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Abstract 

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) generates 3D datasets optimally 

suited for segmentation of cell ultrastructure and automated connectome tracing but is limited to small 

fields of view and is therefore incompatible with the new generation of ultrafast multibeam SEMs. In 

contrast, section-based techniques are multibeam-compatible but are limited in z-resolution making 

automatic segmentation of cellular ultrastructure difficult. Here we demonstrate a novel 3D electron 

microscopy technique, Gas Cluster Ion Beam SEM (GCIB-SEM), in which top-down, wide-area ion milling 

is performed on a series of thick sections, acquiring < 10 nm isotropic datasets of each which are then 

stitched together to span the full sectioned volume. Based on our results, incorporating GCIB-SEM into 

existing single beam and multibeam SEM workflows should be straightforward and should dramatically 

increase reliability while simultaneously improving z-resolution by a factor of 3 or more. 

Body 

A wide range of biological research depends on visualizing the 3D ultrastructure of tissues with 

~10 nm isotropic voxels. Although a variety of electron microscopic techniques can achieve this, none 

are well suited to image tissue volumes in the 1 mm3 range and above. Such large-volume ultrastructural 

imaging would be useful in the study of a variety of tissue systems, and it could truly revolutionize 

neuroscience allowing researchers to routinely image whole invertebrate nervous systems and 

substantial regions of small vertebrate brains. Perhaps most exciting is the prospect of directly testing 

long-standing theories which suggest learning and memory are encoded in changes to the structural 

connectome1-6, and which predict that simple memories might, in principle, be decoded from a map of 

connectivity and synaptic ultrastructure alone. This goal has been a key driver of innovation in the field7, 

but so far it has remained out of reach because of the requirement of automatically tracing volumes 

spanning many cubic millimeters. Diamond knife section-based techniques, i.e. ssTEM8, ATUM-SEM9, 

and S3EM10, theoretically have the imaging throughput needed because they can take advantage of fast, 

wide-area imaging technologies such as multibeam SEMs, especially the recently introduced 91 beam 

MultiSEM11, but they face the obstacle of how to consistently cut and collect tens of thousands of 

artifact-free sections thinly enough to provide the z-resolution needed for reliable automated tracing. 

Blockface techniques like SBEM12 and FIB-SEM13 already have the requisite z-resolution for automated 

tracing14, but so far they seem incompatible with high-throughput MultiSEM imaging. Here we 

demonstrate a new atomic cluster milling and imaging technique, Gas Cluster Ion Beam Scanning 

Electron Microscopy (GCIB-SEM), which represents a hybrid of FIB-SEM and diamond knife section-based 

techniques. In GCIB-SEM, fewer, much thicker sections are collected to span a given volume, then these 

thick sections are themselves ion milled in < 10 nm steps and volume imaged. This greatly improves 
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sectioning reliability while simultaneously improving z-resolution and maintaining compatibility with 

MultiSEM imaging.   

 In FIB-SEM a tightly focused (~1 µm) beam of high-energy (30 kV) gallium ions is directed at an 

almost parallel angle (< 1o) to the surface of a tissue block, ablating material while avoiding deeper 

damage. Repeated FIB/SEM cycles produce a 3D stack, but milling artifacts accumulate in the direction 

of the FIB beam due to the shallow milling angle used, and these limit the area which can be imaged13. 

We reasoned that replacing FIB with a more ‘top-down’ approach might overcome this, but the energy 

of the ions would have to be lowered considerably. We therefore decided to try GCIB milling, a low-

energy surface polishing method used in semiconductor fabrication and mass spectroscopy15. In GCIB, 

clusters of argon atoms are ionized and accelerated while a magnetic field selects clusters containing a 

particular number of atoms. In this way the average energy per atom can be tuned to just a few electron 

volts. Molecular dynamics simulations16 show that such clusters ‘splat’ against the surface, scattering 

atoms at glancing angles thereby removing asperities.  

Our prototype system consists of a GCIB gun (GCIB-10s from Ionoptika) mounted to a single 

beam SEM (Ultra SEM from Zeiss) (Supplementary Fig. 1). We first tested milling a variety of ultrathin 

tissue sections, exploring a range of angles, cluster sizes and energies, and embedding resins. We SEM 

imaged milled surfaces with 1.2 kV landing energy (chosen to provide adequate z-resolution) using 

energy selective backscatter (ESB) and in-lens secondary electron (InLens-SE) detectors. ESB (500 V 

filtering, see Methods) produced high quality images under virtually all milling conditions, but InLens-SE 

showed rough surfaces in some. InLens-SE detection is much more sensitive to surface topography and 

charging than ESB detection but approximates MultiSEM imaging11. Epon samples showed rough InLens 

images under all but the shallowest milling angles. Durcupan and Sprurr’s samples gave high-quality 

InLens-SE images at glancing angles up to 30o (Supplementary Fig. 2).   

Sections thicker than 100 nm charged during imaging, and GCIB milling did not correct this 

(unlike FIB-SEM). Charging lessened with extended imaging and we reasoned that this was due to the 

slow conversion of the polymer embedding into a more conductive amorphous carbon17. We 

subsequently demonstrated that such electron irradiation could be used to make sections at least 10 µm 

thick sufficiently conductive to allow quality InLens-SE imaging (Supplementary Fig. 3,4). We found that 

a dose of ~0.5x1027 eV/cm3 was needed to completely eliminate charging. GCIB milling of irradiated 

sections remained sufficiently smooth to produce 3D volume images but the sputter removal rate of 

irradiated regions dropped by up to a factor of six (Supplementary Fig. 5). Our current ’optimized’ 

protocol recommends irradiating to a dose of 0.5x1027 eV/cm3, then milling with 10 kV Ar2000 clusters 

at a glancing angle of 30o while the sample is rotating. Fig. 1a outlines this process.  

