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Summary

Animals infer latent properties of the world from noisy and changing observations.
Complex, probabilistic approaches to this challenge such as Bayesian inference are ac-
curate but cognitively demanding, relying on extensive working memory and adaptive
learning. Simple heuristics are easy to implement but may be less accurate. What is
the appropriate balance between complexity and accuracy? We construct a hierar-
chy of strategies of variable complexity and find a power law of diminishing returns:
increasing complexity gives progressively smaller gains in accuracy. The rate of di-
minishing returns depends systematically on the statistical uncertainty in the world,
such that complex strategies do not provide substantial benefits over simple ones
when uncertainty is too high or too low. In between, there is a complexity dividend.
We translate these theoretical insights into specific predictions about how working
memory and adaptivity should be modulated by uncertainty, and we corroborate
these predictions in a psychophysical experiment.

Keywords:
adaptivity, working memory, learning, on-line inference, change-point processes,
complexity, diminishing returns

∗Lead contact (e-mail: tavoni@sas.upenn.edu)
1Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
3Co-senior authors

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/563346doi: bioRxiv preprint 

https://doi.org/10.1101/563346
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Animals make sequences of sensory observations to arrive at judgements about cur-
rent and future states of the world. In dynamic environments, this process is chal-
lenged by two primary forms of uncertainty (Heilbron & Meyniel, 2018; Yu & Dayan,
2005; Behrens et al., 2007): (1) noise, which obscures the useful information in sig-
nals; and (2) volatility, which is the tendency of the world to undergo change-points
that reduce the relevance of the past to the future. In general, noise can be miti-
gated by remembering past experience and extracting average trends. In contrast,
change-points require forgetting the pre-change-point history. Accordingly, we ex-
pect inference in dynamic environments to benefit from working memory for past
experiences and adaptivity to environmental dynamics.

Models of inference, including those proposed to account for human and animal
decision-making, can differ widely in form, accuracy, and complexity, leaving open
basic questions about when and why each of these models is relevant to how the
brain solves these problems (Rao, 2004; Bogacz et al., 2006; Gold & Shadlen, 2007;
Fearnhead & Liu, 2007; Krugel et al., 2009; Shi & Griffiths, 2009; Brown & Steyvers,
2009; Nassar et al., 2010; Gigerenzer & Gaissmaier, 2011; Ossmy et al., 2013; Wilson
et al., 2013; Legenstein & Maass, 2014; Glaze et al., 2015; Brody & Hanks, 2016; Veliz-
Cuba et al., 2016; Glaze et al., 2018). The goal of the present study was to identify
fundamental principles governing when particular cognitive operations are important
to perform inferences that are both effective and efficient; that is, sufficiently accurate
but also consistent with computational and information-gathering constraints that
lead to bounded rationality (Gigerenzer & Gaissmaier, 2011; Gershman et al., 2015;
Ortega & Braun, 2013). We reasoned that computational complexity in models of
inference can represent a cognitive cost (e.g., in terms of the amount of working
memory and the degree of adaptivity) that under some conditions might outweigh
the benefits of potential gains in accuracy.

To test this idea, we constructed a hierarchical class of inference models that can
be rated in terms of both accuracy and computational complexity. At the top of
the hierarchy is Bayesian inference, which uses a probabilistic framework to combine
both noise and volatility into a strategy that makes the most accurate inferences
about current and future states of the world based on all previous observations
(Adams & MacKay, 2007; Fearnhead & Liu, 2007; Wilson et al., 2013; Glaze et al.,
2018; Griffiths et al., 2012; Radillo et al., 2017). This model provides a maximum-
accuracy benchmark for our analyses, but it also can require virtually unlimited
computational resources and thus provides a maximum-complexity benchmark as
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well. By deriving increasingly simple approximations to exact Bayesian inference,
we then constructed two nested families of models corresponding to mental strategies
that have progressively lower adaptivity and memory requirements (Fig. 1). Both
accuracy and complexity decrease along the hierarchy.

We tested the performance of these nested models on tasks with varying noise and
volatility and identified two fundamental principles. The first is a law of diminish-
ing returns, whereby gains in accuracy become progressively smaller with increasing
complexity, regardless of the amount of uncertainty in the environment. The second
principle is a non-monotonic relationship between uncertainty and the complexity
of the most efficient model: simple models are the most efficient when uncertainty
is very high or low, whereas more complex models are useful at intermediate levels
of uncertainty, when cues are both identifiable and helpful. Based on these princi-
ples, we generated specific, quantitative predictions about the most efficient use of
adaptivity and working memory under particular uncertainty conditions. We then
corroborated these predictions in an experiment probing human inferences under
levels of noise and volatility that had not been explored previously. Overall, these
results provide new insights into the cognitive processes that may be differentially
engaged to perform efficient and effective inference under different conditions.

Results

A hierarchy of cognitive functions maps to a hierarchy of inference strategies

Numerous models have been proposed to solve inference problems in dynamic, noisy
environments, ranging from complex, probabilistic ideal observers to simpler, heuris-
tic update processes (Adams & MacKay, 2007; Nassar et al., 2010; Wilson et al.,
2013; Sutton & Barto, 1998; Behrens et al., 2007). These models typically adapt to
noise and volatility in their inputs by processing information over multiple timescales
in a manner appropriate to the task conditions. Here we show that many of these
models, and other plausible strategies, can be described parsimoniously in terms of
two partially overlapping nested families that represent systematic simplifications of
the Bayesian ideal observer (Fig. 1). The two families, which differ in terms of their
working-memory demands, each include a progression from adaptive to non-adaptive,
and less flexible, processing.

In general, a system for online inference aims to identify the current source of ob-
servations (the estimation problem) or to predict the next source (the prediction
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Figure 1: A hierarchy of cognitive functions maps to a hierarchy of inference strategies.
Two nested families of inference strategies of decreasing algorithmic complexity can be derived from
the exact Bayesian approach by progressively reducing requirements of memory and adaptivity (see
also Fig. S1). We illustrate this in the context of inference from noisy observations (blue dots) of a
latent variable µt (red dashed lines). The optimal Bayesian strategy balances prior belief against
evidence integrated over temporal windows of all possible lengths, with each window weighted by
the likelihood that the latent variable has been stable over that duration. The Mixture of Sliding
Windows truncates the Bayesian model to a finite number of windows of fixed durations. The
Delta Rules instead weigh past observations exponentially (examples of window and exponential
integration kernels depicted as grey areas). The inferences from different Sliding Windows or Delta
Rules are weighted optimally in the estimates of the mixture models. The Memoryless model simply
combines current evidence with the prior and maintains no working memory (Dirac-delta kernel).
The Prior model sticks to the prior belief regardless of evidence. The Evidence model follows the
current evidence and ignores both prior beliefs and past evidence. The decrease in algorithmic
complexity over this hierarchy of strategies mirrors a corresponding decrease in cognitive load
(legend on the right-hand side).
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Figure 2: Gaussian change-point pro-
cesses. Observations xt (blue dots) are gen-
erated from a source positioned at µt (dashed
red line) with Gaussian noise (SD = σ). The
source is hidden to the observer and undergoes
change-points at random times with probabil-
ity h (volatility). At the change-points, µt is
resampled from a Gaussian distribution cen-
tered at µ̄ (dashed black line, stable over time)
and with SD = σ0 = 1. Different panels show
processes with different volatility (increasing
from left to right) and noise R = σ/σ0 (in-
creasing from bottom to top): A: h = 0.06,
R = 0.45; B: h = 0.24, R = 0.45; C: h = 0.06,
R = 0.05; D: h = 0.24, R = 0.05.

problem), in the presence of noise and unsignalled change-points, given all past and
present data x1:t = {x1, . . . , xt}. We consider a standard problem in which change-
points in the source occur according to a Bernoulli process with a fixed probability
h (volatility), and the source, characterized by a single number µt at a time t, gen-
erates observations with Gaussian variability (Fig. 2) (Wilson et al., 2013; Nassar
et al., 2010). Noise in this generative process is measured by the ratio R between the
standard deviation of the observations with respect to their source and the standard
deviation of the sources across many change-points.

In this setting, the Bayesian ideal observer estimates the full distribution of the source
in terms of two quantities: (1) the conditional probability p(rt|x1:t) of the run-length
rt, which is the number of time steps elapsed at time t since the last inferred change-
point in the source, and (2) the probability p(µt|rt) that the source is µt given data
observed over just the run-length rt. By multiplying these probabilities and summing
over possible run-lengths, we can compute the probability that the source is µt given
all the data:

p(µt|x1:t) =
t∑

rt=1

p(µt|rt)p(rt|x1:t) . (1)

The Bayesian model computes p(µt|rt) and p(rt|x1:t) exactly (Adams & MacKay,
2007; Fearnhead & Liu, 2007; Wilson et al., 2010). The optimal Bayesian estimate of
the source, µ̂t, is then simply the expected value of µt in the conditional distribution
(1). To optimally predict the next source, µ̂t+1, given this estimate, we must include
the expected rate of change-points so that

µ̂t+1 = hµ̄+ (1− h)µ̂t (2)
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where µ̄ is the asymptotic average value of the source (Fig. 2). These Bayesian
estimators minimize the mean squared error in both the estimation and prediction
task.

