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Abstract 

While genomic analysis of tumors has stimulated major advances in cancer diagnosis, prognosis 

and treatment, current methods fail to identify a large fraction of somatic structural variants in 

tumors. We have applied a combination of whole genome sequencing and optical genome 

mapping to a number of adult and pediatric leukemia samples, which revealed in each of these 

samples a large number of structural variants not recognizable by current tools of genomic 

analyses.  We developed computational methods to determine which of those variants likely 

arose as somatic mutations.  The method identified 97% of the structural variants previously 

reported by karyotype analysis of these samples and revealed an additional fivefold more such 

somatic rearrangements.  The method identified on average tens of previously unrecognizable 

inversions and duplications and hundreds of previously unrecognizable insertions and deletions. 

These structural variants recurrently affected a number of leukemia associated genes as well as 

cancer driver genes not previously associated with leukemia and genes not previously associated 

with cancer. A number of variants only affected intergenic regions but caused cis-acting 

alterations in expression of neighboring genes.  Analysis of TCGA data indicates that the status 

of several of the recurrently mutated genes identified in this study significantly affect survival of 

AML patients. Our results suggest that current genomic analysis methods fail to identify a 

majority of structural variants in leukemia samples and this lacunae may hamper diagnostic and 

prognostic efforts. 
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Introduction 

Genomic analysis of tumors has stimulated major advances in cancer diagnosis, prognosis and 

treatment, shifting the focus from morphological and histochemical characterization to 

consideration of the landscape of driver mutations in the tumor (Vogelstein et al. 2013; Zack et 

al. 2013; Berger and Mardis 2018).  This has been particularly true for leukemia, and especially 

so for acute myeloid leukemia, in which the spectrum of driver mutations provides a much more 

rigorous classification of disease subtypes, with a correspondingly more robust prognostic 

power, than previous histological characterization (Metzeler et al. 2016; Papaemmanuil et al. 

2016).   

Somatic driver events in a tumor – point mutations, copy number changes and structural variants 

(SVs) including insertions, deletions, inversions and translocation – are currently identified by 

some combination of karyotyping, comparative genome hybridization, fluorescence in situ 

hybridization (FISH), RNA sequencing and genome sequencing of either targeted gene panels, 

whole exomes or whole genomes (Mardis and Wilson 2009; Alkan et al. 2011; Zack et al. 2013; 

Wan 2014; Berger and Mardis 2018).  However, a recent study interrogating a variety of cancer 

cell lines using an integrative framework for detecting SVs, consisting essentially of whole 

genome sequencing, optical genome mapping and chromosome conformation capture, identified 

a large number of variants that were undetectable by the standard tools for cancer genome 

analysis (Dixon et al. 2018).  Moreover, some of these previously undetected SVs affected 

cancer relevant genes through their gain or loss or through alteration in expression.  In the latter 

case, gene expression could be reduced by deletion of an associated regulatory domain or 

activated by fusion of topologically associated domains, bringing an otherwise inactive oncogene 

in functional proximity to an active enhancer region.  This study strongly suggested that non-
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coding structural variants are underappreciated drivers in cancer genomes.  However, since this 

study investigated only cell lines, it could not differentiate between cancer promoting variants 

versus variants that arose during establishment and propagation of the cell line itself. 

In this study, we have applied a similar integrative framework to identify structural variants in 

leukemia patients’ primary tumor samples.  In particular, we combined both whole genome 

sequencing and optical genomic mapping to obtain a significantly enhanced view of structural 

alterations in a dozen different adult and pediatric leukemia samples.  In almost all cases, our 

analysis identified all the structural rearrangements previously determined by standard karyotype 

analysis.  However, our analysis also revealed hundreds of additional structural variants, 

particularly insertions and deletions but also inversions and translocations, that were not evident 

from standard genomic analyses.  A number of these variants affected tumor associated genes, 

whose role in prognosis and treatment in the individual cases could not otherwise have been 

considered. Our work further confirms that the extent of somatic structural variants has not been 

fully recognized nor effectively integrated into disease assessment.  The methods described here 

may offer a remedy for that shortcoming. 
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Results 

Identification of somatic structural variants in leukemia samples.  We used a combination of 

whole genome sequencing and optical mapping to identify structural variants in blood samples 

from leukemia patients.  Patients included seven adult AML cases, two pediatric AML cases, one 

pediatric T-cell ALL case, one pediatric B-cell ALL case and one adult B-cell lymphoma 

(Supplemental_Table_S1.pdf).  We performed whole genome sequencing on all samples at an 

average depth of 50X and optical mapping at 100X coverage on a Bionano Genomics Irys or 

Saphyr optical mapping instrument.  For optical mapping, large genomic fragments (>250 kb) 

are extracted from cells, fluorescently labeled with a site-specific DNA binding protein and then 

passed through nanochannels of an Irys or Saphyr chip that force the molecules into a strictly 

linear conformation.  After they are linearized and migrate through the nanochannels, molecules 

are imaged, with the fluorescent tags providing a bar code that allows subsequent assembly of 

individual molecules into larger contiguous maps, which are compared to a reference genome to 

identify insertions, deletions and rearrangements. 

Data processing to identify structural variants in individual samples is outlined in Figure 1.  

Whole genome sequence data was mapped to human genome reference hg38 using BWA and 

then filtered for structural variants by two independent software pipelines, LUMPY and DELLY.  

Those variants identified by both programs were retained and sorted into subtypes: deletions, 

insertions, duplications, inversions and intra- and inter-chromosome translocations.  Copy 

number variants were determined by Control FREEC.  Structural variants were extracted from 

optical mapping data using Bionano Genomics Access software.  This process yielded in each 

sample 1500-3000 deletions, more than 2000 insertions, hundreds of inversions and copy number 

variants and tens of translocations (Table 1).   
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Determining which of the structural variants arose as somatic mutations versus those that were 

preexistent in the patient’s germ line would require comparing the list of those present in the 

leukemia sample to those in the patient’s normal genome.  However, since normal tissue is not 

readily available from most leukemia patients, we developed a computational pipeline to 

distinguish somatic mutations from germline polymorphisms by filtering the list of variants 

against various databases of known genomic polymorphisms.  We first compared the position 

and extent of each variant against the Database of Genomic Variants (MacDonald et al. 2014) 

and removed any variant that significantly overlapped a previously identified variant.  We then 

removed any variant whose start and end point were identical in two or more of our patient 

Figure 1.  Computational Workflow for Detection of Structural Variants. 
The computational workflow for extracting structural variants from a combination of whole genome sequencing 
and optical mapping is diagrammed in the upper left hand figure with details of each of the subroutines provided 
in the numbered figures.  See Materials and Methods for a detailed explanation.  Note that step 3 removes likely 
germ line polymorphisms from the SV calls, reducing the number of original SVs by 95-97% on average.   
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samples.  Finally, since many of the variants identified by optical mapping could not have been 

previously revealed by other technologies, we compared our remaining variant list against that 

obtained from optical mapping of 154 normal individuals in a study recently conducted by Kwok 

and colleagues (Levy-Sakin et al. 2019), as well as that in Bionano Genomics’ dataset of variants 

found in normal individuals.  As noted in Table 1 and Figure 1, this filtering process significantly 

reduced the number of variants such that on average only 13% of the initially identified copy 

number gains and only 5% of initially identified deletions, insertions and inversions were 

retained as likely somatic variants.  In contrast, all of the interchromosomal translocations 

initially identified were retained as likely somatic events. 