To test, we sectioned a Durcupan-embedded Drosophila brain and collected three sequential 1 

µm sections onto gold-coated silicon. We performed ~250 GCIB/SEM cycles (using InLens-SE detection) 

completely milling through all three sections (6x6x4 nm voxels). Fig. 1b shows images of one section at 

200 nm intervals. Fig. 1c shows a Z-reslice through the image stacks of all three sections showing an 

unevenness at the bottoms of each section, the result of milling rate variance (~10%). We choose to 

collect on gold-coated silicon because the InLens-SE and ESB signals for gold are beyond the maximum 

signals produced by heavy-metal stain. Remarkably this 10% milling variance is sufficiently small and 

sufficiently spatially uniform that these variances could be corrected by software. We wrote algorithms 

to find and ‘flatten’ this unevenness (see Methods). Once flattened (Fig. 1d), we stitched the sections 
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into a single volume (Fig. 1e). Membranes and synapses are clear and resemble those we typically see 

using FIB-SEM. A close inspection (Supplementary Video 1) shows some slight artifacts relative to FIB-

SEM, particularly a light texture of milling streaks is visible in the Z-reslice.  

This sample was embedded in Durcupan resin which appears to be insufficiently resilient to be 

sectioned this thick (diamond cut surface showed some damage), so we have now switched to Spurr’s 

embedding which can be room-temperature sectioned with high quality surfaces at up to 1 µm, and can 

be hot knife sectioned at up to 25 µm. Fig. 2a shows a Z-reslice of a GCIB-SEM volume (using InLens-SE 

detection) covering three sequential 500 nm thick sections of Spurr’s-embedded mouse cortex (8x8x6 

nm voxels). Ultrastructural features like post synaptic densities and vesicles are clearly defined. Fig. 2b 

shows the simultaneously-acquired ESB volume which looks almost identical under these milling 

conditions. Cut surfaces were smooth and were easily flattened and stitched with an estimated loss 

between sections of ~30 nm (see Methods), and visual tracing of all neuronal processes appeared 

straightforward (Fig. 2c, Supplementary Video 2). These datasets demonstrate that wide-area GCIB 

milling and InLens-SE detection can be performed over multiple sequential thick sections and can 

produce datasets approaching the quality of FIB-SEM.  

To address the applicability of GCIB-SEM to mammalian connectomics we sectioned Spurr’s-

embedded mouse cortex at 1 µm and collected ten sequential sections, then performed ~170 GCIB/SEM 

cycles (8x8x6 nm voxels) completely milling through all ten sections. We computationally flattened each 

section and stitched them together into the single volume shown in Fig. 2d, Supplementary Fig. 6-11, 

and Supplementary Video 3. The cut surfaces of these Spurr’s-embedded sections were of high quality 

and we estimated the loss between sections at ~30 nm. A test segmentation of the ESB stack was 

performed using a flood-filling neural network14 that had previously been trained on a quite different 

SBEM dataset and then ‘bootstrap-trained’ on this dataset (see Methods). Fig. 2e shows an example 

spiny dendrite spanning the ten section GCIB-SEM volume along with synapsing axons. Fig. 2f shows 

views through a single spiny synapse.  

Cutting at 1 µm appears to be approaching the limit for room temperature sectioning of Spurr’s 

since we saw significant surface damage when we attempted sectioning at 2 µm. Cutting much thinner 

(e.g. 150 nm) resulted in less loss and higher quality surfaces (see Methods), which may be preferred 

despite the fact that it results in more stitch boundaries. An alternative is hot knife ultrathick sectioning 

which uses a heated diamond knife and oil lubrication to minimize stresses on the tissue18. 

To test this, we ‘hot knife’ sectioned Spurr’s-embedded mouse cortex at 10 µm thickness and 

flat embedded two sequential sections against gold-coated silicon. The resulting GCIB-SEM volume 

(10x10x12 nm voxels) spanning the two hot knife sections is shown in Fig. 3a and a test segmentation 

based on the InLens-SE stack using a flood-filling network is shown in Fig. 3b. Supplementary Figs. 12-16 

show Z-reslice views of the GCIB-SEM stack spanning the two 10 µm thick sections before and after 

flattening and stitching as well as additional segmentation examples. The cut surfaces were of high 

quality but the flat embedding procedure resulted in some contamination. We estimated the loss 

between sections at ~30 nm (see Methods).  Supplementary Video 4 shows a side-by-side comparison 

of the ESB vs. InLens-SE volumes (also Fig. 2c,d).  

We noticed that GCIB milling produces a slight drop in the InLens-SE membrane contrast which 

progresses over the first ~500 nm of milling. We speculate this is the result of a few nm thick layer of 

disrupted surface material persisting in equilibrium with milling which changes SE yield. Initial electron 
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irradiation also produces a slight drop in InLens-SE contrast. These effects are quantified in 

Supplementary Fig. 17. We also verified that GCIB-SEM imaging was generally compatible with ATUM 

tape collection9 by imaging two 1 µm thick sections collected on copper coated tape (Supplementary 

Fig. 18). 

Finally, we verified that the InLens-SE detection used in our prototype was an adequate proxy 

for MultiSEM imaging. We GCIB-SEM milled and imaged the first 250 nm of a 500 nm section of mouse 

cortex then shipped the half-milled section to Zeiss for imaging on their MultiSEM system. MultiSEM 

images of the GCIB-milled surface (acquired with similar electron dose) were essentially identical to our 

InLens-SE images of the same surface (Supplementary Figs. 19,20).  