The Bayesian model is computationally expensive: the time needed to make an
estimate or a prediction grows linearly with t, because the model requires a sum
over possible run-lengths (eq. 1; Wilson et al. (2013)). In cognitive terms, exact
Bayesian inference requires working memory to increase with time. The computa-
tion is simplified by considering only a fixed set of run-lengths {r1, . . . , rN} chosen
to minimize the mean squared error in the estimator. This reduction approximates
the full Bayesian model with N computational units, each charged with generating
an estimate of µt based on a sliding-window integration of past observations over
the duration ri, combined with prior information on the average value of the source
µ̄ (eqs. 30, 31). This combination is chosen to guarantee that, when noise is high,
the estimate is closer to the prior, which is more reliable than the sliding-window
integration. Conversely, when noise is low, the estimate is primarily based on the
sliding-window, which is more informative than the prior. Estimates computed by
each unit are summed with a relative weight set adaptively by the posterior proba-
bilities p(ri|x1:t). As such, low/high volatility in the world will lead to preferential
use of long/short sliding windows (Behrens et al., 2007; Fusi et al., 2007). This
Mixture of Sliding-Windows Model is simpler than the full Bayesian procedure, but
implementing it in the brain would still require extensive working memory, up to the
longest run-length, and circuitry to compute the adaptive weights given to different
run-lengths.

The working-memory load can be reduced by replacing the sliding windows with
delta-rule updating units that weigh past observations according to an exponentially
decaying kernel (eq. 33). Each delta-rule unit has a fixed time constant of decay lin-
early related to ri that sets the timescale for information integration. The integration
can be implemented recursively with a limited memory cost, through a simple update
of the previous estimate by a fraction (learning rate) of the difference between the
current observation and the previous estimate (eq. 32). The relative weight of the
different delta rules in the combined estimate is again set adaptively by the posterior
probabilities p(ri|x1:t) (Wilson et al., 2013). This Mixture of Delta-Rules Model is
simpler than the Bayesian model and requires less working memory than the Mixture
of Sliding-Windows Model, but still requires computational resources to implement
each of the delta-rules and to combine these with the correct adaptive weights.

The demand for computational resources in both model families is reduced dramati-
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cally by making them non-adaptive. This reduction amounts to considering a single
Sliding-Window or a single Delta-Rule, each with a fixed timescale for integrating
evidence. These models still require working memory to carry out the integration.

An even simpler inference strategy, which does not need working memory, estimates
the source µt as a weighted average between the present observation xt and the
average source µ̄ (eq. 34). This Memoryless Model is nested in the Sliding-Window
Model, from which it is derived by choosing an evidence integration window of just
one time-step. The Memoryless Model is the minimal model that learns and updates
prior biases, or knowledge of stable features of the environment (µ̄), based on new
evidence from rapidly changing variables (xt).

Both the Memoryless and Delta-Rule Models can be further reduced to the simple
Prior Model (µ̂t = µ̄) by setting the learning rate to zero. This Prior Model repre-
sents knowledge acquired, after a sufficiently long exposure to a given environment,
about the constant or slow (stable across many change-points) features of the process
generating the observations. Inferring and storing the slowly varying structure of the
environment presumably still requires some cognitive effort and long-term memory
resources.

Removing this last cognitive demand leads to a strategy that simply returns the
current observation xt as both an estimate of µt and a prediction of µt+1. This
strategy, which we call Evidence, can also be seen as the simplest possible model
nested in both the Memoryless and the Delta Rule Models, because it is obtained
from them by setting the learning rate to one.

These inference strategies form a hierarchy from the maximally accurate and cogni-
tively demanding Bayesian model, to the maximally simple Evidence (Fig. 1). Each
of these strategies estimates the source of observations and uses it to make predictions
by computing a function that depends on (1) observations (x1:t), (2) fixed parame-
ters of the environment (the average source µ̄, the volatility h, and the noise level
R), and (3) model-dependent “meta-parameters” (the run-lengths and the learning
rates). The simplifications giving rise to the two families of strategies from the full
Bayesian model can be interpreted in terms of progressive reductions of cognitive
demand.

Adaptivity can be unnecessary when variability is low or high

When probability distributions are inferred from limited samples, complex mod-
els can generalize worse to new data than simple models (Balasubramanian (1997);
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Myung et al. (2000); Rissanen (1996, 1987); Barron & Cover (1991); Barron et al.
(1998)). How to identify the model that best trades off fitting accuracy and gener-
alization performance is the subject of a vast literature on model selection.

Here, we asked a different question. Even if a complex model has a lower prediction
error, is the increase in complexity relative to a simple model “worth the effort”? One
way to ask this question for nested model spaces like the hierarchy described in Fig. 1
is to find the best parameter configuration in the higher-dimensional parameter space
of a more complex model, and to then determine whether the prediction error changes
much if we vary the parameters to approach a simpler nested model. Formally, in an
environment characterized by parameters {el}, the best higher-dimensional model
minimizes an error function E ({el, αk}) with respect to its parameters {αk}. Thus,
at the optimum {α̂k}, the gradient of the error with respect to the model parameters

vanishes: (∇E)i = ∂E({el,αk})
∂αi

∣∣
{αk=α̂k}

= 0. We can then characterize sensitivity of

the error to the precise choice of parameters through the Hessian matrix

Hij({el, α̂k}) =
∂2E({el, αk})

∂αi∂αj

∣∣∣∣
{αk=α̂k}

(3)

which evaluates the convexity of the error function at its minimum. The eigenvalues
of H indicate how much the error E increases when moving away from the minimum
in parameter space in the direction of the eigenvectors of H. Thus, a small eigenvalue
indicates a combination of parameters that is substantially irrelevant for minimiz-
ing prediction error, whereas a large eigenvalue indicates a relevant combination of
parameters (Gutenkunst et al., 2007).

We can characterize the irrelevance of the least-important parameter combination
relative to the most-important one by evaluating the Redundancy, defined as the
log ratio between the maximum and minimum eigenvalues of the Hessian matrix
evaluated at the optimal parameters {α̂k}:

Redundancy({el, α̂k}) = log

(
λmax({el, α̂k, })
λmin({el, α̂k})

)
. (4)

A Redundancy of q indicates that parameter deformations along the eigenvector as-
sociated to the least-relevant eigenvalue have a 10q-fold smaller effect on the error
than deformations along the eigenvector associated to the most-relevant eigenvalue.
If this irrelevant eigenvector points towards a simpler model nested within the pa-
rameter space, it suggests that the added complexity of the full model compared
to the nested one is not necessary for good prediction performance. We can evalu-
ate this Alignment as the (normalized) angle between the most irrelevant eigenvector
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and the most direct line from the optimal higher-dimensional model with parameters
{α̂k} to the optimal lower-dimensional nested model (eq. 35, Methods).

We used this formalism to compare models attempting to predict the next value in
the Gaussian change-point process in Fig. 2. The environmental parameters {el} are
the volatility h and the noise R, and E was chosen to be the mean-squared prediction
error over 5000 time steps of the process for each choice of h and R. We computed
the Redundancy of the mixture models with two Sliding Windows and two Delta
Rules and their Alignment with respect to the optimal nested single Sliding Window
and Delta Rule, respectively. Both mixture models have two parameters {α1, α2}
describing effective learning rates, which are related to (1) the window length of
evidence integration in the Sliding Windows (eqs. 30, 31), and (2) the timescale of
the exponential evidence-integration kernel in the Delta Rules (eqs. 32, 33). The
relative weight given to the two effective learning rates is determined adaptively
at each time step based on accumulating experience. The non-adaptive single-unit
models (one Sliding Window or Delta Rule) are obtained by setting α1 = α2. The
Alignment, which takes values between 0 and 1, is simply the normalized angle θ
between the most irrelevant parameter direction at the optimal mixture model and
the line connecting the optimal mixture model to the optimal single-unit model
(Fig. 3A).

We found that the adaptive mixture models become redundant when noise and
volatility are low so that inference is easy and complex strategies are unnecessary, and
when noise or volatility are high so that inference is difficult, making complex strate-
gies ineffective (Fig. 3B). When the models are redundant, the irrelevant parameter
direction tends to align towards the simpler, non-adaptive single-unit models with
optimally chosen parameters (Fig. 3C,D). This result suggests that when uncertainty
is low or high simpler models will perform almost as well as complex ones. Sophisti-
cated, adaptive inference matters only in a limited range of environmental conditions,
characterized by relatively low volatility and intermediate noise (Fig. 3B,C).

A power law of diminishing returns

The results in the previous section suggest that complex solutions to on-line infer-
ence problems may not always be worth the effort. To investigate this possibility
quantitatively, we define the algorithmic complexity of an inference strategy in terms
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Figure 3: Adaptivity can be unnecessary when variability is low or high. A: Computation
of the Alignment. (Left) Two-dimensional parameter space of the mixture models with two units
defined by learning rates α1 and α2, and the embedded unidimensional space of the nested single-
unit models (diagonal line α1 = α2). The optimal mixture model and optimal single-unit model
(black dots) are indicated along with the parameter deformation leading from one to the other (gray
line). (Right) Relevant and irrelevant parameter deformations that maximally or minimally change
the prediction error moving away from the optimal adaptive mixture model. Alignment is defined as
the normalized angle θ between the irrelevant deformation and the direction to the best non-adaptive
single-unit model. B: Redundancy of the adaptive mixture models (left: Mixture of two Sliding
Windows; right: Mixture of two Delta Rules) for a range of volatility and noise values in a change-
point detection task (Fig. 2). Slices through the red inset windows are shown to the left and right,
and show the non-monotonic trend of Redundancy with noise at low and intermediate volatility
(red line: 4th-order polynomial fit): Redundancy is highest at low and high noise. C: Alignment
of the irrelevant parameter deformation towards the non-adaptive nested single-unit model. Slices
through the red inset windows are shown to the left and right and show a non-monotonic trend of
Alignment with noise at low and intermediate volatility, similar to that observed for Redundancy.
D: Probability distribution of Alignment values conditioned on Redundancy, sampled over tested
volatility and noise values, shows that Alignment can be low at low Redundancy, but is typically
higher at high Redundancy, indicating a rotation of the irrelevant parameter combination to align
towards the non-adaptive nested model when Redundancy of the more complex model increases.
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of the average number of computational operations required to implement it:

C(h,R) = Creflex + lim
T→∞

1

T

T∑
t=1

(
NA
t +NW

t +NR
t +NS

t (h,R)
)

(5)

Here T is the total number of observations, NA
t denotes the number of arithmetic

operations and NW
t , NR

t , and NS
t denote the number of memory-related operations

(writing, reading, and storing, respectively) required to make a prediction at time
t. Using conventional silicon hardware, multiplication typically requires more steps
than addition, but here we will count elementary arithmetic operations as having
unit algorithmic cost. We interpret the sum of these terms as an estimate of the
reflective cost of making a decision, whereas Creflex can be interpreted as a purely
reflexive component that represents the irreducible cost of an action and is constant
across models.