We tested the validity of our filtering algorithm in identifying somatic variants in one case in 

which we were able to obtain normal tissue for the patients.  We amplified the small subset of 

normal T cells from the leukemic blood sample by selective application of growth factors as 

described in Materials and Methods (Figure 2A-C).  We performed optical mapping and whole 

genome sequencing on this normal T cell population and compared its profile to that of the 
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corresponding leukemia sample to identify somatic variants.  We then compared the collection of 

 

Figure 2.  Detection of Structural Variants by WGS+OM versus Karyotyping 
(A) Workflow for isolating normal T cells from a B lymphoma sample for validating somatic SVs predicted by 
our bioinformatics pipeline. (B) Circos plots for B lymphoma sample 1160 and the corresponding T cell 
demonstrate the absence of interchromosomal translocations and the euploid genome in the T cells population.  
(C) Workflow for determining the false discovery rate for somatic SV prediction by comparison to the T cell 
control. (D) The average number of different types of somatic SVs over twelve patient samples detected by whole 
genome sequencing plus optical mapping. Gains include any duplication of genomic sequences greater than 50 bp 
and losses refer to local or extended elimination of genomic sequences. (E) The average number of SVs detected 
by karyotype analysis of the twelve patient samples. (F) For each patient sample, the percent of SVs previously 
identified bykaryotyping that were confirmed by WGS+OM, subdivided into those that were only confirmed 
(light blue) and those that were confirmed and the source of added material was resolved (dark blue). (G) The 
karyotype image of sample 936. (H) The circos plot of the structural variants derived from optical mapping and  
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563270doi: bioRxiv preprint 

https://doi.org/10.1101/563270


10 
 

somatic variants identified by direct comparison to germ line sequences to that obtained by the 

filtering process described above.  As evident from Figure 2C, >95% of the somatic variants 

identified by our filtering process were not observed in the T cell genome, providing a lower 

limit for the overall false discovery rate of <0.05.  However, due to technical limitations our T 

cell coverage did not have sufficient depth to identify all the polymorphic structural variants, so 

we cannot calculate a true false discovery rate. Nonetheless, the results support our filtering 

pipeline as a convenient, cost effective and likely accurate method for pinpointing somatic 

variants in leukemia genomes. 

Comparison of karyotyping, optical mapping and whole genome sequencing.  All of the 

leukemia samples we examined had been previously analyzed by cytological karyotyping as part 

of the patients’ standard clinical evaluation.  Figure 2D and E and Supplemental_Table_S2.pdf 

presents a comparison of the somatic structural variants identified by each of these methods 

alone or in combination.  As evident, karyotyping revealed only a small fraction of the structural 

variants present in the sample.  Whole genome sequencing alone was adequate for identifying 

copy number gains and most interchromosomal translocations but failed to identify the majority 

of insertions and deletions.  On the other hand, optical mapping was most effective in identifying 

inversions, insertions and larger deletions.  

As evident from Figure 2D and from previous work (Dixon et al. 2018), WGS and optical 

mapping provide synergistic data on structural variants. For insertions and deletions, optical 

whole genome sequencing of sample 936.  (I) Determination of variant allele frequency from WGS data.  VAF 
was calculated as the total number of read spanning the translocation breakpoint divided by the total number of 
reads spanning the breakpoint plus the total number of read mapping to the intact chromosome at the same site 
of either one of the participating chromatids.  Two translocations identified by karyotyping are indicated by blue 
dots, corresponding to t(8;21) in sample 784, which was observed in 20/20 karyotype images, and t(4;5) in 
sample 936, which was observed in 2/20 karyotype images. Lower panels show that VAF separates 
translocations in each sample into homogenous mutations (upper circle) and sub-clonal mutations (lower circle). 
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mapping picked up larger variants while WGS identified smaller events. In many cases in which 

WGS failed to flag a variant detected by optical mapping, one or both endpoints lie in an 

unmappable region of the genome.  On the other hand, for some of the variants detected by WGS 

but unreported by optical mapping, particularly translocations, one side of the variant was too 

short to encompass at least nine labeling sites, which is the minimum for the mapping software 

to provide statistically reliable calls. This was particular noticeable in cases of chromothripsis. 

Nonetheless, for many of the variants identified by only one of the two methods, the second 

method does provide confirmation of the validity of the call (Supplemental_Fig_S1.pdf), either 

by confirming one half of the variant or its reciprocal event. In sum, WGS confirmed 75% of the 

 

Figure 3:  Three-way translocation identified by OM/WGS 
Diagram of the organization of an unusual three way reciprocal translocation identified in sample 1021 (upper 
left).  The breakpoints of all three chromosomes are precise in that no sequences at the breakpoints are lost and 
either no sequences duplicated (chr8-chr11), 2 bp duplicated (chr11-chr13) or 55 bp duplicated (chr13-chr8).  
Pileups of paired-end short read sequences around the breakpoints are shown the other three panels, with each 
horizontal line representing a fragment on which the dark grey lines represent the sequenced ends of the fragment 
and the intervening light grey line the inferred unsequenced segment separating them.  Reads crossing the 
boundary are indicated either by dual red/purple colored bars in which the paired ends of a single fragment map to 
different chromosomes or by tricolored bars in which the green region represents a sequenced segment spanning 
the junction. 
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translocations identified by optical mapping while optical mapping confirmed 39% of the 

translocations identified by WGS.  Finally, we verified a number of the variants uniquely 

identified by WGS by PCR amplification (data not shown).  Accordingly, we are confident that 

our integrated method reveals a large fraction of structural variants previously unrecognizable.  

The combination of whole genome sequencing and optical mapping recovered all but one of 36 

genome rearrangement reported by karyotyping (Figure 2F).  Moreover, optical mapping plus 

whole genome sequencing identified 157 interchromosomal translocations in twelve samples, the 

majority of which were missed by karyotyping.  Optical mapping plus sequencing provided a 

more detailed characterization of translocations than was available from karyotyping.  Figure 2G 

and 2H shows the karyotype image from sample 936 and the corresponding circular genome 

structure (circos) plot derived from optical mapping and whole genome sequencing.  As evident 

from the circos plot, chromosome 12 had undergone chromothrypsis in this patient’s sample with 

the majority of the residual fragmented chromosome transposed to chromosome 1.  This was not 

apparent from the karyotype analysis.  In a second case, 1021, our analysis documented a three-

way reciprocal rearrangement among three separate chromosomes (Figure 3), suggesting that the 

triple rearrangement occurred as a concerted event.  We confirmed the resultant genome org
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anization by chromosome conformation capture (data not shown).  In a number of cases, 

karyotyping reported that unidentified genetic material had been added to a chromosome without 

specifying the source of that additional material.  In all such cases, our methodology was able not 

only to identify the source of the exogenous DNA but also to pinpoint the precise junction of the 

added material (Table 2 and Figure 4).  For example, karyotyping indicated additional material 

 

Figure 4.  Identification of previously undetermined added chromosomal sequences. 
 (A) Diagram of chromosome 12 derived by optical mapping of patient sample 1160, which had been identified by 
karyotyping only as chromosome 12 with additional material.  Optical mapping indicates that the additional 
material is a 50 Mb inverted duplication starting at position 91.23 Mb and reconnecting to the remainder of the 
chromosome at position 40.65 Mb.  Below are genome maps showing the hg38 reference chromosome in green 
with in silico determined labeling sites indicated as dark blue vertical lines, aligned with the chromosomal 
assemblies around the inversion initiation site at 91.2 Mb (C) and the inversion termination (D) obtained from 
optical mapping.  (B) Genome assembly map in light blue of a chromosome 8/12 fusion obtained by optical 
mapping of patient sample 936. Detailed mapping of the sample indicates that the chromosome 12 fragment 
derived from chromothrypsis of one of the chromosome 12 chromatids. 
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on chromosome 12 in patient 1160.  Optical mapping identified the extra sequence as arising 

from chromosome 12 itself, involving an internal inverted duplication of ca. 50 Mb in the middle 

of the chromosome (Figure 4).  This analysis also accounted for the duplicated segment of 

chromosome 12 identified from our copy number determinations. Circos plots for all the samples 

analyzed in this study are shown in Supplemental_Figure_S2.pdf. 

