Left Middle 

Frontal gyrus 

-42 24 50  

Cluster 6 Right 435 0.022 48 4 42 Right Precentral 

gyrus 50 -2 42 

Cluster 7 Right 508 0.010 36 52 -14 Right lateral 

orbital gyrus 44 44 -14 

46 44 -4 Right Inferior 

Frontal Gyrus 

(triangular part) 

INTERACTION: METHOD X TIME INTERVAL 

CLUSTER 1: Superior And Middle Frontal Gyrus, 

Anterior Cingulate 

Left 341 0.040 -18 46 18 Left Superior 

Frontal gyrus -26 56 8 

-14 56 4 

CLUSTER 2: Inferior, Superior And Middle 

Occipital Gyrus, Cerebellum, Lingual Gyrus, 

Fusiform Gyrus, Calcarine Cortex, Cuneus, Inferior 

Temporal Gyrus 

Right 905 <0.001 38 -78 -12 Right Inferior 

Occipital gyrus 

42 -74 -26 Right 

Cerebellum 

16 -86 -2 Right Calcarine 

Cortex 

CLUSTER 3:  Putamen, Insula, Amygdala, 

Parahippocampal Gyrus, Caudate, Olfactory Region, 

Rectus Gyrus And Medial Orbitofrontal Cortex 

Left 407 0.016 -24 12 -14 Left Putamen 

-20 26 2 Left Caudate 

-20 24 -8 
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Table 2 – Paired T-contrasts comparing standard spray OT to placebo/saline. We compared 

CBF maps following standard spray OT and placebo administration using paired T-contrasts at 

each time-interval (to capture the direction of potential rCBF changes), controlling for global 

CBF as a nuisance variable. We conducted cluster-level inference, reporting clusters significant 

at p<0.05 FWE-corrected (cluster-forming threshold: p<0.005, uncorrected). Clusters that do not 

survive correction for multiple testing following adjustment of the P value using Bonferroni 

correction for the 24 paired-T tests performed are denoted by an asterisk (*) 

(Padjusted=0.05/24=0.002). 

 

Cluster Description Hemisphere K PFWE Peak Coordinates Description 

x y z 

SPRAY>PLACEBO (15-23 MINS) 

Cluster 1: Superior/Middle 

Frontal Gyrus, Supplementary 

Motor Area, Precentral Gyrus 

Left 1500 <0.001 -

24 

24 64 Left Superior/Middle Frontal 

Gyrus 

-

26 

28 46 

-

24 

16 68 

SPRAY<PLACEBO (24-32 MINS) 

Cluster 2: Parahipocampal Gyrus, 

Temporal Pole, Amygdala, Insula, 

Hippocampus 

Left 1295 <0.001 -

34 

8 -20 Left temporal pole 

-

16 

-6 -34 Left enthorinal area 

-

18 

-6 -26 Left enthorinal area 

SPRAY>PLACEBO (35-43 MINS) 

Cluster 3: Middle And Inferior 

Frontal Gyrus, Precentral Gyrus 

Left 999 <0.001 -

42 

40 34 Left middle frontal gyrus 

- 20 38 
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54 

-

42 

46 28 

SPRAY>PLACEBO (87-95 MINS) 

Cluster 4: Superior And Middle 

Temporal Gyrus, Insula, 

Postcentral Gyrus 

Left 1848 <0.001 -

56 

-46 2 Left middle/superior temporal 

gyrus 

-

66 

-20 30 Left postcentral/supramarginal 

gyrus 

-

60 

-46 -8 Left middle temporal gyrus 

Cluster 5: Superior And Inferior 

Parietal Lobe, Postcentral And 

Precentral Gyrus, Precuneus 

Left 1315 <0.001 -

18 

-54 52 Left superior parietal lobe 

-

36 

-44 52 Left superior parietal 

lobe/supramarginal gyrus 

-

24 

-20 66 Left Precentral Gyrus 

SPRAY<PLACEBO (87-95 MINS) 

Cluster 6: Anterior Cingulate, 

Right Superior And Medial Frontal 

Gyrus 

Right 1350 <0.001 24 46 12 Right Middle Frontal gyrus 

Right 16 46 12 Right Superior Frontal gyrus 

Bilateral -2 36 28 Anterior cingulate gyrus 

Cluster 7: Brainstem And 

Cerebellum* 

Bilateral 591 0.01 6 -40 -56 Brainstem 

Right 14 -48 -56 Right cerebellum 

Bilateral 6 -38 -32 Brainstem 

 

Table 3 - Paired T-contrasts comparing intravenous OT administration to placebo/saline. 