We evaluated the complexity of the different classes of models in Fig. 1 (Table 1 and
Fig. 4A). For the non-parametric Bayesian Model, the reflective cost grows linearly
with the number of observations because the entire past provides a probabilistic con-
text for each prediction or estimate; thus the complexity C diverges to infinity. The
other models are parametric and have constant complexity that is partly related
to the number of free parameters. This distinction is consistent with other mea-
sures of complexity like predictive information, which shows qualitatively different
asymptotic behaviors for non-parametric versus parametric models (Bialek et al.,
2001b,a). The complexity of models that involve mixtures of N Sliding Windows or
Delta Rules grows quadratically in N (Table 1). Thus, the two-parameter adaptive
mixture models (two Sliding Windows or Delta Rules as in Fig. 3) are more com-
plex than the one-parameter non-adaptive models (Sliding Window, Delta Rule and
Memoryless Models). These in turn are more complex than the two models with
no parameters (Prior and Evidence). Models with the same number of parameters
typically show smaller differences in complexity. These trends are qualitatively con-
sistent with other notions of complexity from Bayesian model selection, information
geometry, and data compression, for which the leading-order term of model com-
plexity grows with the number of parameters, and lower-order terms depend on the
model’s functional form (Schwarz, 1978; Balasubramanian, 1997; Myung et al., 2000;
Rissanen, 1984, 1996; Barron & Cover, 1991; Barron et al., 1998). However, unlike
those notions of complexity, algorithmic complexity can be applied readily to the
kinds of deterministic models considered here.

We measured performance of a model in terms of its Inaccuracy: the difference in
mean squared error between the predictions of the model and those of the Bayesian
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Figure 4: Diminishing returns from increasing complexity. Results are shown for the predic-
tion task (inference of the next position of the source µt+1). A: Algorithmic complexity (eq. 5) for
models in Fig. 1. The mixture models take a weighted combination of evidence integrated over two
timescales. The exact Bayesian Model has infinite complexity by our measure and is not shown.
B: Inaccuracy (eq. 6) decreases as a power law in the Complexity (eq. 5), shown here for volatility
and noise levels h = 0.1 and R = 1. Inset: linear fit on a log-log scale. See also Fig. S2 for
goodness-of-fit statistics. The exponent in the power law varies with C: noise and D: volatility. E:
Scaling of Inaccuracy and Accuracy (eq. 7) with Complexity for fixed volatility and varying noise.
Color code and scaling exponents for each condition taken from panel (C). The convex/concave
curves of Inaccuracy/Accuracy versus Complexity indicate a law of diminishing returns. Horizontal
black lines indicate the threshold for performance within 10% of the Bayesian optimum. Intercept
with the scaling curve for each task condition indicates the minimum model complexity required to
reach the performance threshold. F: Same as panel (E) for fixed noise and varying volatility. Color
code and scaling exponents taken from panel (D).
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ideal observer, normalized by the Bayesian benchmark, for each combination of
volatility h and noise R,

I(h,R) =
E(h,R)− EBayes(h,R)

EBayes(h,R)
. (6)

A vanishing Inaccuracy implies that the inference strategy performs as well as the
Bayesian model. Across task conditions, we fit the Inaccuracy of the parametric
models of Fig. 1 (with optimally chosen parameters) versus their Complexity. We
found a power-law relationship between the two quantities (I ∝ 1/Cb(h,R)) with an
exponent that depends on volatility (h) and noise (R) in the underlying change-point
process (Fig. 4B,C,D; goodness-of-fit summary statistics in Supplemental Fig. S2).

The power law for Inaccuracy as a function of Complexity implies a law of diminishing
returns: increasing the complexity of a model gives progressively smaller improve-
ments in prediction (flattening of Inaccuracy versus Complexity curves in the upper
panels of Fig. 4E,F). To better visualize this effect, we also defined the Accuracy as
the ratio

A(h,R) =
EBayes(h,R)

E(h,R)
. (7)

If the inference strategy performs as well as the Bayesian model the Accuracy will
equal 1, whereas a model that makes very large errors on average compared to the
Bayesian model will have an Accuracy tending to 0. The concavity of Accuracy as
a function of Complexity (lower panels of Fig. 4E,F) again shows that prediction
quality is a decelerating function of complexity.

In all task conditions, the curves (examples in Figs. 4E,F) show that prediction
Accuracy is maximized and the Inaccuracy is minimized by using the most complex
model. However, in the real world predictions typically do not have to be perfect
– they just have to be good enough. We found that at both high and low noise
(large and small R), low complexity models are already within 10% of the Bayesian
optimum (light blue and dark blue lines in Fig. 4E). Likewise, when volatility is large,
low complexity strategies perform almost as well as the full Bayesian model (red and
brown lines in Fig. 4F). These results suggest that sophisticated inference procedures
are only useful in a narrow range of conditions with an intermediate amount of noise
and low underlying volatility. This conclusion is robust across a very wide range of
thresholds for “good enough” performance, as seen by shifting the black threshold
lines in Figs. 4E,F.
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Simple is usually best

The scaling laws identified in the previous section suggest that complex models are
necessary only for a narrow range of conditions. To test this idea explicitly, we con-
sidered the nested hierarchy of models in Fig. 1 applied to the change-point detection
task in Fig. 2. Over a wide range of volatility and noise levels, we selected the sim-
plest of these models that achieved performance within 10% of the Bayesian optimum
(Inaccuracy less than 0.1) in prediction and estimation tasks. Qualitatively similar
results were obtained using alternative metrics and tolerance levels (Supplemental
Figs. S3 and S4).

For prediction problems (Fig. 5A), extremely simple strategies reach nearly peak
accuracy over a wide range of conditions. For example, when volatility is very high,
the Prior model does nearly as well as the Bayesian predictor, because the world is
so variable that past observations do not provide much useful information. When
volatility is low, the underlying latent variables are persistent over time, so past ob-
servations become more useful for predicting the future. However, if noise is very
high, observations are not reliable and so the Prior model is again nearly optimal.
Conversely, if noise is very low observations are perfect, and so the present becomes
fully predictive of the future without any need to consider the past. Thus, in the
low-noise, low-volatility limit the Memoryless model (which simply balances cur-
rent evidence with the prior) and the even simpler Evidence model (which simply
follows the current observation and ignores the prior) are nearly as good as the
Bayesian optimum. However, when volatility is low (so that there is something to
learn from observations), and noise is intermediate (obscuring the latent variables,
but not entirely), complex adaptive inference strategies are necessary for prediction
performance that approaches the optimum. To summarize, when volatility is low
there is a non-monotonic (“inverted-U”) pattern such that simple models are suffi-
cient at low and high noise but complex strategies are needed at intermediate noise;
when volatility is high simple strategies are always good enough.

For estimation problems, slightly different patterns emerge (Fig. 5B). Like for pre-
diction, simple strategies are almost as effective as the exact Bayesian model for
high noise and high volatility. Meanwhile, when noise is very low the current sam-
ple always provides a good estimate of the current state, so the Evidence Model
is effective regardless of volatility. As noise increases from zero at fixed volatility,
complex models become useful to balance the current noisy evidence against past
observations and the prior. But as noise becomes high (and observations unreliable),
increasingly simple models are sufficient again to achieve near-optimal estimation
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Figure 5: Simple inference strategies are usually sufficient. The color map shows the simplest
strategy achieving performance within 10% of the Bayesian optimum (Inaccuracy < 0.1) for each
combination of volatility and noise in the prediction (A) and estimation (B) tasks. Adaptivity and
working memory are necessary in the gray, pink, and yellow areas; only working memory is required
in the red and green regions. Extremely simple strategies (Evidence, Prior, and Memoryless Models)
that use neither adaptivity nor working memory are sufficient in a vast domain of statistically easy
and statistically difficult tasks. See also Figs. S3 and S4.

performance. Thus, like for the prediction problem, when volatility is low there is
an inverted-U relationship between the complexity required for good estimation and
noise. However, comparing Fig. 5A (prediction) and Fig. 5B (estimation) we see that
over much of the noise-volatility landscape estimation problems benefit more than
prediction problems from the use of complex inference schemes.

Optimizing cognitive engagement

Above, we selected the simplest model whose performance exceeded a hard threshold
as compared to the optimal Bayesian strategy. It might be more realistic to imagine
a smooth reward function that is low when the inaccuracy is high (I � 0) and high
when the inaccuracy is low (I → 0). This reward function can have a characteristic
scale that sets the range of inaccuracies over which the animal receives a substantial
reward. As a simple example, we can take the reward or performance level to be a
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Gaussian function of inaccuracy:

P(h,R) =
1

σr
√

2π
e
−I(h,R)2

2σ2r . (8)

Thus, substantial rewards are obtained when I is O(σr) or smaller.