Our method provides information on the relative abundance of a structural variant in a leukemia 

sample.  For instance, calculating the number of reads from WGS that span a translocation 

breakpoint in relation to the number of reads spanning the intact chromosome at the same site 

retrieves the allele frequency of that translocation in that sample.  For a heterozygous 

translocation present in 100% of the cells, the allele frequency would be 0.5.  As shown in Figure 

2I, that is the case for the t(8;21) in patient 784, consistent with the karyotype data indicating that 

the translocation is present in 20 of 20 images.  However, in line with the fact that most somatic 

structural variants and SNVs are present in subclonal populations in AML cases, we find that the 

allele frequency of the translocation in most cases is less than 0.5.  For instance, we calculated 

that the allele frequency of t(4;5) in patient 936 is 0.18, consistent with the karyotype report 

identifying the translocation in 2 of 20 images.  Further, in applying this analysis to individual 

samples, we observe evidence of distinct subclones within the population.  As evident in Figure 

2I for samples 868 and 784, several translocation cluster at an allele frequency of 0.2-0.3 while 

other translocations cluster around an allele frequency of 0.5. In sum, our method provides not 

only the identification of structural variants in patient samples, but also the relative abundance of 

each variant and evidence of subclones within a sample. 

Functional significance of somatic structural variants.  The somatic structural variants 

identified in our leukemia patient samples overlap those previously associated with leukemia but 
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also affect additional cancer genes.  Whole 

genome sequence analysis revealed single 

nucleotide mutations or small insertions or 

deletions in each sample that were 

previously recognized as driver mutations.  

Our combined analysis further identified in 

many samples structural rearrangements in 

genes previously linked to leukemia and 

provided a precise definition of nature of 

the rearrangements. For instance, the 

precise fusion of BCR-ABL in a 9;22 

reciprocal translocation in AML patient 

868 emerges from this analysis, 

information that defines the pathogenicity 

of the fusion (Melo 1996).  In sum, over all 

twelve patients we identified SVs in thirty-

six genes and SNVs in an overlapping set 

of fifteen genes that were previously 

implicated as genetic drivers in leukemia, 

twenty-two of which were mutated in two 

or more patients (Figure 5A).  For example, 

KMT2C, encoding a histone methyl 

transferase, is amplified in two patients, 

 
Figure 5 – Genes repeatedly disrupted by structural 
variants in our cohort. 
The number and type of structural variants identified in 
our cohort of leukemia patients affecting genes (A) 
previously associated with AML, (B) previously 
associated with cancer but not AML, and (C) not 
previously associated with cancer. 
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deleted in one and carries a point mutation in a fourth (Ruault et al. 2002; Papaemmanuil et al. 

2016).  Similarly, CEBPA, a CAATT binding transcription factor often mutated in AML 

(Pulikkan et al. 2017), is affected by SVs in five patients: one case by amplification, one case by 

translocation, one case by deletion and by single nucleotide mutation in two other patients.  

Whether these different variants alter the gene function in the same way or affect leukemia 

progression in different ways in different patients remains to be determined. Only one patient 

carried an FLTITD mutation as noted in their clinical reports and as confirmed in our hands by 

WGS and targeted PCR.  

In several cases, we were able to identify loss of tumor suppressor genes that could not be readily 

detected by conventional methods.  In one example shown in Figure 6A and B, a somatic 

inversion disrupted the PTEN gene on chromosome 10 and a somatic deletion removed the 

terminal exon of PTEN on its homolog.  Neither of these SVs were present in the patient’s 

clinical report nor identifiable with whole genome sequencing alone.  Interestingly, the 

breakpoints of the inversion correspond to the deletion endpoints in each of two deletions on the 

homolog.  As a second example in Figure 6C and D, BCL6 is disrupted by an inversion on 

chromosome 3 while its homolog is disrupted by a deletion.  As above, neither of these were 

reported for the patient nor readily evident in the absence of optical mapping.   

We also identified SVs associated with genes previously identified as cancer-associated but not 

frequently with leukemia (Figure 5B).  We found CRLF2 altered in eight patients, twice by 

insertion, once by amplification and five times by point mutation.  CRLF2 encodes a type I 

cytokine receptor, which along with the IL7 receptor activates the JAK2-STAT pathway, and has 

been found rearranged in B-cell ALL but not previously in AML (Russell et al. 2009; Harvey et 

al. 2010; Chiaretti et al. 2016).  We also observed alteration in a number of patients of RSPO2, a 
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gene encoding a member of 

the R-spondin family of 

proteins that activate WNT 

signaling.  Mutations in 

RSP02 has been seen in a 

number of cancers but not 

previously reported in 

leukemia (Yoon and Lee 

2012; Dong et al. 2017; 

Wilhelm et al. 2017).  As a 

final example, NUMA1, an 

essential component in the 

formation and organization of 

the mitotic spindle, is altered 

variously by point mutations, 

insertion, deletion and 

amplification.  A 

chromosomal translocation of 

this gene has been associated 

with acute promyelocytic 

leukemia (Cleveland 1995; 

Wells et al. 1997). 

 

Figure 6.  Biallelic disruption of tumor suppressor genes by distinct 
structural variants 
(A) Gene map of the region around PTEN scaled and aligned to the in silico 
generated optical hg38 reference map (light green with blue tic marks 
indicating the sites of labeling for optical mapping) under which is shown 
the optical map of patient sample 1160, indicating the position of a 3 Mb 
inversion, one endpoint of which lies in the PTEN gene.  (B) Whole 
genome sequence read depth over the PTEN region from patient sample 
1160 over the scaled and aligned gene map of the region.  Dashed red line 
indicates the start site of a deletion on the chromosome homolog of that in 
A. (C) Optical map and whole genome sequence coverage (D) from patient 
sample 1160 positioned over a gene map of the BCL6 locus on which are 
indicated (dashed red lines) the 35 Mb inversion break point on one 
homolog and the deletion breakpoint on the other.  The reference genome is 
shown in the top bar, which, due to compression of the tic marks 
representing labeling sites is solid blue, except for the centromeric region in 
yellow. WGS coverage level of the BCL6 gene indicates deletion of the last 
two exons of BCL6 in the second homolog. The current contig contains 
only one breakpoint of the inversion but does not cover the other breakpoint 
due to the limited length of the contig.  Blue dashed lines represent virtual 
extension of the contig that is likely the extent of the actual inversion. 
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Finally, we observed that a number of genes not previously implicated in cancer were associated 

with structural variants in multiple leukemia samples (Figure 5C).  For instance, eight genes 

were affected by SVs in at least four of the twelve samples and seventy-five were affected in 

three patients (Figure 5C).  Structural variants affecting the copy number of a particular gene, 

whether increasing or decreasing, could help drive tumor progression or might simply reflect an 

adventitious proximity to an actual oncogene or tumor suppressor gene.  We have observed 

several of the later cases for genes near Myc, for instance (Supplemental_Fig_S3B.pdf).  