We see Serial Thick-Section GCIB-SEM as a potential route to ‘industrial-scale’ 3D EM and 

connectomics as it addresses key limitations of existing techniques: GCIB-SEM resolution is not limited 

by section thickness, and imaging dose is not limited by interactions with sectioning19, so resolution and 

dose can be adjusted as needed to achieve fully automated segmentation. GCIB-SEM utilizes thick 

sectioning which should be reliable even over arbitrarily large volumes. GCIB is dramatically less 

sensitive to beam position and focus than FIB, allowing lossless restarts. The gas cluster source, unlike 

FIB, does not require periodic reheating and is comparatively simple and reliable. GCIB-milling is wide-

area and fast (up to 450 µm3/s, 1 mm3/month, see Methods), and, if necessary, can be performed across 

multiple GCIBs in parallel with imaging when sections are spread across multiple wafers. This should 

allow close to 100% utilization of MultiSEM imaging time and should allow projected20 MultiSEM 

improvements to be taken full advantage of. We envision a day when acquiring automatically 

segmented EM volumes of large tissue samples (e.g. whole invertebrate and small vertebrate brains) is 

routine; where such volumes are reliably thick sectioned and spread across multiple wafers which are 

then robotically shuttled between multiple GCIB-milling and MultiSEM-imaging stations in a setting 

reminiscent of today’s semiconductor fabrication plants.  
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Online Methods: 

Sample preparation: 

 

All experimental protocols were conducted according to US National Institutes of Health 

guidelines for animal research and were approved by the Institutional Animal Care and Use Committee 

at Janelia Research Campus. A three-month-old adult C57/bl6 mouse was euthanized with an overdose 

of isoflurane and immediately perfused via the heart with a buffered solution of 1.25 % glutaraldehyde 

and 4 % paraformaldehyde  (0.1M PB pH 7.4). Two hours after perfusion the brain was removed and left 

in the same fix overnight at 4°C. Coronal sections of the brain were then cut with a vibratome (Leica 

VT1200). These were stained with 1.5% potassium ferrocyanide, on ice, followed by 2% osmium, each 

diluted in phosphate buffer. Sections were stained in 1% thiocarbohydrazide for 20 minutes before 

transferring them into 2% osmium tetroxide (Agar Scientific) for a further 30 minutes. They were then 

placed in 1% uranyl acetate at 4 oC overnight then in lead aspartate solution at 50 oC for 2 hours. The 

sections were finally dehydrated in increasing concentrations of alcohol, for 5 minutes each change and 

then transferred to increasing concentrations of epoxy resin (Spurs, EMS) until 100%. These were placed 

between two glass slides, coated with mold separating agent (Glorex, Switzerland), and hardened at 60 ° 

C for 24 h. 

 A six-day-old male adult Canton S G1 x w1118 fly of the Drosophila was GCIB-SEM imaged 

producing the micrographs shown in Fig. 1b-e. The preparation method used was a heavy metal 

contrast enhancement on C-PLT, an optimized preparation protocol for Drosophila brains with optimal 

contrast and morphological preservation for FIB-SEM. Chemical/ Progressive Lowering of Temperature 

(C-PLT) fixation/dehydration with en bloc staining is a modified conventional chemical fixation 

method13,18. Isolated whole brains were fixed in 2.5% formaldehyde and 2.5% glutaraldehyde in 0.1 M 

phosphate buffer at pH 7.4 for 2 hours at 22 oC. After washing, the tissues were post-fixed in 0.5% 

osmium tetroxide in 0.05M sodium cacodylate buffer for 40 min and then treated with 0.8% potassium 

ferricyanide in buffer for 2 hours at 4 °C. After washing, tissue was incubated with 0.5% aqueous uranyl 

acetate for 30 min at 4 oC then followed by lead aspartate en bloc staining at 4 oC for overnight. A PLT 

procedure started from 1 oC when the tissues were transferred into 10% ethanol after secondary 

osmication with 0.8% osmium tetroxide for 20 min at 4 oC. The temperature was progressively 

decreased to −25 oC while the ethanol concentration was gradually increased to 97%. The tissue was 

incubated in 1% osmium tetroxide and 0.2% uranyl acetate in ethanol for 32 hours at −25 °C. After PLT 

and low temperature incubation, the temperature was increased to 22 oC, and tissues were rinsed in 

pure ethanol following by acetone, then infiltrated and embedded in Durcupan (ACM Fluka). 
 

 

Sectioning, Irradiation, Milling and Imaging: 

Drosophila brain (Fig. 1b-e): We sectioned a Durcupan-embedded Drosophila brain at 1 µm thickness on 

an ultramicrotome (Leica UC7) using a room temperature diamond knife (Diatome, 35o clearance angle) 

and collected three sequential sections from the water boat onto a gold-coated silicon wafer. Silicon 

wafers used for this and other runs were pre-diced 5 x 7 mm p-type silicon support chips (Ted Pella). We 

deposited 5 nm of chromium (to promote gold adhesion) followed by 50 nm of gold onto the silicon 

surface using a Precision Etching and Coating System (Gatan). We then glow-discharged the gold surface 
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just prior to collection to promote wetting. Electron irradiation parameters used: 10,000 μm2 area, 2 hrs 

at 6 kV, 4 hrs at 10 kV, 1x1027 eV/cm3 total dose. Electron irradiation for this and other samples was 

performed using the SEM’s beam set to its highest aperture, defocused and scanned across the area to 

be irradiated. GCIB parameters used: 22nA of Ar2000 at 10 kV spread over a 10 mm2 area, 21o glancing 

angle, 360o rotation (3 steps), 900 s per mill cycle giving 4 nm of removal per image (44 µm3/s milling 

rate). GCIB milling for this and other samples was performed by slightly defocusing the GCIB beam (~0.5 

mm) and scanning the area to be milled with a 50 x 50 position grid. SEM parameters used: 1.2 kV, 2 nA 

electron beam, InLens-SE detection, 6 nm pixels, 2 MHz acquisition rate. 