From Fig. 4B,C,D, we see that inaccuracy can be written as a power law in the
complexity,

I(h,R) = a(h,R) C(h,R)−b(h,R) , (9)

where a and b are fit parameters. Combining eqs. 8 and 9, then dividing by the com-
plexity associated with a given level of inaccuracy from the fits, yields an expression
for expected performance per unit complexity for each noise/volatility pair:

P(h,R)

C(h,R)
=

1

σr
√

2π C(h,R)
e
−a(h,R)2C(h,R)−2b(h,R)

2σ2r . (10)

Because increased complexity in the inference strategy requires greater cognitive
engagment, the ratio in (10) represents a trade-off between reward and cognitive
cost per prediction or estimation. Because algorithmic complexity (eq. 5) can also
be thought of as a qualitative estimate of the time required to make an inference,
eq. 10 can also be interpreted as an estimate of the reward one can obtain per unit
time (Shenhav et al., 2017; Vul et al., 2014; Schmidhuber, 2010; Gold & Shadlen,
2002).

The performance per unit cost can be optimized by maximizing the expression on
the right hand side of eq. 10 with respect to the complexity C. This procedure gives

Copt(h,R) =

(
a(h,R)

√
b(h,R)

σr

)1/b(h,R)

. (11)

for the complexity, or, equivalently, cognitive cost, of the optimal inference strat-
egy. Fig. 6 uses a and b measured from fits such as those in Fig. 4 to plot Copt for
prediction and estimation tasks across a range of volatilities and noise levels. The
results confirm features seen in Fig. 5. For example, high complexity or cognitive
engagement is needed only in a small subset of conditions, and follows an inverted-U
trend with noise at low volatility (Fig. 6). Decreasing the width σr of the reward
function decreases tolerance for large inaccuracies and thus broadens the domain
where complex strategies are necessary. Changes in the reflexive component of com-
plexity Creflex (eq. 5) leave the optimal reflective cost, and thus the optimal strategy,
unaffected (Supplemental Information).
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Figure 6: Optimal cognitive engagement. The colormaps show log10 Copt (eq. 11) as a function
of volatility and noise, for the prediction (A) and the estimation (B) problems; σr = 0.1. High
cognitive engagement is optimal only at low volatility and intermediate noise.

Subjects modulate adaptivity and working-memory load as predicted by the theory

We used a psychophysical experiment to assess if and how our theory relates to hu-
man inference in terms of context-dependent uses of: (1) adaptivity, or the flexibility
with which subjects change their integration time scale over past observations; and
(2) working-memory load, or the maximum time scale over which subjects integrate
past observations. Subjects were shown sequences of random numbers sampled from
the kind of stochastic processes described in Fig. 2 and, on each trial, were asked
to estimate the generative mean of the most recently observed number. Noise and
volatility were held constant in blocks of trials and changed from block to block.
One group of subjects was tested in three conditions of fixed (low) volatility and
variable noise (circles in Fig. 7A). A separate group was tested in three conditions of
fixed noise and variable volatility (diamonds in Fig. 7A). These six conditions sub-
stantially extend the range of volatility and noise probed in previous experiments,
which focused on low-noise, low-volatility environments that require complex, adap-
tive inference (Wilson et al. (2013); Nassar et al. (2010); Krugel et al. (2009), small
markers in Fig. 7A). From the individual responses in each condition, we estimated
the integration kernel and integration time scale used by each subject to make an
estimate of the generative mean at any given time-lag from the last change-point in
the generative process. Adaptivity and working-memory load were then computed
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Figure 7: Subjects modulate adaptivity and working-memory load as predicted by the
theory. A: Map of the volatility/noise conditions probed in this experiment (three conditions at
fixed volatility h and variable noise R, and three conditions at fixed R and variable h) compared to
conditions probed in previous experiments (see legend). Background colors indicate the theoretically
most-efficient model (the simplest model with I < 0.1) at each point of the volatility/noise space
for the estimation task performed by the subjects (same as Fig. 5B). B and C: Mean normalized
adaptivity ± SEM (small error bars) from the theoretically most-efficient model (B) and from 82/83
human subjects (C) performing the estimation task for each of the three noise (R)/volatility (h)
conditions, respectively. Theoretical values were computed in the same way as for the subjects, with
simulated outputs from the most-efficient model in place of the subject responses. For the colored
bars, the most-efficient model was defined as the simplest model with I < 0.1; dashed gray lines
represent the range of values obtained using different tolerances (0.02 – 0.2; note the broad range
for high noise). Thin error bars in C represent the standard deviation of the normalized adaptivity
across subjects. Both the theory and data showed peak adaptivity at intermediate noise (left) and
low volatility (right). D and E: Mean normalized working-memory load from theory (D) and 82/83
human subjects (E) performing the estimation task for each of the three noise/volatility conditions,
respectively (plotted as in B and C). For both the theory and the data, the working-memory load
is smaller at low versus intermediate and high noise and decreases with increasing volatility.
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for each subject as the variance and maximum, respectively, of the integration time
scales across different time-lags from a change-point. To best capture the relative,
per-subject changes in these quantities across noise/volatility levels, adaptivity and
working-memory load in any given condition were normalized by the maximum re-
spective value across the three tested conditions. Theoretical values were computed
in the same way as for the subjects, with simulated outputs from the most-efficient
model (defined as the simplest model with I < 0.1, as in Fig. 5B, but also using
range of tolerances that might plausibly correspond to what human subjects would
consider) in place of the subject responses.

The subjects tended to adjust their use of both adaptivity and working memory
across changes in noise or volatility in a manner that reflected key features of our
theory (Fig. 7B–E). Specifically, we showed that, in principle, adaptivity is most
useful for estimation tasks with intermediate noise and low volatility. Our subjects
showed, on average, similar trends, with higher adaptivity for the intermediate ver-
sus low (one-tailed t-test, p < 10−4) or high (p = 0.003) noise and for the low versus
intermediate or high volatility conditions (p < 10−4 for both comparisons). Likewise,
working memory is, in principle, most useful for estimation tasks with intermediate
or higher noise and low volatility. Our subjects showed, on average, similar trends,
with smaller working-memory loads at low versus intermediate and high noise con-
ditions (p < 10−4 for both comparisons) and as a function of increasing volatility
(p < 10−4 for all the comparisons). Differences across conditions were in general more
pronounced for the theoretical than for the subject values. This slight discrepancy
is attributable to two factors: first, we considered a finite set of models with dis-
crete transitions between them, whereas subjects likely interpolate between different
strategies, resulting in more variable differences in performance across conditions;
second, the subjects’ responses were typically noisier than the simulated model out-
puts, resulting in more variable integration time scales. Even with these additional
sources of variability in the subject data, our results show that our theoretical frame-
work can be used to identify the task conditions in which different cognitive functions
are most likely to be used by human subjects to solve inference problems.

Discussion

The models and the brain

We used a family of nested models and their mappings to particular cognitive func-
tions to identify fundamental principles that govern the trade-off between the accu-
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racy and simplicity of inference in noisy and changing environments. Each model we
used can be seen as a particular implementation of a standard linear readout of the
integrated activity in a population of neural units, which in the case of non-adaptive
models reduces to a single neural unit (Wohrer & Machens, 2015; Shadlen et al., 1996;
Haefner et al., 2013). The models differ in terms of the form of evidence integration
they use and the degree to which they can adapt the time scale of this integration to
the input. Both sets of properties have extensive and varied representations in the
brain.

We considered exponentially decaying, sliding-window, and instantaneous (Dirac-
delta function) integration kernels (implemented in the Delta-Rule, Sliding-Window
and Memoryless Models, respectively). The exponentially decaying kernels corre-
spond to the “α-synapses”, used widely in biophysical models of neuron spiking
dynamics (Gerstner et al., 2014; Orhan, 2012). Implemented (with good approx-
imation) as Delta Rules, they are also closely related to reward-prediction errors
that are thought to be encoded by dopaminergic neurons and drive learning in the
striatum and possibly elsewhere (Schultz et al., 1997; Schultz, 1998; Schultz & Dick-
inson, 2000; Waelti et al., 2001; O’Doherty et al., 2004; Behrens et al., 2007). This
implementation, compared to exponentially decaying integration, has advantages in
terms of working memory, because it effectively produces Markovian estimates of
the source: each estimate depends only on the current observation and on the imme-
diately previous estimate. The sliding-window kernels are more memory intensive,
requiring representations of each sample used in the given window, or at least of
the first and last samples in the window if implemented recursively. Such memory
signals could, in principle, be based on persistent activity that maintains represen-
tations of a sequence of observations, such as those found in the prefrontal cortex
network (Jacobsen & Nissen, 1936; Goldman-Rakic, 1995; González-Burgos et al.,
2000; Kritzer & Goldman-Rakic, 1995; Funahashi et al., 1989; Arnsten et al., 2010).
The Dirac-delta kernels can be implemented trivially without any working memory.

Adaptivity is achieved in our models using a bank of different integration timescales,
consistent with multiple reports describing different integration timescales in the
brain (Gläscher & Büchel, 2005; Hasson et al., 2008; Bromberg-Martin et al., 2010;
Bernacchia et al., 2011; Bornstein & Daw, 2012; Honey et al., 2012; Hasson et al.,
2015; Meder et al., 2017; Scott et al., 2017; Runyan et al., 2017). In our formula-
tion, the estimates obtained from these different integration timescales are weighted
optimally and combined to produce a single output (Wilson et al., 2013, 2018). Con-
sistent with this idea, learning rates with more relevance to an ongoing estimate of
choice values have been shown to explain more variance in fMRI signals (Meder et al.,
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2017). This weighting process may be regulated by noradrenergic, cholinergic, and
dopaminergic neuromodulatory systems, each of which has been linked to adaptive
inference via pupillometry and other measures (Nassar et al., 2012; Krishnamurthy
et al., 2016; Krugel et al., 2009; Aston-Jones & Cohen, 2005; Joshi et al., 2016).