However, many of the novel genes we find repeatedly affected by somatic structural variants are 

likely contributing themselves to tumor progression. 

The AFAP1 gene is repeatedly mutated in our patient samples.  The protein encoded by this gene 

is a Src binding partner that may function as an adaptor protein by linking Src family members 

and/or other signaling proteins to actin filaments and by mediating Src activation of TGF-β 

(Gatesman et al. 2004; Qian et al. 2004; Cho et al. 2015).  By extracting copy number values 

from SNP data in a subset of the TCGA AML data, we observed that the AFAP1 coding region 

is specifically amplified in the AML cohort, while the immediate surrounding region is 

unamplified (Figure 7B).  Moreover, using the TCGA data we found that stratifying the patient 

population on the basis of AFAP1 expression level provides a statistically significant indicator of 

patient outcome (Figure 7A).  While AFAP1 has not been previously associated with cancer 

onset or progression, overexpression of the overlapping lncRNA AFAP1-AS1 is correlated with 

poor prognosis in a variety of cancers, but not leukemia (Ji et al. 2018).  However, stratifying 

TCGA patient outcome data on the basis of AFAP1-AS1 expression or copy number provides no 

prognostic information (data not shown).  Accordingly, we conclude that APAF1 per se plays a 

role in leukemia progression. 
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As a second example, the ENPP2 gene, which encodes the phospholipase autotaxin that 

catalyzes production of lysophosphatidic acid (Liu et al. 2009), was altered in several patients.  

Autotaxin is overexpressed in a number of cancers, including breast and ovarian, but has not 

been associated with clinicopathologic parameters in those or any other cancers (Onallah et al. 

2018).  In examining the TCGA AML database, we observed that the ENPP2 gene but not the 

surrounding region is amplified in the cohort and that increased gene expression is significantly 

associated with worse outcomes (Figure 7A).   

As a further example, the zinc finger protein multitype 2 (ZFPM2) gene, also known as friend of 

GATA-2 (FOG2), encodes a transcriptional cofactor of members of the GATA-binding family 

that regulates expression of key genes essential for the development of multiple organs (Lu et al. 

1999). By interacting with GATA factors, ZFPM2 modulates this regulatory activity, and is 

known to play important roles in cardiac, gonadal, and pulmonary development. We find that 

ZFPM2 was affected variously by deletion, duplication and point mutation in four different 

patients. As above, we interrogated the TCGA AML database, using the genome wide SNP data 

to determine copy number levels over and around the ZFPM2 gene.  We found that the coding 

region but not the surrounding genome was specifically amplified in patient samples and that 

high expression of the gene was associated with poor outcomes (Figure 7A). Since ZFPM2 is a 

transcriptional cofactor, we extracted from TCGA AML data those genes whose expression is 

correlated with that of ZFPM2 (Figure 7C-D) and showed that those genes significantly 

overlapped with those bound by GATA2 and were enriched in proto-oncogenes and those 

associated with transcriptional misregulation in cancer (Figure 7E). As shown in Figure 7F, 

GATA2 binds to the promoter of one such gene, TAL1, an erythroid differentiation factor 

(Porcher et al. 2017), which suggests that TAL1 expression may be regulated by ZFPM2. 
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Finally, a number of genes frequently altered in our cohort but not previously associated with 

 
Figure 7.  Some genes frequently altered by somatic structural variants affect AML outcomes.   
(A) Kaplan Meier survival plots of patients in the TCGA cohort stratified on the basis of gene expression for the 
indicated gene at the thresholds listed for each gene. (B) Genomic copy number alterations of TCGA AML 
cohorts.  Plotted is the z-score for the variation in average copy number in the AML cohort over each 10 kb bin 
across the gene of interest (orange line) and the adjacent genomic regions (black line).  Dotted line indicated the 
p<0.05 significance threshold. (C) ZFPM2 regulated genes overlap those bound by GATA2.  Expression of 
ZFPM2 exhibits positive correlation with that of 249 genes, 84 of which display binding by GATA2 within the 
gene body or within 10 kb of the gene in the K562 leukemia cell line.  (D) Expression heatmap of a subset of the 
genes whose expression is correlated and bound by GATA2 for the 50 patients in the AML cohort with the 
highest ZFPM2 and the 50 with the lowest, sorted by ZFPM2 expression levels.  (E) The top four David GO term 
categories of the 84 genes highlighted in (C). (F) GATA2 binds to the TAL1 promoter.  Shown are the genome 
map of TAL1, the H3K27ac and GATA2 abundance and the DNase hypersensitive sites (DHS) over that region 
in the K562 leukemia cell line.  H3K27ac marks promoter domains.   
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cancer, such as CPQ, COG5, TPD52, AIFM1, RAB33A, ZNF275, TBP and others, provide 

prognostic information in the TCGA cohort on the basis of their expression levels 

(Supplemental_Fig_S4.pdf). None of these genes have altered copy number as a consequence of 

adventitious local amplification or deletion (Supplemental_Fig_S3.pdf). In sum, this study has 

revealed a number of previously unrecognized structural variants affecting leukemia associated 

genes as well as recurrent mutations in other cancer associated genes and genes not previously 

associated with cancer.  Outcomes data suggest that some of these newly identified genes could 

have significant prognostic value. 

Structural variants in non-coding regions affect expression of cancer associated genes.  In 

addition to structural variants that affect the coding region of suspect genes, we observed 

structural variants near genes but not affecting their coding region.  Such structural variants 

could alter the expression of the adjacent gene by deleting a cis-acting regulatory element such 

as an enhancer, by duplicating an enhancer element or by fusing the gene to a novel enhancer 

(Lupianez et al. 2015; Franke et al. 2016).  To determine if structural variants in non-coding 

regions might affect gene regulatory regions, we asked where the endpoints of the different 

subclasses of structural variants in our patient cohort lay with regard to the boundaries of the 

approximately 500 AML and general cancer associated genes.  We removed from consideration 

any structural variant that interrupted a gene’s coding region.  We then shuffled the genome one 

hundred times with regard to the cancer related genes and after each shuffle, we calculated how 

many cancer genes were within a specific range of an SV, and this was calculated for each 

subclass of SVs.  By comparing the distribution of distances from the in silico randomization 

process to the actual number of genes residing at a specific distance from an SV, we could 

calculate a z-score reflecting the degree of enrichment of a specific class of SVs lying near a 
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cancer related gene.  The results of this analysis, shown in Figure 8A and B, suggests that the 

endpoints of translocations and deletions are enriched in the 5 Mb region adjacent to cancer 

related genes, and likely even closer (Supplemental_Fig_S5.pdf).  Enhancers are typically found 

in this region, suggesting that intergenic structural variants in our patient samples might be 

affecting expression of cancer genes.  The cancer genes lying near an SV in each patient sample 

are listed in Table 3. 

To test whether SVs alter cancer gene expression in our cohort, we performed whole 

transcriptome analysis of our leukemia samples by RNA sequencing.  We then merged our raw 

expression data with that from the TCGA study, quantile normalized the merged data set and 

then determined the average gene expression of all genes.  We then assessed whether the 

expression of a cancer related gene lying near an SV endpoint in our cohort differed significantly 

from the average expression of that gene over all samples.  As evident from the data in Table 3 

and Supplemental_Table_S3.pdf, 34% of cancer genes lying near somatic structural variants 

exhibited significantly altered expression relative to the combined TCGA cohort or were the 

highest or lowest expressed sample in our cohort.  We predominantly observed overexpression of 

the cancer gene suggesting that the structural variant relocated the gene to a new, stronger 

enhancer or duplicated a preexisting enhancer.  In a few cases, we observed reduced expression 

of the target gene, an unexpected outcome given the expected heterozygosity of the structural 

variants.  However, in only one of these cases was the structural genes altered in copy number 

(Supplemental_Fig_S6.pdf), indicating that for all other genes, altered expression was a 

consequence of perturbation to a cis or trans-acting regulatory element.   