Mouse cortex (Fig. 2a-c): We sectioned Spurr’s embedded mouse cortex at 500 nm thickness on an 

ultramicrotome (Leica UC7) using a room temperature diamond knife (Diatome, 35o clearance angle) 

and collected three sequential sections from the water boat onto a gold-coated silicon wafer. Electron 

irradiation parameters used: 10,000 μm2 area, 4 hrs at 6 kV, 0.8x1027 eV/cm3 total dose. GCIB 

parameters used: 22 nA of Ar2000 at 10 kV spread over a 9.7 mm2 area, 30o glancing angle, 360o 

rotation (3 steps), 240 s per mill cycle giving 6 nm of removal per image (240 µm3/s milling rate). SEM 

parameters used: 1.2 kV, 2 nA electron beam, simultaneous ESB (500 V filtering) and InLens-SE 

detection, 8 nm pixels, 1.25 MHz acquisition rate. 

Mouse cortex (Fig 2d-f): We sectioned Spurr’s embedded mouse cortex at 1 µm thickness on an 

ultramicrotome (Leica UC7) using a room temperature diamond knife (Diatome, 35o clearance angle) 

and collected ten sequential sections onto a gold-coated silicon wafer. Electron irradiation parameters 

used: 10,000 μm2 area, 1.6 hrs at 8kV, 2.4x1026 eV/cm3 total dose. GCIB parameters used: 22nA of 

Ar2000 at 10kV spread over a 18 mm2 area, 30o glancing angle, 360o rotation (3 steps), 240s per mill 

cycle giving 6nm of removal per image (450 µm3/s milling rate). SEM parameters used: 1.2kV, 2nA, 

simultaneous ESB (500 V filtering) and InLens-SE detection, 8nm pixels, 1.25MHz acquisition rate. 

Mouse cortex ‘hot knife’ sectioned (Fig 3): We ‘hot knife’ sectioned Spurr’s embedded mouse cortex at 

10 µm thickness using the method described in (Hayworth et al. 2015)18. Hot knife parameters used: 

Diamond knife (Diatome cryo, 25o clearance angle) lubricated with 0.22 µm filtered tapping oil (Master 

Plumber), 65oC knife temperature, no oscillation, 0.1 mm/s cutting speed. Two sequential sections were 

collected, washed of oil by dipping repeatedly in uncured Durcupan resin, and flat embedded against a 

gold coated silicon wafer (while still covered in uncured Durcupan) by sandwiching sections between the 

wafer and a glass optical flat that had a Kapton release film taped over it. This sandwich was put in a 

65oC oven to cure under a weight. This flat embedding procedure resulted in the two thick sections 

having a thin covering of Durcupan that had to be GCIB-milled to reveal their tissue surfaces (see text). A 

scalpel and laser ablation were used to remove large regions of the surrounding Durcupan ‘flash’ to 

prevent peripheral charging, then matching regions in each thick section were electron irradiated to 

make them conductive. Electron irradiation parameters used: 110,000 μm2 area, 117 hrs at 30 kV, 

0.9x1027 eV/cm3 total dose. GCIB parameters used: 22nA of Ar2000 at 10kV spread over a 13 mm2 area, 

30o glancing angle, 360o rotation (6 steps), 360 s per mill cycle giving 12 nm of removal per image (400 

µm3/s milling rate). SEM parameters used: 1.2 kV, 2 nA electron beam, simultaneous ESB (500 V 

filtering) and InLens-SE detection, 10 nm pixels, 1.25 MHz acquisition rate. 

Mouse cortex (MultiSEM test sample, Supplementary Figs. 19, 20): We sectioned Spurr’s embedded 

mouse cortex at 500 nm thickness on an ultramicrotome (Leica UC7) using a room temperature 

diamond knife (Diatome, 35o clearance angle) and collected a single section from the water boat onto a 
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gold-coated silicon wafer. A region was electron irradiated to make it conductive, then GCIB-SEM 

imaged to a depth of ~250 nm before shipping to Zeiss for MultiSEM imaging tests. Electron irradiation 

parameters used: 188,000 μm2 area, 89 hrs at 6 kV, 0.9x1027 eV/cm3 total dose. GCIB parameters used: 

32 nA of Ar2000 at 10kV spread over a 8 mm2 area, 30o glancing angle, 360o rotation (3 steps), 360 s per 

mill cycle giving ~12 nm of removal per image. SEM parameters used for GCIB-SEM imaging on Janelia 

Ultra SEM: 1.2 kV, 2 nA electron beam, InLens-SE detection, 8 nm pixels, 1.25 MHz acquisition rate. 

 

Computational flattening and stitching of sections: 

Processing of all GCIB-SEM runs proceeded in three steps (overviewed in Fig. 1): 1.) Align the 

SEM images of each thick section individually to generate a set of 3D volumes, one for each thick 

section. 2.) Computationally flatten the bottoms of each section individually. 3.) Align and stitch these 

3D volumes together to form a final spanning 3D volume. We used the SIFT and BUnwarpJ alignment 

tools in the Fiji software21 to perform steps #1 and #3. For step #2 we wrote a custom Matlab script to 

perform flattening.  

To perform flattening we first identified the grayscale threshold that best separated tissue pixels 

from substrate pixels, which could be reliably distinguished by grayscale as long as the thick sections 

were collected on a gold substrate. Our flattening script used this grayscale threshold to determine, for 

each x,y pixel position, the image index (z-position) where the tissue broke through to the substrate, 

creating a “bottom index map”. This “bottom index map” was lightly smoothed spatially and then used 

to stretch (with linear interpolation) each column of pixels in the z-direction so that all substrate 

breakthroughs would occur in a single z-plane.  

We have provided this custom Matlab flattening script in the Supplementary Software along 

with an example dataset and a brief manual describing its operation.  

 

Section-to-section loss estimation: 

We estimated section-to-section tissue losses for each of the GCIB-SEM runs described in the 

text as well as for a test run performed with a series of 150 nm thick sections. Supplementary Figs. 21-

25 summarize these results.  