An alternative hypothesis on how adaptive Bayesian inference might be approxi-
mated by the brain is based on particle filters and importance sampling (Fearnhead
& Liu, 2007; Courville & Daw, 2008; Shi & Griffiths, 2009; Griffiths et al., 2012; Vul
et al., 2014). In these approaches, a limited number of samples (particles) is used
to represent the posterior distribution of the hidden state given the observations.
Unlike in our models, in these approaches the hypothesis space for the hidden state
varies in time, as new hypotheses are continuously sampled from their Bayesian pos-
terior distribution given the observations. By contrast, in our Mixture Models the
hypothesis space (set of run-lengths or integration timescales) is fixed in a given en-
vironment and adaptivity is achieved by assessing the different hypotheses differently
in a time-dependent manner, based on the accumulated evidence. It would be useful
for future work to compare the computational complexity of these different kinds of
approaches to adaptive inference, which could help constrain our understanding of if
and when they could be used in the brain.

Overall, our study provides a unified view of several plausible models of on-line
statistical inference, showing that they can be regarded as special cases of a single
formalism. This novel interpretation suggests a hierarchical (nested) organization
of cognitive processes and a natural, efficient way in which the brain could engage
or disengage them. Specifically, this organization implies that the brain could meet
the demands of a wide range of different environments and tasks, by adjusting the
parameters of a single, flexible inference process.

Inaccuracy versus complexity trade-off

Each of our models is characterized by its complexity and by its inaccuracy com-
pared to the exact Bayesian Model. By analyzing two nested families of models, we
identified a power-law scaling of inaccuracy with complexity: I ∝ 1/Cb. This scaling,
with an exponent that depends on noise and volatility in the environment, implies
a law of diminishing returns such that increasing the complexity of the inference
strategy gives progressively smaller returns in prediction/estimation accuracy. This
law is reminiscent of a similar result in rate-distortion theory: the minimum achiev-
able distortion D of a transmitted signal is a continuous, monotonically decreasing,
convex function of the information transmission rate R (Cover & Thomas, 2012).
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This universal property of rate-distortion functions implies that, independently of
the source of information, increasing the communication rate confers diminishing
returns in reconstruction accuracy at the receiver. In simple contexts, the rate is
measured in bits as the mutual information, I(X; X̂), between the input X and out-
put X̂ of an information channel (Cover & Thomas, 2012). Noting that the distortion
for a Gaussian channel (similar to our Gaussian source) scales as logD ∼ −R (for
distortions smaller than the variance of the samples) and that our inaccuracy scales
as log I ∼ − log C suggests an interpretation of the log algorithmic complexity of
our models as an effective transmission rate of information about the environment
to a decision making “receiver”, who gathers this information to make inferences
about the world. In this analogy, constraints on the inference algorithm, imposed by
bounded rationality (Gershman et al., 2015), create a sort of information bottleneck
(Tishby et al., 2000). The connection with information theory may provide new
practical tools to help understand the diversity of strategies used across tasks and
individuals to solve inference problems (Glaze et al., 2018). Such tools also have the
potential to deepen our understanding of the diversity of deep neural networks where
a power-law scaling between accuracy and computational complexity reminiscent of
our findings has recently been identified (Canziani et al., 2016).

Inverted-U relationship between cognitive demand and task difficulty

A key finding of our theory is that complex strategies that use adaptive processes
and/or working-memory are necessary only for a restricted range of conditions char-
acterized by low volatility and moderate noise, with working memory being useful
across a slightly wider set of uncertainty levels, particularly towards higher noise.
We showed that, under certain conditions, human inference also follows these basic
trends: (1) adaptivity is reduced at low and high versus intermediate noise (when
volatility is low), and decreases with increasing volatility; (2) working-memory is
lowest at low noise and decreases with increasing volatility. Both the theory and the
experiments highlight the fact that simple strategies are good enough when inference
is easy, such as when the current evidence from the environment is highly reliable
and thus historical information is not needed, or when inference is hard, such as
when incoming information is so noisy or volatile that there is little information to
gain from complex reasoning.

This “inverted-U” relationship between cognitive demand and task difficulty is remi-
niscent of a similar relationship between cognitive abilitites, like learning, and arousal
state (Yerkes & Dodson, 1908; Phillips et al., 2004; Durstewitz & Seamans, 2008;
Cools & D’Esposito, 2011; Arnsten et al., 2012). Several lines of evidence suggest
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that this relationship reflects the effects of neuromodulators like norepinephrine and
dopamine on neural activity in the prefrontal cortex and perhaps elsewhere in the
brain (Aston-Jones et al., 1999; Aston-Jones & Cohen, 2005; Arnsten et al., 2012). It
is tempting to think that the statistical difficulty of a task might modulate activity in
these brain areas similarly to arousal states, to engage or disengage mental resources
in a way that best meets task demands.

An inverted-U relationship is also found in combinatorial optimization problems, sug-
gesting that it might be a much more general phenomenon: NP-complete problems
such as K-satisfiability, graph coloring, the traveling salesman, and the Hamiltonian
path problem, have characteristic easy-hard-easy patterns in the computational com-
plexity required to find a solution. Hard problems are typically clustered around a
critical intermediate value of an order parameter, which marks a phase transition
from solvability to unsolvability (Cheeseman et al., 1991; Mitchell et al., 1992; Hogg
et al., 1996; Gent & Walsh, 1996; Hayes, 1997; Monasson et al., 1999; Cocco &
Monasson, 2001; Biroli et al., 2002; Zdeborová, 2009). In a broad sense, this order
parameter plays a role similar to environmental uncertainty in our inference task.

Comparison with previous experiments and perspective

To the best of our knowledge, our experiment is the first to probe human inference
for a wide range of noise and volatility conditions and to show how adaptivity and
working memory are modulated by these widely different levels of uncertainty. The
conditions tested in previous studies were restricted to low volatility and moderate
noise (Fig. 7A). In line with our theory, those studies showed that human inferences
were consistent with relatively complex, adaptive strategies (Wilson et al., 2013;
Nassar et al., 2010; Krugel et al., 2009).

Specifically, in Wilson et al. (2013, 2018), human subject predictions were consistent
with a Mixture of Delta-Rules strategy with two computational units in a Gaussian
change-point task similar to the one considered here, when volatility was ∼ 0.1 and
noise was ∼ 0.1. This model provided a better fit than a model with either one or
three units. Note that the (h ∼ 0.1, R ∼ 0.1) point in the volatility-noise plane
falls in the small region where the 2-Delta-Rule Model is the most efficient strategy
for prediction tasks according to our theory, assuming plausible tolerances to errors
for human subjects (between 2% and 10%); see Fig. 5 and Fig. S3. Likewise, in
Nassar et al. (2010), a Delta-Rule Model with an adaptive learning rate fit human
behavior on a similar Gaussian change-point task better than a Delta-Rule with a
fixed learning rate, when volatility was ∼ 0.04 and noise ranged between ∼ 0.06 and
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∼ 0.4. This result is in agreement with the adaptive domain in our map of efficient
models for both prediction and estimation tasks, assuming a tolerance to errors in
the same plausible [2%− 10%] range (Fig. 7A). In Krugel et al. (2009), adaptive
changes in learning rates were detected, in a probabilistic object-reversal task, for
almost all tested subjects. In this task, the probabilities of object reversal (analogous
to volatility) ranged between ∼ 0.008 and ∼ 0.08, and the fraction of trials in which
the statistically best option did not receive the top reward (analogous to noise)
was 0.2. Again, here adaptive learning was found in a regime of low volatility and
intermediate noise, compatible with our theory (Fig. 7A).

The psychophysical experiment we performed further validated several prominent
aspects of our theory that are common to both estimation and prediction tasks. We
hope that future experiments will test several additional predictions. First, do peo-
ple solve estimation and prediction problems according to the differences prescribed
by our theory? For estimation problems, we showed that memory is not necessary
when noise is low, regardless of volatility, whereas for prediction problems, memory
is not required when both noise and volatility are low (as volatility increases, current
evidence carries increasingly little information about the future, and thus it becomes
useful to retain a long-term memory of the average source position). Moreover, com-
plex strategies are useful over a wider region of the volatility/noise landscape for
estimation problems than for prediction problems. Second, when and how do people
use different forms of working memory (e.g., exponential or flat weighting)? Our the-
ory predicts that, when volatility is not too high, flat weighting over past evidence is
more useful at higher than lower levels of noise, and exponential weighting is most
efficient at moderate noise, especially for prediction problems. Third, do subjects
learn from recent evidence in conditions of high volatility and variable noise? Our
theory predicts a transition between a domain where only prior information about
the average source position is useful and a domain where that prior knowledge should
be updated based on new evidence (Fig. 5). These two domains are separated by
a roughly power-law curve in the volatility-noise plane, so that decreasing volatility
increases the noise level beyond which learning from new evidence is useless. This
transition curve is found for both estimation and prediction tasks. However, for pre-
diction tasks the transition happens at lower noise levels because, when volatility is
high, ongoing evidence is much less useful for predicting the future than for estimat-
ing the current source. Answering these questions will help to establish if and how
trade-offs between accuracy and complexity govern the cognitive operations used to
perform inference in the brain.

24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/563346doi: bioRxiv preprint 

https://doi.org/10.1101/563346
http://creativecommons.org/licenses/by-nc/4.0/


Methods

Gaussian change-point tasks

Models were tested using a Gaussian change-point task (Fig. 2) (Wilson et al., 2013;
Nassar et al., 2010). Observations xt were Gaussian distributed (p(xt) = N (xt|µt, σ2))
around a source located at an unknown mean position µt. The mean position changed
at random times, with probability h (the volatility parameter). At these change-
points, the source was resampled from another Gaussian distribution (p(µt) = N (µt|µ̄, σ2

0)).
The goal of an observer was to infer the current position of the source µt from the
history of observations up to time t (estimation problem), or to predict the position
of the source at the next time step µt+1 (prediction problem). The parameters, µ̄, σ,
and σ0, were held constant in blocks and were assumed to be known to the observer;
i.e., acquired after a sufficiently long exposure to the same environment. The ratio
(R = σ/σ0) is the noise parameter of the process (R = 1/

√
SNR). The volatility

and noise parameters determined the statistical difficulty of the inference problem.