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563270doi: bioRxiv preprint 

https://doi.org/10.1101/563270


23 
 

To test more directly whether the altered expression of these cancer genes was a consequence of 

altered cis-regulatory elements, we calculated the allelic bias of the transcripts from that gene in 

the affected patient.  For each gene in question, we identified from whole genome sequencing 

single nucleotide polymorphisms in the transcribed region that were heterozygous in the relevant 

patient’s sample and then determined the allelic ratio of those polymorphisms in the RNA 

transcript sequences in the affected patient sample.  If the altered expression were a consequence 

of the intergenic structural variant acting in cis, then we would expect to observe a significant 

bias in the RNA transcripts, since the variant should affect only one of the two alleles (Figure 

 
Figure 8. Intergenic SVs affect expression of genes in cis.   
(A) Likelihood of a translocation or deletion falling near a cancer gene in specific patient samples.  The location 
of any of 500 known cancer genes relative to the closest translocation in sample 868 or deletion in sample 796 
was determined and compared to 100 randomized relative positions to calculate a z-score likelihood that a cancer 
gene would lie in the particular indicated interval. Predicted, actual and z-scores are plotted for each distance 
interval. (B) Likelihood of intergenic structural variants falling near cancer genes.  These calculations for all the 
samples in our cohort indicate that the translocation and deletion endpoints are enriched in the 5 Mb region 
upstream of genes, where enhancers are generally located.  (C) Schema for determining allelic imbalance of 
expression of genes lying near intergenic structural variants.  (D) Plotted for the indicated genes in the indicated 
samples are the allelic ratios for heterozygous SNPs across the gene in that sample as determined by whole 
genome sequencing (lower panel, ordered by increasing ratios) and by RNA sequencing (upper panel).   
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8C).  Representative results of that analysis are shown in Figure 8D and summarized in Table 3 

and Supplemental_Table_S3.pdf.  For a number of genes, this expectation is met.  For instance, 

the increased expression of the BRCA1 gene in patient 1936 comes almost exclusively (3:1 

allelic bias) from one allele.  Similarly, the reduced expression of KIF5B in patient 1953 results 

from attenuation of expression from only one allele. In sum, more than one-third of the cancer 

genes adjacent to intergenic structural variants exhibited significantly altered expression and of 

those for which allelic bias could be assessed, 85% were expressed predominantly from one 

allele.  These data demonstrate that intergenic structural variants, which are not captured by gene 

panel or exome sequencing, could play a role in cancer gene expression and their associated role 

in cancer onset or progression. 

Discussion. 

This report examining leukemia patient samples as well as a previous report examining cancer 

cell lines (Dixon et al. 2018) documents that application of an integrative framework of genomic 

analysis reveals a large number of structural variants unrecognized, and essentially 

unrecognizable, by conventional genomic analysis, including whole genome sequencing.  While 

whole genome sequencing has been extensively applied to cancer genomics and optical mapping 

has been sporadically applied to a few individual samples or cell lines (Jaratlerdsiri et al. 2017; 

Chan et al. 2018), our study suggests that the combination of the two methods recovers twice as 

many structural variants as revealed by whole genome sequencing alone and our evaluation of 

the previous cell line study suggest that this combination is adequate to recover the vast majority 

of SVs.  Furthermore, by comparison to datasets of known polymorphic SVs, we could pinpoint 

those variants that likely arose as somatic alterations.  In one case, we were able to confirm the 

validity of this computational approach by comparing variants identified in the leukemia sample 
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with those of in the patients’ normal genomes.  Thus, our combined procedure provides a facile 

means to identify somatic SVs in leukemia samples. Moreover, our application of this method to 

a cohort of leukemia patients revealed recurrent alterations whose relevance would not be 

evident from evaluation of single samples. 

Our study identified somatic SVs in a number of genes mutations of which have been previously 

associated with leukemia.  The study also revealed almost one hundred genes recurrently 
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affected in our patient samples, some of which had been implicated in cancers other than 

leukemia and some of which had not been previously associated with any cancers.  The role 

variants in these genes play in leukemia onset and progression certainly warrants further 

investigation.  In particular, we are quite interested in determining the therapeutic value of 

targeting those genes altered in various leukemia samples.  For instance, ENPP2 overexpression 

is associated with poor outcomes of AML patients, suggesting that inhibition of the autotaxin 

phospholipase activity might improve outcomes in a subset of patients. Similarly, somatic 

alterations of FGFR1 and FGFR2 in several of the clinical samples might suggest that these 

patients could be candidates for treatment with the FDA approved Ponatinib. 

The previous study on SVs in cancer cell lines documented that a number of deletions led to 

elimination of enhancers or topologically associating domain boundaries, resulting in altered 

transcription of associated genes (Lupianez et al. 2015; Franke et al. 2016).  We have observed 

similar loss of cis-acting elements in the primary leukemia samples from our patients and have 

determined that a number of these variants alter expression of the associated gene.  Clearly, 

determining whether down regulation of expression of these genes attenuates proliferative 

capacity of the associated leukemia cells would be warranted. For instance, we find that, 

SMAD2, an intermediary in TGF-β signaling (Blank and Karlsson 2015), is upregulated by an 

intragenic translocation in one of our leukemia samples.  SMAD2 has been shown to be 

upregulated and over activated in CD34+ BM progenitors from MDS patients. Moreover, 

pharmacologic inhibition of the TGF-β pathway in vivo, using a small-molecule inhibitor of the 

TGF-β receptor, ALK5, alleviates anemia in a mouse model of MDS (Zhou et al. 2008; 

Bachegowda et al. 2013).  Accordingly, determining whether such pharmacologic inhibitors alter 
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the proliferative behavior of those cells could suggest a novel therapeutic approach for select 

patients with the disease. 

Recent studies characterizing the genomic alterations in AML have generated relative consistent 

classification systems based on the particular spectrum of driver mutations in a sample (Metzeler 

et al. 2016; Papaemmanuil et al. 2016).  These classifications provide fairly robust prognostic 

power in predicting the likely outcome of individual patients.  Our documentation of SVs 

provides additional information on the genetic alterations in patients and can refine their 

classification.  Whether this additional information enhances the prognostic capability of the 

existing classification schemes will require additional correlation of our SV data with clinical 

outcomes.  However, we reported here that stratification of patients on the basis of expression or 

copy number of several genes we found repeatedly mutated in our cohort provided a statistically 

significant difference in outcomes.  This suggests that additional studies of previously 

underappreciated structural variants may identify additional useful prognostic markers.  

Furthermore, these studies offer the potential for providing novel targets for therapeutic 

intervention.  

We have recently determined that optical mapping can be effectively applied to solid tumors.  