Our method for estimating section-to-section loss was as follows: First the z-thickness of each 

GCIB-SEM mill step was estimated by dividing the microtome-set cutting thickness by the number of mill 

steps spanning a thick section. Then each image in the final stitched GCIB-SEM stack covering multiple 

serial thick sections was first spatially filtered (using FIJI) with a 2D Gaussian (r = 4 pixels), and a matrix 

of mean pixel-wise image differences (absolute valued) spanning the full GCIB-SEM volume was 

computed using a custom Matlab script. We used this to plot the expected image difference vs. mill 

steps (shown in each supplementary figure). The images right next to the cut surfaces display 

differences in contrast and features relative to images in the interior of a stack. For example, the first 

few images of each thick section often have somewhat higher contrast which diminishes after milling 

(see Supplementary Fig. 17), and the last few images of a flattened stack show contrast and texture 

artifacts from the flattening algorithm where pixel grayscale values start to blend with the gold 
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substrate. Looking at these ‘boundary’ images makes clear that they contain information crucial for 

tracing but directly computing the image difference between such ‘top’ and ‘bottom’ images would lead 

to an erroneously large estimated loss dominated by such contrast and flattening-artifact effects. 

Instead we picked images slightly removed from the boundary to compare and computed the loss based 

on these.  

For example, the GCIB-SEM dataset shown in Fig. 2a-c spanned three 500 nm microtome cut 

sections. The flattened stack for the first thick section from this run contained 81 images giving an 

estimated mill step size of 500 nm / 81 = 6.2 nm. The computed image difference matrix is shown in 

SOM Fig. 22 along with a plot of the expected image difference vs. mill steps derived from looking at 

only ‘interior’ images. The boundary between the second and third thick section occurred between 

image #162 and #163 in this stack, but image #162 was not sufficiently clean for direct comparison due 

to the contrast and flattening artifacts described above. Instead we backed up to image #159 (which was 

clean) and compared it to image #163. The difference between these images (according to the 

computed mean difference matrix) was 14.5 units which corresponded to 8.7 mill steps according to the 

plot. This implies that there is an equivalent of 8.7 – 3 = 5.7 mill steps between #162 and #163. But if 

there was no loss of tissue during sectioning then there should only be 1 mill step between #162 and 

#163. So the loss is equivalent to 5.7 – 1 = 4.7 mill steps or 4.7 * 6.2 nm = 29 nm.  

As described, the flattening procedure results in boundary images containing artifacts and, 

depending circumstances (for example, how sensitive one’s segmentation algorithm is to noise), one 

may decide to discard one or more of the boundary images. To account for this Supplementary Figs. 21-

25 display both the boundary image we based our loss estimate on and the next one that would be used 

if that one was discarded along with loss estimates for both.  

 

Flood-filling network segmentation: 

As described in the text, test segmentations were performed on an ESB-detected GCIB-SEM 

volume spanning ten 1 µm sections of mouse cortex which was acquired with 8x8x6 nm voxels (Fig. 2d-f, 

Supplementary Figs. 6-11) and on an InLens-SE-detected GCIB-SEM volume spanning two 10 µm ‘hot 

knife’ sections of mouse cortex which was acquired with 10x10x12 nm voxels (Fig. 3, Supplementary 

Figs. 12-16). The two GCIB-SEM stacks were segmented with flood-filling networks (FFN)14. Instead of 

producing de novo dedicated volumetric training data for these GCIB-SEM volumes, an existing model 

trained on 10x10x25 nm SBEM data of zebra finch Area X tissue (provided by Jorgen Kornfeld) was used 

to bootstrap the segmentation, and object-based proofreading was utilized to correct errors as 

described next.  

Using the ESB-detected GCIB-SEM volume spanning ten 1 µm sections, a prototype variant of 

the CycleGAN-based transfer procedure described in (Januszewski & Jain 2019)22 was first applied 

between (a) 20x20x25 nm SBEM and 16x16x24 nm GCIB-SEM data (downsampled from its native 8x8x6 

nm acquisition resolution), as well as 10x10x25 nm SBEM and (b) 16x16x12 nm, and (c) 8x8x18 nm GCIB-

SEM data. Reduced-resolution downsampled variants of the GCIB-SEM volume were obtained via area-

averaged resampling of the full resolution data.  
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Segmentations obtained for multiple CycleGAN checkpoints from the (a) and (b) variants were 

screened for merge errors, and combined with oversegmentation consensus after upsampling to a 

common resolution. 12 neurite fragments were manually assembled from correct fragments in the base 

segmentation. These fragments were then used to train an FFN model for 16x16x12 nm GCIB-SEM data, 

with loss masking in 2 images before and after every 1 μm thick section seam. The segmentation from 

this new model correctly resolved the larger structures in the volume, but the model could not track 

finer processes due to insufficient downsample resolution of input data and a lack of representative 

training examples. To compensate for that, oversegmentation consensus between the FFN-generated 

reduced resolution segmentation, and the full resolution segmentation from SBEM-transfer (see (c) 

above) was computed, an additional 13 neurites were reconstructed by manual fragment assembly to 

form the training set for a full-resolution GCIB FFN model. Once trained, a segmentation was generated, 

450 objects were proofread and selected for another round of training. All objects larger than 100k 

voxels were inspected in the final segmentation volume and split errors were manually corrected where 

necessary. 

A similar procedure was applied to segment the second GCIB-SEM volume (InLens-SE-detected 

GCIB-SEM volume spanning two 10 µm ‘hot knife’ sections, acquired at 10x10x12 nm voxel resolution). 

First, the network trained on the first GCIB-SEM volume at 8x8x6 nm resolution was transferred to the 

InLens-SE 10x10x12 nm stack with the help of a CycleGAN. No attempt was made to correct the 

mismatched voxel resolution. 