Exact Bayesian inference

Here we derive expressions for µrtt and p(rt|x1:t) to obtain the optimal Bayesian
estimate of the current source position and the optimal Bayesian prediction of the
next source position (text around eq. 2) (Adams & MacKay, 2007).

For Gaussian processes, the posterior probability of the source µt given run-length
rt is

p(µt|rt) = p (µt|xt−rt+1:t) ∝ N
(
µt

∣∣∣χp
νp
,
σ2

νp

) t∏
i=t−rt+1

N
(
µt

∣∣∣xi, σ2
)

(12)

where we have used the Bayes rule p(µt|xt−rt+1:t) ∝ p(xt|µt)p(µt|xt−rt+1:t−1) recur-

sively. Note that N
(
µt
∣∣χp
νp
, σ

2

νp

)
is the Gaussian prior distribution over µt with

mean µ̄ = χp
νp

and variance σ2
0 = σ2

νp
. Using the relation N (µ|µ1, σ

2
1)N (µ|µ2, σ

2
2) ∝

N
(
µ
∣∣∣µ1σ2

2+µ2σ2
1

σ2
1+σ2

2
,
σ2
1σ

2
2

σ2
1+σ2

2

)
we obtain:

p(µt|rt) = N
(
µt

∣∣∣µrtt , σ2

νrtt

)
(13)

with

µrtt =
χrtt
νrtt

; χrtt = χp +
t∑

i=t−rt+1

xi ; νrtt = νp + rt (14)
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As expected for a Gaussian prior and a Gaussian likelihood, the posterior distribution
(eq. 13) is also Gaussian.

The posterior probability of the run-length rt given observations x1:t can be computed
recursively:

p(rt|x1:t) =
p(rt, x1:t)

p(x1:t)

=
1

p(x1:t)

t−1∑
rt−1=1

p(rt|rt−1, x1:t)p(rt−1, x1:t)

=
1

p(x1:t)

t−1∑
rt−1=1

p(rt|rt−1, xt)p(xt|rt−1)p(rt−1, x1:t−1)

(15)

Because rt = 1 if there is a change-point (“cp” below) at time t, rt = rt−1 + 1 if
there is no change-point, and change-points occur with constant probability h, we
can rewrite p(rt|rt−1, xt) as:
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p(rt = rt−1 + 1|rt−1, xt) = p(no cp | rt−1, xt) (16a)

=
p(xt | no cp, rt−1) p(no cp)

p(xt|rt−1)

=
1− h

p(xt|rt−1)

∫ ∞
−∞

dµt−1 p(xt| no cp, µt−1)p(µt−1|rt−1)

=
1− h

p(xt|rt−1)

∫ ∞
−∞

dµt−1 N
(
xt|µt−1, σ

2
)
N
(
µt−1

∣∣∣µrt−1

t−1 ,
σ2

ν
rt−1

t−1

)
=

1− h
p(xt|rt−1)

N
(
xt

∣∣∣µrt−1

t−1 , σ
2
(

1 +
1

ν
rt−1

t−1

))

p(rt = 1|rt−1, xt) = p(cp | rt−1, xt) (16b)

=
p(xt | cp) p(cp)

p(xt|rt−1)

=
h

p(xt|rt−1)

∫ ∞
−∞

dµt p(xt|µt)p(µt|cp)

=
h

p(xt|rt−1)

∫ ∞
−∞

dµt N
(
xt|µt, σ2

)
N
(
µt|µ̄, σ2

0

)
=

h

p(xt|rt−1)
N
(
xt|µ̄, σ2 + σ2

0

)
p(rt|rt−1, xt) = 0 ∀ rt 6= rt−1 + 1 ; rt 6= 1 (16c)

Substituting eqs. 16 into eq. 15 we obtain:

p(rt|x1:t) =
1

C
N
(
xt

∣∣∣µrt−1
t−1 , σ

2
(

1 +
1

νrt−1
t−1

)) t−1∑
rt−1=1

p(rt|rt−1)p(rt−1|x1:t−1) (17)

with C being a normalization constant, µ0
t = µ̄, ν0

t = νp (for any t) and
p(rt|rt−1) = 1− h if rt = rt−1 + 1

p(rt|rt−1) = h if rt = 1

p(rt|rt−1) = 0 otherwise

(18)
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Eq. 17 simplifies to:p(rt|x1:t) = 1
C

(1− h) N
(
xt

∣∣∣µrt−1
t−1 , σ

2
(

1 + 1

ν
rt−1
t−1

))
p(rt−1 = rt − 1|x1:t−1) if rt 6= 1

p(rt|x1:t) = 1
C
h N

(
xt

∣∣∣µrt−1
t−1 , σ

2
(

1 + 1

ν
rt−1
t−1

))
if rt = 1

(19)

In conclusion, we can compute:

p(µt|x1:t) =
t∑

rt=1

p(µt|rt)p(rt|x1:t)

=
t∑

rt=1

p(rt|x1:t)N
(
µt

∣∣∣µrtt , σ2

νrtt

) (20)

and the optimal (mean-squared-error minimizing) estimate of the source µt given the
history of observations x1:t is

µ̂t = 〈µt〉p(µt|x1:t) =
t∑

rt=1

p(rt|x1:t)µ
rt
t (21)

From p(µt|x1:t) it is straightforward to derive the posterior probability distribution
for the position of the source at the next time step:

p(µt+1|x1:t) =

∫ ∞
−∞

dµt p(µt+1|µt)p(µt|x1:t)

=

∫ ∞
−∞

dµt
(
p(µt+1|µt, cp)p(cp) + p(µt+1|µt, no cp)p(no cp)

)
p(µt|x1:t)

= h

∫ ∞
−∞

dµt p(µt+1|cp)p(µt|x1:t) + (1− h)

∫ ∞
−∞

dµt δ(µt+1 − µt)p(µt|x1:t)

= h N
(
µt+1|µ̄, σ2

0

)
+ (1− h)

∫ ∞
−∞

dµt δ(µt+1 − µt)
t∑

rt=1

p(rt|x1:t)N
(
µt

∣∣∣µrtt , σ2

νrtt

)
= h N

(
µt+1|µ̄, σ2

0

)
+ (1− h)

t∑
rt=1

p(rt|x1:t)N
(
µt+1

∣∣∣µrtt , σ2

νrtt

)
.

(22)

It follows that the optimal Bayesian prediction of µt+1 given the history of observa-
tions up to time t is

µ̂t+1 = 〈µt+1〉p(µt+1|x1:t) = hµ̄+ (1− h)µ̂t . (23)
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Posterior probabilities in the Mixture Models

In the Mixture Models, the posterior probabilities of the run-lengths {ri} , i =
1, . . . , N are obtained as an approximation of the Bayesian posterior p(rt|x1:t) (com-
pare with eq. 17 above)

p(ri|x1:t) =
1

C
N
(
xt

∣∣∣µrit , σ2
(

1 +
1

νrit

)) N∑
j=1

p(ri|rj)p(rj|x1:t−1) , (24)

where the transition probabilities p(ri|rj) approximate p(rt|rt−1) of the exact Bayesian
Model (Wilson et al., 2013, 2018):

p(ri|rj) = hp(ri|rj, cp) + (1− h)p(ri|rj, no cp) (25)

We sort theN model run-lengths in ascending order: r1 < r2 < · · · < rN . When there
is a change-point, the Bayesian run-length drops to 1. This condition is approximated
by resetting the model run-length to the smallest possible value r1:

p(ri|rj, cp) =

{
1 if i = 1

0 otherwise
(26)

When there is not a change-point, the Bayesian run-length increases by 1. Given
the finite number of run-lengths in the Mixture Models, the distance between any rj
and rj+1 is in general different from 1. To approximate the Bayesian transition, two
cases are considered: (1) when rj+1 ≥ rj + 1, the model run-length increases from
rj to rj+1 with a probability inversely proportional to the distance rj+1 − rj and it
remains constant with the complementary probability, so that the increase in model
run-length is equal to 1 on average; (2) when rj+1 < rj + 1, transition always occurs.
More formally:

For all j < N :

If rj+1 ≥ rj + 1 then:

p(ri|rj, no cp) =


1

rj+1−rj if i = j + 1

1− 1
rj+1−rj if i = j

0 otherwise

(27)
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Else if rj+1 < rj + 1 then:

p(ri|rj, no cp) =

{
1 if i = j + 1

0 otherwise
(28)

For j = N :

p(ri|rN , no cp) =

{
1 if i = N

0 otherwise
(29)

We have used Mixture Models with N = 2 units.

Integration kernels and parameter reductions

The different models compute estimates µrit by using different integration kernels
over past and present observations. The models based on Sliding Windows (both
the N ≥ 2 adaptive and the N = 1 non-adaptive versions) compute µrit as in the
Bayesian model (eq. 14) with rt = ri. Eq. 14 can also be expressed as:

µrit =
χrit
νrit

=
1

νp + ri

(
νpµ̄+ dxt−bric +

t∑
k=t−bric+1

xk

)
(30)

where we will think of the model run-length ri as being allowed to take non-integer
values in the mathematical expression to allow greater flexibility, and d = ri − bric
is the decimal part of ri. Eq. 30 corresponds to a sliding-window integration kernel
over the most recent ri observations, combined with the prior mean µ̄. The relative
weight of the prior mean with respect to each observation is νp = σ2/σ2

0 = R2: the
larger the noise, the more the model relies on the prior mean as opposed to the
empirical mean computed from the observations.