We find that DNA isolated from as little as 10 mg of solid tumor can provide sufficiently high 

molecular weight material for up to 1000X coverage of the tumor genome.  Such level of 

coverage from such minute amounts of material could provide effective identification of somatic 

structural variants in solid tumors even when the tumor comprises as little as 30% of sample 

mass.  Thus, we expect that the methodology we have exploited here for liquid tumors can be 

extended effectively to solid tumors as well.  
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Can the method described previously and in this report provide an effective replacement for 

cytological karyotyping of tumor samples?  Optical genome mapping of a liquid tumor at 100X 

coverage can currently be performed for approximately $750 (at volume) while current whole 

genome sequencing costs for 50X coverage approaches $1500 per sample.  These coverages are 

adequate for the level of analysis needed for somatic variant determination necessary for clinical 

evaluation.  Since the computational methods we describe here for identifying somatic versus 

germ line variants are both highly sensitive and quite precise, it may be possible to forego the 

need for a parallel germ line determination in order to identify relevant somatic mutations. Thus, 

the cost of this novel structural variant determination should be commensurate with that of 

cytological karyotyping, while the level of detection by this new methodology is substantially 

greater.  However, as evident from the results in this study, we do not yet understand the clinical 

significance of many of the variants identifiable by this methodology.  Thus, the ability to 

provide guidance to clinicians as to the significance of the data that might emerge from this new 

methodology is currently limited.  However, as we expand this technology to many additional 

clinical samples, our ability to interpret such structural variant data will clearly improve. 

 

Materials and Methods 

Patient Samples 

Bone Marrow (BM) aspirates or Peripheral Blood (PB) samples were obtained from AML 

patients, after informed consent using protocols under the Penn State Hershey IRB-approved 

protocol PRAMS Y00-186 or protocol PRAMS 40532. Mononuclear cells (MNCs) were isolated 

by density gradient separation (Ficol-Paque, GE Healthcare Life Sciences, Pittsburgh, PA) and 
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frozen for later use. Anonymized adult leukemia samples were obtained from the Penn State 

Hematology/Oncology Biobank.  Anonymized pediatric leukemia samples were obtained from 

the Pediatric Hematology/Oncology Biobank.  Patient clinical and demographic data are 

summarized in Supplemental_Table_S1.pdf. 

Cell culturing 

T-cell Expansion from Patient PBMCs. T-cell expansion was performed using the Miltenyi T 

Cell/Activation Expansion Kit (130-091-441) according to the manufacturer’s instructions. T-

cell activation beads were prepared prior to thawing patient cells. 100µl of CD2-Biotin, CD3-

Biotin, and CD28-Biotin were added to 500µl of anti-Biotin MACSiBead particles. MACSiBead 

buffer (0.5% human serum albumin and 2mM EDTA in PBS, PH 7.2, 200µl) was added to the 

mixture and the beads rotated slowly at 4°C for two hours. Activation beads were stored at 4°C 

until use. PBMCs from the patient were thawed in TEXMACs media with 1% Pen/Strep and 

counted using an automated cell counter. T-cell activation beads were added to the PBMCs at 

25µl/5x106 cells. IL-2 was added 96 hours later at 0.8µl IL-2/ml of media. Cell cultures were 

monitored and IL-2 media was added as needed. On day 14 post-thaw, additional T-cell 

activation beads were added to the culture.  

T-cell Sorting. 4.0x106 cells were harvested by centrifugation and resuspended in 2ml PBS to 

which was added 5µl of CD3-APC (BD Biosciences - 340661) and 20µl of CD33-PerCPCy5.5 

(BD Biosciences - 341640) followed by incubation in the dark for 15 minutes at room 

temperature. CD3 positive/CD33 negative cells were recovered by sorting on a BD FACS Aria 

Sorter II. 

Optical Mapping  
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DNA Preparation.  5-10x106 PBMCs or 1x106 T cells were incubated at room temperature for 5 

minutes on a table top rocker. The cells were then pelleted at 2000 x g for 2 minutes at 4C.  The 

supernatant was then removed and the cells were washed three times with 3ml of 1x PBS.  Cells 

equivalent to 600ng DNA were embedded in 2% Agarose (Bio-rad) and solidified in 4℃ for 45 

minutes. Cells within plugs were lysed in 2ml cell lysis buffer (Bionano Genomics, San Diego, 

CA) containing 167µl proteinase K (Qiagen, Germantown, MD) for 16 hours at room 

temperature. An additional Cell Lysis – Proteinase K solution was added to the plugs and 

incubation continued overnight. RNase A solution (50 μl, Qiagen, Catalog #158924) was added 

to the mixture and incubated for one hour at 37℃. Plugs were washed four times with Wash 

Buffer (Bionano Genomics, Part # 20256) at RT with shaking at 180 rpm, followed by five 15 

min washes with 10 ml Tris-EDTA, pH 8.0 (TE) each.  Plugs were melted at 70℃ for 2 minutes 

and equilibrated at 43℃ for 5 minutes, to which was added 2 μl of 0.5U/ul Agarase (Thermo 

Fisher, Catalog # EO046) and incubation continued at 43℃ for 45 min. DNA was transferred to 

a 0.1um dialysis membrane floating on 15 ml TE in a 6 cm petri dish and incubated for 45 

minutes at room temperature. DNA was transferred with a wide-bore tip to a 1.5 ml Eppendorf 

tube and incubated at room temperature overnight. DNA was slowly mixed with a wide-bore tip 

and broad range qubit was performed to measure the DNA concentration in each sample.  

Nickase Labeling. Each DNA sample was split in two and separately nicked with either 30 U of 

Nb.BspQI (New England Biolabs) in 1× Buffer 3 (Bionano Genomics) or 120 U of Nb.BssSI 

(New England Biolabs) in 1× NEBuffer 3.1, at 37 ℃ for 2 hours.  Nicked DNAs were labeled at 

72℃ for 60 minutes using 15 U Taq DNA Polymerase (New Engand Biolabs) in 1× each 

Labeling Buffer and Labeling Mix (Bionano Genomics).  Repair of nick-labeled DNA was 

carried out at 37℃ for 30 minutes in 1× Repair Mix (Bionano Genomics), 0.25× ThermoPol 
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Buffer (New England Biolabs), 1 mM NAD+ (New England Biolabs), and 120 U Taq DNA 

Ligase (New England Biolabs).  DNA staining was performed with the final solution containing 

1× flow buffer, 1× DTT (Bionano Genomics), and 3 ul DNA stain (Bionano Genomics), in room 

temperature overnight. Each of the paired samples underwent an average of 7 rounds of data 

collection on Bionano Irys platform to reach 100X reference coverage. For each round, 160ng 

prepared DNA was loaded to a Bionano Irys chip that contains two flow-cells, and each round 

contains 30 cycles of data collection.  

Direct labeling. 750ng of gDNA was mixed with DLE-1 Buffer (Bionano Genomics, 

Part#20350), DL-Green (Bionano Genomics, Part#20352), and DLE-1 Enzyme (Bionano 

Genomics, Part#20351) and incubated for 2 hours at 37℃ in a thermocycler. Proteinase K 

solution was then added to the reaction and incubated for 30 minutes at 50℃. Finally, a DLS-

membrane (Bionano Genomics, Part#20358) was placed upon 60uL of DLE-1 buffer in one well 

of a DLS-microplate (Bionano Genomics, Part#20357). DNA was transferred onto this 

membrane, incubated at room temperature for one hour, transferred onto another membrane with 

DLE-1 buffer and incubated for 30 minutes at room temperature. DTT (Bionano Genomics, 

Part#20354), Flow Buffer (Bionano Genomics, Part#20353), and DNA stain (Bionano 

Genomics, Part#20356) were added to the DNA in an amber tube and the tube was mixed at 

5rpm for 1 hour at room temperature and then stored in the dark overnight at room temperature.  

Each labeled sample was added to a BioNano Saphyr Chip (Bionano Genomics, Part#20319) and 

run on the Bionano Saphyr instrument, targeting 100X human genome coverage.  