Candidate segmentations were generated for multiple checkpoints of the CycleGAN using 

forward-backward oversegmentation consensus14. The following iterative procedure was then applied to 

identify the best checkpoint. Starting with a random checkpoint, 3D meshes of objects in the 

segmentation were screened for mergers in descending order of object voxel count until 10 merge 

locations were found and added to a list of known mergers. The segmentations were then evaluated 

using all recorded merge locations, and the segmentation with the fewest mergers was screened again. 

Screening was terminated once a single segmentation without known errors remained, at which point 

61 distinct merge errors were recorded. FFN agglomeration with standard settings14 was then applied to 

the selected segmentation, with all merge pairs from agglomeration subjected to manual review. All 

objects larger than 100k voxels after agglomeration and touching 0 or 1 faces of the volume were then 

manually inspected, and if necessary connected to other objects within the volume. For the final 

segmentation, an FFN model was retrained on this proofread segmentation with the voxelwise loss 

computed only over voxels belonging to objects larger than 100k voxels.  

The FFN network architecture and training procedures described in (Januszewski et al. 2018)14 

were used everywhere, but the field of view was extended to (33, 33, 33) voxels to account for the more 

isotropic resolution of the GCIB-SEM data, and the depth of the network for the second GCIB-SEM 

volume was extended to 12 residual modules. The manual inspections performed did not reveal any 

objects that could not be unambiguously traced. No manual voxel-level corrections were performed at 

any step of the reconstruction. 

SOM References: 

21. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., ... & Tinevez, 

J. Y. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7), 

676. 
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Figure 1. GCIB-SEM overview. (a) Pictorial diagram of the GCIB-SEM process. A series of ‘thick’ sections (≤ 1 µm) 

collected by traditional ultramicrotomy, or a series of ‘ultrathick’ sections (≤ 25 µm) collected by ‘hot knife’ 

sectioning, are mounted on a silicon wafer and then irradiated with a high-voltage electron flood gun to increase 

their conductivity. The wafer is then shuttled repeatedly between SEM-imaging and GCIB-milling steps creating a 

set of raw image stacks, each spanning the depth of one of the thick sections. The raw images are first aligned to 

create 3D volumes of each individual thick section, then these volumes are “flattened” and stitched together to 

create a single 3D volume spanning the entire sequence of thick sections. Numbers 1,2,…N denote individual thick 

sections.  (b-e) Example images from a GCIB-SEM run performed on three sequential 1 µm thick sections of 

Durcupan-embedded Drosophila brain. All images acquired using InLens-SE detection. (b) Selected raw images, one 

every 200 nm of milled depth, spanning a single thick section. The last image shows milling breaking through to the 

gold substrate (black pixels). (c) Z-reslice through the image stacks of all three thick sections prior to flattening and 

stitching. Black pixels at bottom are gold substrate. (d) Z-reslice of same stack after flattening. These are shown 

aligned to demonstrate how the flattening procedure allows for tracing of processes across thick section 

boundaries.  (e) Stitched stack shown as 3D volume. Numbers 1,2,3 in c-e denote individual thick sections.  
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Figure 2. Examples of GCIB-SEM imaging. (a-c) Images from a GCIB-SEM run performed on three sequential 500nm 

thick sections of mouse cortex. (a) Z-reslice through the InLens-SE-detected stack. (b) Z-reslice through the ESB-

detected stack. Note that InLens-SE and ESB stacks are similar under the milling conditions used. (c) InLens-SE stack 

shown as 3D volume. Numbers denote individual thick sections. (d) GCIB-SEM 3D volume spanning ten sequential 

1 µm sections of mouse cortex, along with example cross section (blue framed region, numbers denote individual 

thick sections, ESB detection shown). (e) Tracing of a single spiny dendritic process (orange) spanning the volume 

along with axons synapsing on it. (f) XY, XZ, and YZ views through a single spiny synapse (red arrow) from this 

volume.  
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Figure 3. GCIB-SEM imaging of two sequential 10 µm “ultrathick” hot knife cut sections. (a) GCIB-SEM volume (ESB 

detection shown). (b) Tracing of a single spiny dendritic process (orange) spanning the volume along with axons 

synapsing on it. This tracing is based on a segmentation of the InLens-SE detected volume. (c) Example z-reslice 

(green framed region in a) showing the top section’s full 10 µm depth and its stitch plane (red dashed line) to the 

bottom section. (d) Same z-reslice but from the InLens-SE detected volume.  
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SUPPLEMENTARY FIGURES: 

 

SOM Figure 1. GCIB-SEM prototype constructed at the Janelia Research Campus. (a) Picture of the GCIB-

SEM prototype consisting of an Ionoptika GCIB-10s gun mounted on a Zeiss Ultra SEM. Ion beam and 

SEM scanning and imaging are performed using electronics from National Instruments (rack visible in 

picture) and controlled via custom LabVIEW software. (b) CAD diagram showing how GCIB-10s gun was 

mounted. The considerable weight of the GCIB-10s gun, along with its two vibration isolated turbo 

pumps, was hung via a spring-loaded rod from a mount which is itself supported on an L-shaped 

vibration isolation table. (c) Two views (at imaging position and at milling position) of a sample within 

the SEM chamber (taken by an in-chamber CCD camera mounted at the back of the chamber). Sample is 

a series of thick tissue sections collected on a small (5 x 7 mm) silicon wafer. The wafer was mounted on 

the end of a short tube in order to make its silhouette visible in GCIB-scanned images. (d) GCIB-scanned 

overview images of sample acquired by measuring the sample current during GCIB scanning. Silhouette 

of wafer is clearly visible in these overview images which assists the targeting of the GCIB milling box 

(red square) used during the run. We rotate the sample to different milling directions (e.g. 0o, 120o, 