Eq. 30 can also be evaluated recursively as:

µrit = µrit−1 + αi
(
xt − (1− d)xt−bric − dxt−bric−1

)
; αi ≡

1

νp + ri
(31)

with initial condition µribric+1 = 1
νp+ri

(
νpµ̄ + dx1 +

∑bric+1
k=2 xk

)
. Note that the model

still needs a memory that extends up to ri time steps in the past. This model has
an effective learning rate αi .
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This working-memory load is reduced substantially in the Delta-Rule Models:

µαit = µαit−1 + αi
(
xt − µαit−1

)
(32)

with initial condition µαi0 = µ̄ and learning rate αi in the range [0, 1]. The delta-rule
units are approximations of the sliding-window units in which the weighted average
of the two observations occurring ∼ ri time steps back in the past (1 − d)xt−bric +
dxt−bric−1 (eq. 31) is replaced by the unit estimate µαit−1 of the mean at time t − 1.
This approximation reduces the working-memory demand to the previous time step
only, at the cost of deteriorating the estimate of the source, especially at high noise
or high volatility.

The integration kernel implemented by a Delta-Rule is an exponentially decaying
kernel with time constant τ = −1/ ln (1− αi) (∼ 1/αi for αi � 1):

µαit = (1− αi)t µ̄+
t∑

k=1

αie
− t−k

τ xk (33)

The Memoryless model further removes the dependence on the previous time step
by estimating the source µt as a weighted average between the prior mean µ̄ and the
present observation xt (Dirac-delta kernel):

µ̂t = (1− α) µ̄+ αxt (34)

The parameters ri and αi of the models based on Sliding Windows and Delta Rules
are optimized to minimize mean-squared error of the model estimates (or predic-
tions), and their values vary with the environment-dependent parameters h and
νp = R2. The optimal weight α of the Memoryless model is α = 1

νp+1
and is inde-

pendent of volatility.

We observe a number of hierachical relationships between the models (Fig. 1 and
Supplementary Fig. S1): first eq. 34 (with optimal α) coincides with eq. 30 under
the constraint ri = 1 (the Memoryless Model is nested in the Sliding-Window Model);
furthermore, the simple Prior Model (µ̂t = µ̄) and the Evidence Model (µ̂t = xt) are
obtained from both the Memoryless and the Delta-Rule Models by setting α = 0 and
α = 1, respectively.
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Figure 8: Computing Alignment. The axes
represent the possible values of two learning rates,
definining the parameter space for the Mixture
Model; the diagonal α1 = α2 defines the param-
eter space for the Single-Unit Model. Black dots
represent the optimal parameter configurations
for the two models. Blue/green lines represent the
eigenvectors of the Hessian (eq. 3) of the Mixture
Model with the minimum/maximum eigenvalue,
and constitute (under conditions of redundancy)
the irrelevant/relevant degree of freedom of the
model. The angle θ in eq. 35 is the angle be-
tween: (1) the irrelevant parameter direction of
the Mixture Model; and (2) the direction of the
parameter transformation δα (grey line) reduc-
ing the Mixture Model into its nested Single-Unit
Model, in their optimal parameter configurations.

Effective reduction to simpler nested models

We quantified the effective reduction of the adaptive Mixture Models into the as-
sociated non-adaptive nested models (single Sliding Window and single Delta Rule)
in terms of a quantity that we called Alignment. The Alignment measures the an-
gle between the eigenvector of the error Hessian matrix H (eq. 3) with the smallest
eigenvalue (the “irrelevant eigenvector”), and the direction in parameter space be-
tween the optimal Mixture Model and the optimal non-adaptive nested model. Let
us consider the two-parameter case. Let δα = α(1) − α(2), where α(2) = (α̂1, α̂2)
is the two-component vector of the optimal parameters of the Mixture Model, and
α(1) = (α̂, α̂) is the vector with both components equal to the optimal parameter
of the non-adaptive nested model (Fig. 8). The vector δα is directed along the
parameter transformation collapsing the best Mixture Model into the best nested
Single-Unit Model. We then define

Alignment(h,R) =
|π/2− θ(h,R)|

π/2
(35)

where 0 ≤ θ ≤ π is the angle between the irrelevant eigenvector and the direction
of δα (Fig. 8). By definition, 0 ≤ Alignment ≤ 1 and is a function of volatility h
and noise R. To reduce numerical noise, in Fig. 3, Redundancy and Alignment were
averaged over ten instances of the Gaussian change-point process for each volatility
and noise value.
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Algorithmic complexity

The algorithmic complexity (eq. 5, Fig. 4A) is defined as the sum of a “reflexive”
and a “reflective” cost.

The reflexive cost Creflex of taking action once a decision has been made is not known,
but because it is an equal constant for all models, its value does not influence the
conclusions of this study (see Supplemental Information). We set Creflex = 0.15 to
obtain the power-law fits (Fig. 4), as this value optimizes the goodness-of-fit of the
linear regression of log(I) versus log(C). Different values of Creflex would just shift
the power-law fits along the complexity axis by a constant.

The reflective cost is the sum of the computational and memory costs paid, on av-
erage, by each model to make an inference (estimation or prediction). We consider
arithmetic operations (denoted by A), i.e., sums, subtractions, multiplications, di-
visions, exponentials, and square roots, and memory operations, i.e., writing (W ),
reading (R), and storing (S). For simplicity, we assign cost = 1 to each of these
operations. Thus, the reflective cost reduces to the total mean number of operations
per inference: 〈NA〉 + 〈NW 〉 + 〈NR〉 + 〈NS〉, where we use the notation 〈N i〉 to
indicate limT→∞

1
T

∑T
t=1 N

i
t , with N i

t number of operations of type i ∈ {A,W,R, S}
required in the t-th iteration (returning one inference) of the algorithm implemented
by each model. More precisely, for memory operations, we define NW

t as the number
of variables that have to be written into memory (at iteration t), NR

t as the number
of times each variable has to be read from memory (at t), summed over all variables,
and NS

t as the number of iterations (starting at t) during which each variable has to
be kept in memory to make future inferences, summed over all stored variables.

Table 1 lists 〈NA〉, 〈NW 〉, 〈NR〉, and 〈NS〉 for the estimation problem, for each of the
seven models derived from the exact Bayesian strategy (Fig. 1). Below we explain
how we determined these values, and how they can be readily converted into the
corresponding values for the prediction problem. We will only indicate operations
that are performed by the models in every inference, because limT→∞

1
T

∑T
t=1 N

i
t = 0

for one-off operations.

The Evidence Model returns each instantaneous piece of evidence µ̂t = xt, and does
not require any computation or memory operation.

The Prior Model stores the prior mean µ̄ for one iteration at every t (〈NS〉 = 1) and
reads it from memory (〈NR〉 = 1).

The Memoryless Model estimates the source position as µ̂t = µ̄ + α(xt − µ̄), which
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requires 〈NA〉 = 3 (1 sum, 1 subtraction, 1 multiplication), 〈NS〉 = 2 (to store µ̄
and α), and 〈NR〉 = 3 (to read µ̄, twice, and α, once). We stress that the name
“Memoryless” is used to indicate that this model does not perform any integration
of evidence over time, thus it does not require any memory of past observations or
past inferences; however, the model maintains a memory of prior information.

The Delta Rule computes µ̂t = µ̂t−1 +α(xt− µ̂t−1), which involves the same number
of algorithmic and memory operations as the Memoryless Model estimate, with the
addition of one writing operation per iteration (〈NW 〉 = 1), because the computation
is recursive, requiring to write µ̂t into memory at every t to compute µ̂t+1. This one-
time-step dependence allows the Delta Rule to integrate the evidence over time,
unlike the Memoryless Model.

The Sliding Window computes µ̂t = µ̂t−1 + α
(
xt − (1− d)xt−brc − dxt−brc−1

)
(with

α = 1
νp+r

), which requires 〈NA〉 = 7 arithmetic operations (1 sum, 3 differences,

3 products); 〈NW 〉 = 2 operations to write, at every t, µ̂t (necessary to compute
the estimate at t + 1) and xt (necessary to compute the estimates at t + brc and
t + brc + 1); 〈NR〉 = 6 operations to read, at every t, µ̂t−1, α, d (twice), xt−brc and
xt−brc−1); finally 〈NS〉 = brc + 4 operations to store, at every t, α, d, µ̂t (for one
iteration), and xt (for a duration of brc + 1 iterations). Because of the dependence
on r(h,R) (the time scale of the sliding-window integration of past evidence that
minimizes mean squared error), this model and its Mixture have complexity that
depends on the environmental noise and volatility; for example, complexity increases
with increasing noise to integrate observations over longer time scales, which allows
more accurate estimates of the source. All the other models have complexity that
is independent of noise and volatility, because they retain either no memory of past
evidence (Evidence, Prior and Memoryless Models), or only a memory of the previous
estimate (Delta Rule Models), regardless of environmental statistics.