Library Preparation and DNA Sequencing 
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Whole genome sequencing. DNA was purified from PBMC or blood using DNeasy Blood & 

Tissue Kit (Qiagen) or QIAsymphony DSP DNA Mini Kit (Qiagen) as described by the 

manufacturer.  Megabase DNA was prepared using DNA Clean and Concentrator (Zymo 

Research). Covaris fragmentation of samples was performed using the 400 bp target protocol. 

WGS libraries were prepared according to the KAPA HyperPrep PCR-free Kit (Roche).  

Illumina NovaSeq S2 150 bp paired-end sequencing was performed to achieve 40X genome 

coverage. 

RNA sequencing. Total RNA was extracted from PBMC isolates using Quick-RNA Miniprep 

Plus Kit (Zymo Research).  Libraries were prepared from total RNA following rRNA depletion 

with KAPA RNA HyperPrep Kit RiboErase according to manufacturer’s instructions (Roche).  

Illumina NovaSeq 50 bp paired-end sequencing was performed to obtain 50 million raw reads 

per library. 

Data Analysis 

Variant detection and filtration from WGS results.   

SV and SNV Detection. We used two pipelines to independently identify SVs. The first pipeline 

uses BWA-MEM (v0.7.15-r1140) to align the paired-end reads to human reference genome 

GRCh38 (version GCA000001405.015). Duplicated reads were removed by Sambamba (v0.6.6). 

Reads with mapping quality ≥ 20 were retained for downstream SV calling by Delly (v0.7.7), 

which reports SVs as deletion, inversion, insertion, tandem duplication or inter-chromosomal 

translocation. SVs were also independently detected by the Speedseq pipeline (v0.1.2), in which 

paired-end reads were aligned to the same GRCh38 reference genome with BWA-MEM. 

Duplicated reads were removed by SAMBLASTER (v0.1.24). SAMBLASTER then extracted 
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discordant read pairs and split reads for downstream SV detection, which was accomplished by 

Lumpy (v0.2.13) with default parameters. During the SV detection, Delly and Lumpy exclude a 

list of telomeric, centromeric, and 12 heterochromatic regions provided by the Delly software 

(https://raw.githubusercontent.com/dellytools/delly/master/excludeTemplates/human.hg38.excl.t

sv). 

Copy number variants (CNV) were detected by Control-FREEC (v11.0) with the following 

parameters “breakPointThreshold = 0.8, coefficientOfVariation = 0.062, ploidy = 2”. Control-

FREEC normalizes copy numbers for genome GC contents, mappability, and ploidy. Copy 

number profile for each 50 kb bin of the genome was used for making Circos plots. 

SNVs were detected using FreeBayes (version: v0.9.21-19-gc003c1e, included in SpeedSeq 

pipeline (version: 0.1.2)) with the following parameters “—min-repeat-entropy 1”.  Low-quality 

SNVs (QUAL field < 20) were removed for downstream analysis. SNVs were annotated with 

SnpEff (version 4.3) using default parameters and filtered for potential protein altering variants 

(annotated as high/moderate putative impact). This filtered SNV set was then compared against 

common SNPs (dbSNP150 with allele frequency > 0.01) to keep only potential somatic SNVs. 

SV filtration and classification. We employed the following criteria to filter SVs detected by 

WGS: SVs had to be 50 bp or greater, could not map to chromosome Y or the mitochondrial 

genome and had to be supported by at least 10 reads combining spanning paired-end reads (PE) 

and split reads (SR) and an additional 2 split reads. SVs calls from Delly and Lumpy were 

merged to form a consensus call. Merging criteria differed depending on the type of SVs. 

Deletions and duplications were merged if the reciprocal overlap (RO) between calls from Delly 

and Lumpy was greater than 50%. Deletion coordinates determined by Lumpy were used for the 

merged call set. Insertions with a RO >= 90% were merged and Lumpy coordinates were used. 
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Translocations were merged if both break-point ends mapped within 50bp of each other and if 

the strand of the break-point ends matched. Final translocation coordinates were based on Lumpy 

calls. Coordinates for insertions were obtained from Delly since Lumpy does not detect 

insertions.  

We merged deletions detected by LUMPY/DELLY and loss of copies detected by Control-

FREEC to form a non-redundant list of “deletions”. Similarly, we merged duplications detected 

by LUMPY/DELLY and gain of copies detected by Control-FREEC, removed redundant ones, 

and defined the overlapped ones as “duplications.” For SVs detected by both LUMPY/DELLY 

and Control-FREEC, we use the breakpoints provided LUMPY/DELLY. 

We excluded inter-chromosomal translocations that were also found in a human normal cell line 

(GM12878) in order to remove likely polymorphisms. WGS data for GM12878 were 

downloaded from European Nucleotide Archive (Accession number: ERR194147) and analyzed 

from SVs by the same aforementioned pipelines. We also removed inversions in each patient 

sample that share a RO ≥ 99.9% with inversions detected in GM12878. We removed inter-

chromosomal translocations whose both break-point ends are within 50 bp in any two 

individuals, since intra-chromosomal translocations that are shared between two individuals at 

the nearly same location are likely to be polymorphisms or false positive. 

SV detection and filtration from optical mapping results. 

De novo assembly, SV detection and SV classification. We performed de novo assembly of 

cancer genomes using long optical mapping molecules, from which we identified SVs by 

comparing the generated cancer genome to the reference genome GRCh38, using software 

BioNano solve 3.1.1 with RefAligner and pipeline 7196/7224. DNA molecules used for 
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assembly met the following criteria: length >150Kb and spanning at least nine labels, with a 

signal to noise ratio higher than 2.75 and backbone intensity lower than 0.6. Parameters used for 

de novo assembly and SV detection are the same as described in the method section in our 

previous work (Dixon et al. 2018).  

Raw SV output comprises deletions, insertions, inversion, duplications and translocations, which 

include interchromosomal translocations and any intra-chromosomal translocations that are 

larger than 5Mb. We ran software smap2vcf to convert SV output to VCF format to determine 

orientation and then separated intra-chromosomal translocations into deletions (5’->3’) and 

inversions (5’->5’ and/or 3’->3’) according to their orientation.   

Filtration of detected SVs.  We removed all SVs that were smaller than 50bp and all intra-

chromosomal SVs with confidence score smaller than 0. We further removed false positive SVs 

generated due to technical bias such as similar labeling pattern of distinct genomic regions, 

which results in misalignment and misidentifications of SVs. We also removed large identical 

SVs (defined as >99.99% overlap) that were found in more than one sample, since identical 

somatic SVs are unlikely to repeatedly occur in a small collection of samples. We removed 

deletions overlapping genomic gaps, which represent correction of gap size of the reference 

genome rather than true deletions.  Finally, we generated a list of false-positive translocations 

and inversions from our previous work and we removed SVs whose breakpoints that are within 

500Kb to these previously identified SVs.  

Integration of SVs from optical mapping and WGS. 

We integrated SV calls to combine SVs independently identified by both methods into a single 

call and to represent each SV with breakpoints of highest resolution available. WGS provides 
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SVs breakpoints with base pair resolution, while optical mapping provides only the nearest 

labeling site to the left and right of the SV (SV interval) instead of its start and end. We therefore 

set the following criteria for determining whether SVs independently detected by optical 

mapping and WGS refer to the same event: 1) Deletions, insertions and duplications detected by 

WGS must overlap at least 50% with the SV interval demarcated by optical mapping and the 

difference in size predicted by the two methods must be less than 30%. 2) For translocations and 

inversions, the breakpoint detected by WGS must lie within 500Kb to that detected by optical 

mapping and the orientation of the SV determined by the two methods should be consistent. If a 

copy number gain matches duplications found by optical mapping, we specified the SV to be a 

duplication. All SVs detected by both methods are represented by the breakpoints obtained by 

WGS.  