240o) during each milling cycle as shown here. (e) Plot showing the range of cluster sizes hitting the 

sample (GCIB setting: Ar2000, 10kV). This is a time-of-flight plot made by pulsing the GCIB source while 

the beam is hitting a sample mounted at a known distance. The GCIB was tuned to give clusters 

containing an average of 2000 argon atoms each, but the plot shows that this beam actually contains a 

range of cluster sizes from mainly within the range of Ar1000 to Ar3000.  
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SOM Figure 2. ESB and InLens-SE images of tissue surfaces GCIB-milled under different conditions and 

embedded in different resins. 1.2kV landing energy was used for all. 500v energy filter used in ESB. (a) 

ESB image of Epon-embedded section of mouse cortex milled using Ar2000, 10kV at a glancing angle of 

38o. (b) InLens-SE image of same surface shown in (a). This matched pair of images dramatically 

illustrates how much more sensitive InLens-SE detection is to surface topography. (c) InLens-SE image of 

epon-embedded section of mouse cortex milled using Ar2000, 10kV at a glancing angle of 13o. This 

shallow angle milling has succeeded in removing the InLens-SE-visible surface structure seen in (b) but at 

a much reduced milling rate. (d) InLens-SE image of Durcupan-embedded section of Drosophila brain 

milled using Ar2000, 10kV at a glancing angle of 21o. (e) InLens-SE image of Spurr’s-embedded section of 

mouse cortex milled using Ar2000, 10kV at a glancing angle of 30o.    
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SOM Figure 3. Using electron irradiation to increase a sample’s bulk conductivity. (a) InLens-SE image of 

a 400 nm thick section of plastic-embedded mouse cortex imaged at 1.2 kV landing energy. Sample 

charging results in large intensity and scan distortions making imaging impossible. (b) Same 400 nm 

thick section after being electron irradiated with an 8 kV beam to increase its bulk conductivity. InLens-

SE imaging at 1.2 kV landing energy now gives clear images of neuronal features. 
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SOM Figure 4. Estimation of optimal electron energy for irradiation. (a) Energy density plot, from the 

Casino ‘electron trajectories in solids’ simulator (Drouin et al. 2007), of a wide beam of 30 kV electrons 

irradiating an Epon block with 2% Osmium atomic fraction. Yellow contour line shows where the energy 

density has dropped to 50% of maximum, green contour line shows where the energy density has 

dropped to 25% of maximum. (b) Summary plot of Casino simulations covering 2kV to 30kV beam 

energies. Yellow and green points show depths where energy density drops to 50% and 25% of 

maximum respectively. We use this plot to determine what beam energy should be used for irradiating a 

sample of a given thickness. 
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SOM Figure 5. Imaging and milling rate tests conducted on a 500 nm thick section of Spurr’s embedded 

mouse cortex irradiated under a range of conditions. (a) Pattern of electron irradiation used for test. 

Five rectangles, each 20x15 µm, were electron irradiated with a defocused 6 kV electron beam for 

varying durations to achieve the following total doses: 0.13x1027, 0.25x1027, 0.50x1027, 1.0x1027, 2.0x1027 

eV/cm3. Surrounding tissue was not irradiated beyond that induced by imaging. (b) InLens-SE detector 

image taken after five mill cycles. Charging artifacts are evident in non-irradiated and lightly-irradiated 

regions. (c) ESB detector image taken after five mill cycles. Only mild charging artifacts (e.g. the blood 

vessel at bottom center) are seen in this ESB image.  SEM imaging parameters: 1.2 kV, 2 nA electron 

beam, 10 nm pixels, 1.25 MHz acquisition rate. (d) Zoomed-in InLens-SE images of regions in (a) showing 

extent of charging. Non-irradiated regions of this 500 nm section show massive charging artifacts in 

InLens-SE. The 0.13x1027, 0.25x1027 eV/cm3 irradiated regions show milder charging artifacts which 

appear as contrast differences within mid-sized regions of cytoplasm. Regions which received greater 

irradiation show no charging artifacts in InLens-SE. (e) Image of tissue after 17 milling cycles. All non-
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irradiated regions have been milled away. (f) Image of tissue after 44 milling cycles. The two least-

irradiated regions have also been milled away at this point in the run. Milling conditions: 32nA of Ar2000 

at 10 kV spread over a 12.5 mm2 area, 30o glancing angle, 360o rotation (3 steps), 180 s per mill cycle. (g) 

Plot of milling rate vs. irradiation dose. There is a six fold drop in milling rate between the non-irradiated 

region and the most heavily irradiated region. (h) Top row shows z-reslice through aligned, but 

otherwise unmodified, ESB image stacks at each of the different irradiation doses. All of these extend 

through the entire 500 nm depth of the section but have different voxel sizes along the z-axis due to 

their different milling rates. For example, the stack through the non-irradiated region milled through to 

the gold substrate after only 14 mill cycles giving a voxel size of 10x10x36 nm (i.e. 500 nm/14 = 36 nm). 

In contrast, the most heavily irradiated regions milled through to the gold substrate after 86 milling 

cycles giving a voxel size of 10x10x5.8 nm (i.e. 500 nm/86 = 5.8 nm). Bottom row shows same z-reslice 

views after each was scaled in Z to have matching voxel sizes. This scaling makes clear that higher 

irradiation dose also results in increased local variability of milling rate as evidenced by the greater 

unevenness at the tissue-to-substrate boundary at the bottom of the most heavily irradiated region’s 

stack. Based on these results, we recommend irradiating to a dose of 0.5x1027 eV/cm3. 
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SOM Figure 6. Z-reslice of GCIB-SEM stack covering ten 1 µm thick sections of Spurr’s-embedded mouse 

cortex (same dataset as shown in Fig. 2d-f). The GCIB-SEM stacks of the ten separate sections have been 

individually aligned and then aligned to each other to make the above stack, but the individual stacks 

have not yet been flattened giving rise to the black unevenness at the bottom of each section. (ESB 

detection) 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563239doi: bioRxiv preprint 

https://doi.org/10.1101/563239
http://creativecommons.org/licenses/by/4.0/


 