We compared CBF maps following intravenously administered OT and placebo/saline using 

paired T-contrasts at each time-interval (to capture the direction of potential rCBF changes), 

controlling for global CBF as a nuisance variable. We conducted cluster-level inference, 

reporting clusters significant at p<0.05 FWE-corrected (cluster-forming threshold: p<0.005, 

uncorrected). Clusters that do not survive correction for multiple testing following adjustment of 
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the P value using Bonferroni correction for the 24 paired-T tests performed are denoted by an 

asterisk (*) (Padjusted=0.05/24=0.002). 

 

 

Cluster Description Hemisphere K PFWE 

Peak Coordinates 

Description 
x y z 

INTRAVENOUS<PLACEBO (24-32 MINS) 

Cluster 1: Parahippocampal 

Gyrus, Pallidum, Amygdala, 

Insula 

Left 1159 <0.001 -12 4 -2 Left Pallidum 

-16 2 -20 Left enthorinal 

area/amygdala 

-38 2 -10 Left anterior insula 

INTRAVENOUS<PLACEBO (87-95 MINS) 

Cluster 2: Anterior Cingulate, 

Superior Frontal Gyrus, 

Orbitofrontal Cortex 

Bilateral 1179 <0.001 6 42 16 Right Anterior Cingulate 

14 62 12 Right Superior Frontal 

Gyrus 

10 56 -6 Right Superior Frontal 

Gyrus 

 

Table 4 - Paired T-contrasts comparing OT administered with the nebuliser to 

placebo/saline.  

We compared CBF maps following OT administered with the nebuliser to placebo/saline using 

paired T-contrasts at each time-interval (to capture the direction of potential rCBF changes), 

controlling for global CBF as a nuisance variable. We conducted cluster-level inference, 

reporting clusters significant at p<0.05 FWE-corrected (cluster-forming threshold: p<0.005, 

uncorrected). Clusters that do not survive correction for multiple testing following adjustment of 

the P value using Bonferroni correction for the 24 paired-T tests performed are denoted by an 

asterisk (*) (Padjusted=0.05/24=0.002). 
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Cluster 

Description 
Hemisphere K PFWE 

Peak Coordinates 
Description 

x y z 

NEBULIZER<PLACEBO (15-23 MINS) 

Cluster 1: 

Caudate, Putamen, 

Pallidum* 

Left 434 0.037 -18 0 20 Left caudate 

    -12 8 8 

    -6 2 16 

NEBULIZER>PLACEBO (24-32 MINS) 

Cluster 2: 

Superior, Middle 

And Inferior 

Occipital Gyrus, 

Calcarine Sulcus, 

Cuneus 

Bilateral 1154 <0.001 52 -74 -8 Right inferior 

occipital gyrus 38 -92 -2 

40 -88 -14 

Cluster 3: 

Cerebellum* 

Right 457 0.033 26 -72 -28 Right cerebellum 

 12 -82 -28 

 4 -86 -38 

NEBULIZER>PLACEBO (75-83 MINS) 

Cluster 4: 

Postcentral Gyrus, 

Superior, Middle 

And Inferior 

Occipital Gyrus, 

Superior Parietal 

Gyrus, Inferior 

And Middle 

Temporal Gyrus, 

Precuneus, 

Calcarine Sulcus, 

Cuneus 

Right 2546 <0.001 56 -66 -16 Right inferior 

temporal gyrus 

28 -54 72 Right Superior 

Parietal Lobule 

48 -78 -16 Right inferior 

occipital gyrus 

NEBULIZER<PLACEBO (75-83 MINS) 
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Cluster 5: 

Caudate, Putamen, 

Pallidum, 

Thalamus, 

Amygdala, 

Hippocampus, 

Olfactory Region, 

Insula 

Left 1229 <0.001 -14 0 18 Left caudate 

-12 -14 -10 Left ventral 

diencephalon 

-6 -6 4 Left thalamus 
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