Determination of somatic SV mutations. 

We used several filtering strategies to distinguish between polymorphic SVs and somatic 

mutations. First, we compared our deletions, duplications, copy gain and inversion with 

corresponding SV type in the database of genomic variations (DGV) (MacDonald et al. 2014) 

with the stipulation that an SV that appeared in at least five individuals in the DGV is a 

polymorphism. We removed from our somatic mutation list any SV that overlapped at least 50% 

with a DGV polymorphic SV with less than 30% difference in size. Second, we removed SVs 

with identical sizes and positions in any two or more of our samples or in the NA12878 cell line 

(Dixon et al. 2018). Third, we removed SV calls matching any identified in the UCSF optical 

mapping dataset of polymorphisms (Levy-Sakin et al. 2019).  We interpreted an SV detected by 

optical mapping in three of the 150 normal individuals in the study to be a polymorphism. 

Fourth, we removed SV calls that match any observed in the BioNano Genomics control dataset.  
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Circos profiling of leukemia genome. 

Leukemia genome profiles of each samples were generated using Circos (Krzywinski et al. 

2009), which includes three tracks: copy number variation genome-wide, deletions and 

duplications, and inversions and translocations. We used copy number at 50Kb bin size 

measured by Control-FREEC. The SVs we plotted were the integrated union from WGS and 

optical mapping. We display genes that are directly overlapping with deletions and copy gains in 

the outer track. For inversions and translocations, we set a buffer zone of 50Kb to represent to 

possible position of SV breakpoint detected by optical mapping. We display genes that are 

overlapping with the possible position of breakpoints of translocations and inversions in the 

inner track.  

Comparing SVs to Karyotype. 

We defined an SV detected by our method as identical to that identified by karyotyping if 1) the 

position of the SV detected by optical mapping or WGS corresponds to that provided by 

karyotyping, demarcated by chromosome and the band on the p or q arm; 2) the SV detected by 

our method is larger than 1Mb, which would be of sufficient size to be detected by karyotyping; 

and 3) the type of SV is consistent between methods: deletion or copy loss in our method 

corresponds to “del” or “-” in cytogenetics; inversions correspond to “inv()”; translocations or 

insertions correspond to “t()”, “der()” or “ins()”;  gain of copies or polyploidy correspond to “+”. 

Complex forms of copy gain such as fragment duplication, inverted duplication or translocated 

duplications are generally identified as “add” in karyotyping.  

Identification of frequently disrupted genes.  
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We intersected RefSeq gene exons (GRCh38) with somatic SVs we detected and considered a 

gene disrupted if 1) part or all of one or more exons overlaps any part of a deletion, loss or gain 

of copies, or duplications; 2) the breakpoint of an inversion or inter-chromosome translocations 

lies within the gene; 3) the coding region carries an indel or SNV resulting in nonsense, 

frameshift or missense mutation or a splicing sequence alteration.  Genes inside of an inversion 

but not interrupted by the breakpoint are not considered disrupted. We divided genes into three 

exclusive groups based on data from COSMIC (https://cancer.sanger.ac.uk/census): 86 AML 

driver genes, 534 other general cancer-related genes, and 23631 other genes without clear 

evidence for association to cancer.  

Outcomes analysis. 

For each novel gene frequently disrupted by somatic mutations, we examined whether its copy 

number or gene expression correlated with disease outcome. Kaplan Meier survival plots were 

constructed from clinical outcomes data from GDC AML patient cohorts 

(https://xenabrowser.net/datapages/; https://portal.gdc.cancer.gov/projects/TCGA-LAML). 

Patients were stratified on the basis of gene expression or gene copy number evenly into two 

groups, one containing half of the cohorts with above the average expression/copy number of the 

gene and the other group containing the half of cohorts with below average expression/copy 

number of gene.  

Copy number linkage analysis. 

We obtained copy number variation of TCGA AML cohort (n=290) profiled by SNP array from 

GDC (https://portal.gdc.cancer.gov/projects/TCGA-LAML) , segmented the genome in 10Kb 

bins and use an in-house pipeline to calculate the average CNV from all patient for each 10Kb 
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bin. We calculated the Z score and the corresponding P value for each bin genome-wide and 

used that to set a thresholds above or below which represents significant gain or lost across the 

AML cohort.  

Simulating distances between SVs and cancer-related genes. 

Using 86 previously defined AML-driver gene (Metzeler et al. 2016; Papaemmanuil et al. 2016) 

and 535 additional cancer-related genes from COSMIC (https://cancer.sanger.ac.uk/census), we 

calculated the number of such genes within a specific distance interval to the nearest SV for each 

SV subtype in patient samples as well as gene density (genes per Mb) . Genes that directly 

overlap an SV were excluded. We then permuted the distance distribution by fixing the positions 

of the SVs and randomly distributing the positions of the list of genes and then calculated the 

number of genes within specific distance intervals to the nearest SV after each individual 

permutation. The simulations were run one thousand times to generate a distribution of expected 

number of genes and gene density for each distance interval. We then calculated the Z-score and 

P value of the actual gene density by comparing to the distribution of expected gene density for 

each interval.  

RNA-seq data processing.  

RNA-seq reads were processed using the ENCODE standard RNA-seq processing pipeline 

(https://github.com/ENCODE-DCC/long-rna-seq-pipeline). Briefly, raw RNA-seq reads were 

mapped to human genome reference GRCh38 (version: GRCh38_no_alt_GCA_000001405.15) 

with STAR (v2.5.3a_modified). Mapped reads were quantified and aggregated at gene level by 

RSEM (v1.2.31). FPKM values for each gene were used for downstream analysis. To investigate 

the level of gene expression of our patient samples in general AML populations, we downloaded 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/563270doi: bioRxiv preprint 

https://cancer.sanger.ac.uk/census
https://github.com/ENCODE-DCC/long-rna-seq-pipeline
https://doi.org/10.1101/563270


40 
 

gene expression for two AML cohorts from TCGA (link). We then performed quantile 

normalization for FPKM values across patient sample in this study and TCGA cohorts to 

eliminate batch effects. To quantify the level of gene expression in this study in general AML 

population, we calculated the Z-score for each gene on the log-transformed FPKM values 

relative to the average FPKM value for that gene in all samples both across only our leukemia 

and across our samples plus the TCGA cohort.  

Allelic gene expression analysis. 

We processed RNA-seq data bam file with WASP pipeline (van de Geijn et al. 2015) to correct 

bias towards certain SNV alleles, which can be introduced during mapping. In running WASP, 

we input SNVs detected from WGS, and WASP outputs a new bam file with bias removed.  We 

then identify SNV on the newly generated bam file using samtools mpileup.  

We then pick all the heterozygous SNVs appeared in WGS data, by the criteria that the allele 

ratio between reference and alternative alleles should be between 0.333 and 3.  We examine the 

allele frequency of the same loci in RNA-seq data and performed chi-square test on the basis of 

the allele frequency from WGS and RNA-seq. For each gene, we counted the number of 

significant SNVs, and we calculated the expression percentage contributed by the dominant 

allele, normalized by the allele frequency in WGS. 
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Data Access 

Raw and aligned next generation sequencing files have been submitted to the European Genome-

Phenome Archive (EGA; https://www.ebi.ac.uk/ega) within study accession 

EGAS00001003431. 
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