SOM Figure 7. Same GCIB-SEM stack as shown in the previous figure but after computationally 

flattening each of the ten 1 µm thick sections and then stitching them together. This flattened and 

stitched volume is the one that was segmented and traced as shown in Fig. 2e. (ESB detection) 
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SOM Figure 8. Same GCIB-SEM volume as shown in the previous figure but based on the InLens-SE 

detector signal. Slight charging artifacts are visible as intensity variations within mid-sized cytoplasm 

regions. This sample was irradiated with an approximately 2.4x1026 eV/cm3 dose. Such charging can be 

completely eliminated with larger irradiation dose (for example, see SOM Figure 14 below).    
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SOM Figure 9. Z-reslice of the same GCIB-SEM volume as shown in the previous figures (and in Fig. 2d-f) 

segmented using a flood-filling network (Januszewski et al. 2018).  
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SOM Figure 10. Example tracing, within the same GCIB-SEM volume as shown in the previous figures, of 

all axons making synapses on a large spiny dendrite (red) in the volume.  
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SOM Figure 11. Example tracing, within the same GCIB-SEM volume as shown in the previous figures, of 

an axon (cyan) making two synapses on the same dendrite (orange). 
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SOM Figure 12. Z-reslice of GCIB-SEM stack covering two 10 µm thick hot knife sections of Spurr’s-

embedded mouse cortex tissue (same dataset as shown in Fig. 3). The GCIB-SEM stacks of the two 

separate sections have been individually aligned and then aligned to each other to make the above 

stack, but the individual stacks have not yet been flattened. The black unevenness at the bottom of the 

top hot knife section is the gold substrate the section is embedded against. The unevenness at the top of 

the bottom section is resin covering the re-embedded section. (ESB detection) 
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SOM Figure 13. Same GCIB-SEM stack as shown in the previous figure after computationally flattening 

the bottom of the top hot knife section and after flattening the top of the bottom hot knife section. The 

location of the stitch line between the two is designated at right as it is barely visible in this z-reslice 

image. (ESB detection) 
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SOM Figure 14. Same GCIB-SEM volume as shown in the previous figure but based on the InLens-SE 

detector signal. No charging artifacts are visible in this GCIB-SEM run due to the high electron irradiation 

dose used (0.9x1027 eV/cm3). Some streak milling artifacts are visible in this InLens-SE image that are not 

in the previous ESB image. The streak milling artifacts seem more prevalent at deeper milling depths. 

(InLens-SE detection)  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563239doi: bioRxiv preprint 

https://doi.org/10.1101/563239
http://creativecommons.org/licenses/by/4.0/


 

SOM Figure 15. Same z-reslice as shown in previous image but with overlaid colors showing result of 

flood-filling network segmentation based on InLens-SE volume. 
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SOM Figure 16. Example tracings, within the same flood-filling network-segmented GCIB-SEM volume as 

shown in the previous figure, of axons making synapses on three different dendrites (orange) spanning 

the volume. 
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SOM Figure 17. Estimates of InLens-SE signal loss (i.e. tissue contrast reduction) due to GCIB milling (a-b) 

and due to the electron irradiation used to make thick sections conductive prior to GCIB-SEM imaging 

(c). (a) is from run shown in Fig. 2a-c. (b) is from run shown in Fig. 3.  
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SOM Figure 18. GCIB-SEM imaging of ATUM-collected sections. (a) Image of ATUM tape collection 

mechanism in the process of collecting a sequence of 1 µm sections of Spurr’s-embedded mouse cortex 

tissue on copper-coated tape (tape provided by Yoshiyuki Kubota). (b) Close-up of 1 µm sections on 

tape. (c) Z-reslice view (InLens-SE and ESB) through the GCIB-SEM volume spanning two sequential 1 µm 

sections collected during the above ATUM run.  
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SOM Figure 19. Test of Zeiss MultiSEM (61 beam version) imaging of a previously GCIB-SEM milled 

sample. A 500 nm thick section of Spurr’s-embedded mouse cortex tissue was electron irradiated to a 

dose of 0.9x1027 eV/cm3. It was then GCIB-SEM milled and imaged on our prototype GCIB-SEM at Janelia 

to a depth of ~250 nm. The sample was then shipped to Zeiss for imaging on the MultiSEM, the tiled 

images of which are shown in this figure. (Images acquired by Anna Eberle) 
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SOM Figure 20. Comparison of Zeiss MultiSEM (61 beam version) imaging of a previously GCIB-SEM 

milled sample to an InLens-SE detected image taken in our prototype of the same GCIB-milled surface 

using similar dose.   
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SOM Figure 21. Estimate of sectioning loss for 1 µm thick sections of Durcupan-embedded fly brain 

tissue (same dataset shown in Fig. 1b-e). Note that the diamond knife cut surfaces show considerable 

knife damage, and the estimated loss between sequential sections is relatively large compared to the 

Spurr’s embedded samples below. This and other observations led us to conclude that Durcupan 

embedding is insufficiently resilient to be sectioned this thick. We therefore switched to Spurr’s 

embedding for later runs. 
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SOM Figure 22. Estimate of sectioning loss for 500nm thick sections of Spurr’s-embedded mouse cortex. 

(Same dataset shown in Fig. 2a-c).    
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SOM Figure 23. Estimate of sectioning loss for 1 µm thick sections of Spurr’s-embedded mouse cortex 

tissue (Same dataset shown in Fig. 2d-f).    
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SOM Figure 24. Estimate of sectioning loss for 10 µm thick hot knife sections of Spurr’s-embedded 

mouse cortex tissue (Same dataset shown in Fig. 3).    
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SOM Figure 25. Estimate of sectioning loss for 150 nm thick sections of Spurr’s-embedded mouse cortex  

tissue.    
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