In the Mixture models, each of the N units performs the same computations as
the corresponding single-unit models. Thus, the contribution to the complexity of
the Mixture models coming from the computations taking place in the single units
reduces to the complexity of the single Delta Rule and single Sliding Window, re-
spectively, when N = 1 (Table 1, first line of the respective slots). However, the
largest contribution to the complexity of the Mixture models comes from the com-
putations that combine the estimates provided by the N units into a single inference
of the source (Table 1, second line of the respective slots, where the Heaviside func-
tion H2 = H[N − 2] vanishes for N = 1). These computations are necessary to
obtain the adaptive probabilities p(ri|x1:t) of the N run-lengths at each iteration t
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of the algorithm, which are then used to weigh the estimates of the single units. In
particular, for both Mixtures, the leading-order term of NA (7N2) comes from 2 sum-
mations, over N terms each, required to compute each of the N adaptive p(ri|x1:t)
(eq. 24): (1) the summation over N run-lengths j appearing at the numerator of
eq. 24 (which involves 6N − 1 algorithmic operations), and (2) the summation nec-
essary to compute the normalization constant (which involves N − 1 algorithmic
operations). The leading-order term of 〈NR〉 (6N2) comes from reading the terms
in the same summations. 〈NW 〉 scales as ∼ N (not as ∼ N2) because only the
N probabilities p(ri|x1:t) are carried forward to the next iteration of the algorithm
to compute the new p(ri|x1:t+1), whereas the individual addends of the summations
mentioned above do not need to be memorized. Finally, the leading-order term of
〈NS〉 (2N2) arises because computation of the adaptive p(ri|x1:t) requires maintain-
ing in memory, at every iteration, the NxN matrices of the transition probabilities
p(ri|rj, cp) and p(ri|rj, no cp) (eqs. 26 through 29).

The differences between the complexities of the Mixture of Delta Rules and the
Mixture of Sliding Windows only involve terms of order O(N) and O(1), and come
entirely from the computations taking place in the single units (note that the second
line in the slots of Table 1 corresponding to the two Mixture models are identical).

The complexities in the prediction problem can be readily obtained from the com-
plexities in the estimation problem, as follows. For the Evidence and Prior Mod-
els, predictions coincide with estimations, thus their complexity is the same as in
Table 1. For all the other models, predictions are computed from estimations as
µ̂t+1 = (1− h)µ̂t + hµ̄. Thus, each prediction requires 4 more algorithmic operations
than each estimation, 3 more reading operations (to retrieve from memory h, twice,
and µ̄, once), and either 2 more storing operations for the Delta Rule and Sliding
Window (to store both h and µ̄), or just 1 more storing operation for the Memoryless
Model (to store h, as this model already requires to store µ̄ to obtain the estimate
µ̂t) and for the Mixture Models (to store µ̄, as h is already stored to estimate µ̂t).
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〈NA〉 〈NW 〉 〈NR〉 〈NS〉
Evidence 0 0 0 0

Prior 0 0 1 1

Memoryless Model 3 0 3 2

Delta Rule 3 1 3 2

Sliding Window 7 2 6 br(h,R)c+ 4

Mixture of N 3N+ N+ 3N+ 2N+

Delta Rules (7N2 + 14N − 1)H2 (2N + 1)H2 (6N2 + 7N)H2 (2N2 + 2N + 1)H2

Mixture of N 7N+ N + 1 6N+ 3N + maxi (bri(h,R)c) + 1

Sliding Windows (7N2 + 14N − 1)H2 (2N + 1)H2 (6N2 + 7N)H2 (2N2 + 2N + 1)H2

Table 1: Asymptotic mean numbers of operations (A: arithmetic, W : memory writing,
R: memory reading, S: memory storing) that determine the algorithmic complexity
(eq. 5) of each model in the estimation problem. For the Mixture models, N denotes the
number of units (set to 2 in this study) and H2 = H[N − 2] denotes the Heaviside step function
centered in N = 2, which is equal to 1 for N ≥ 2 and to 0 for N = 1. Note that, for N = 1, the
complexity of the Mixture models reduces to the complexity of the respective single-unit models.
For the Sliding Windows, {ri(h,R)}, i = 1, . . . , N , is the set of run-lengths that minimizes the
mean squared error of the model estimates given environmental volatility h and noise R.

Psychophysics experiment

We recruited 169 subjects using the Amazon Mechanical Turk crowdsourcing web-
site. The subjects performed an estimation task (which from pilot studies was less
confusing than a prediction task) that used a generative process similar to the ones
illustrated in Fig. 2. The task was presented as a card game. Before starting the
game, subjects were given written instructions about the statistics of card and deck
numbers. First, they were informed that deck numbers were picked in a 0-5000 range,
that decks in the middle of the range (around 2500) were most likely, and decks at
the extremes (around 0 and 5000) were least likely. Second, they were informed that
each deck had cards with numbers that were near but not always the same as the
deck number. Third, they were informed that (a) the randomness of the numbers
in each deck, and (b) how often the decks switched without notice were both held
constant within each block of trials but could change in the different blocks. The val-
ues of the randomness (noise) and the switching rate (volatility) were both explicitly
indicated to the subjects via thermometer screen icons during task performance.

On each trial, the subject was shown a card number (corresponding to an observation
xt in Fig. 2) drawn from a card deck with Gaussian noise centered around the deck
number. The deck number (corresponding to the mean µt in Fig. 2) was hidden to
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the subjects and changed at random times with a constant rate h. At the change-
points, the deck number was resampled from a normal distribution with constant
mean at 2500 (µ̄ in Fig. 2). Non-integer values for card and deck numbers were
approximated to the nearest integer. The ratio between the standard deviation of
the card numbers around their deck number and the standard deviation of the deck
numbers around their mean represents the noise parameter R. Subjects were asked
to guess, on each trial, from which deck the card was being picked (i.e., to estimate
the generative mean).

All 169 subjects were exposed to 40 training trials, in which we gave them the correct
answer to familiarize them with the task. Training was followed by 360 test trials,
in which we did not show the correct answer but provided feedback, after each trial,
about the subject’s error relative to a weak and a strong competitor (the Evidence
and the Bayesian models, respectively). Each subject performed 3 blocks of 400 trials
in total (training + test). The blocks differed in terms of their values of noise or
volatility (Fig. 7A): 85 subjects performed 3 blocks at constant volatility (h = 0.1)
and variable noise (R = 0.01, R = 0.8, R = 4), and 84 subjects performed 3 blocks
at constant noise (R = 1) and variable volatility (h = 0.08, h = 0.38, h = 0.8).
Trials in which subjects input a number outside the 0-5000 range prescribed for the
card decks, or responded in less than 100 ms, were excluded from further analyses.

Data analysis

Values of adaptivity and working-memory load for subjects and models were obtained
through the following analyses:

Integration kernels. For each subject and noise/volatility condition, we computed
an integration kernel (linear weighting function) for each set of trials having the
same lag from a change-point. Thus, we considered the set of subject responses
{Rtq} from all trials tq = tcpq +∆t, with ∆t a fixed lag, tcpq the q-th change-point trial,
and q running from 1 to M (number of change-points in a given block occurring at
tcpq > n − ∆t, see below). From the response set {Rtq} we estimated the subject
integration kernel for the lag ∆t, by finding the weights {Kp, K0, . . . , Kn} of the
multiple linear regression model

Rtq = Kp µ̄+
n∑
τ=0

Kτ xtq−τ + εtq ; q = 1, . . . ,M (36)

Kp (the weight given to the prior µ̄) and K0, . . . , Kn (the weights given to the n+ 1
most recent observations) were obtained using the Matlab lsqlin function, which
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minimizes the sum of squared residuals
∑

q ε
2
tq for the system of linear equations,

with constraints Kp +
∑n

τ=0 Kτ = 1 and 0 ≤ Ki ≤ 1, i = {p, 0, . . . , n}. We used
n + 1 = 15 predictors (in addition to the prior) for the results in Fig. 7. Our
conclusions were robust against changes in the number of predictors (Fig. S5). We
estimated one integration kernel (set of weights) for each subject, block, and lag ∆t.
We excluded only a few cases in which the linear regression model had fewer equations
than predictors (because of an insufficient number of change-points at tcpq > n−∆t),
yielding underconstrained weights.

Integration time scales. For each integration kernel, we computed the normalized
cumulative weight of the most recent τ observations

C(τ) =

∑τ
i=0 Ki∑n
i=0 Ki

(37)

and the time scale at which this normalized cumulative weight reaches a fixed thresh-
old θ

τθ = min{τ |C(τ) > θ} (38)

τθ represents an integration time scale. For the results of Fig. 7, we used θ =
0.8, so that τθ is the time scale that explains 80% of the subject’s integration over
recently observed data. Conclusions were in general robust against changes in the
threshold θ (Fig. S5). We computed one value of τθ for each integration kernel; i.e.,
for each subject, block, and lag ∆t. We estimated the standard error on each τθ
by bootstrapping the regression model, eqs. 36. We used 200 bootstrap samples of
the form b = {(Rti1

,xi1), . . . , (Rtim
,xim)}, with xik = (µ̄, xtik , . . . , xtik−n), i1, . . . , im

a random sample (with replacement) of the integers 1 through M (see Efron &
Tibshirani (1994) for more details about the bootstrap procedure).

Adaptivity. For each subject and each block of trials, we computed adaptivity as
the variance of τθ across all lags 0 ≤ ∆t ≤ n (because the integration time scale τθ
can not be larger than the time scale n in the linear regression model). This metric
of adaptivity quantifies how much the integration time scale changes as more and
more card numbers are observed from the same card deck, in a given block of tri-
als. To capture changes in individual adaptivity values across noise/volatility levels,
we normalized each subject’s adaptivity in any given condition by the maximum
adaptivity for the same subject across the three conditions, then we averaged the
normalized values across subjects. The few subjects (3 for the variable noise condi-
tions, 1 for the variable volatility conditions) for whom adaptivity was zero in all the
three conditions were excluded from the analyses, because the normalized adaptivity
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was undefined. Standard errors on the average normalized adaptivity were computed

as SEM =

√∑
i

(
∂〈norm. adaptivity〉

∂τθ,i

)2(
SE (τθ,i)

)2
with the sum running over all the τθ

obtained for different subjects and lags ∆t.

The theoretical estimates of adaptivity were obtained by considering the most-
efficient model in each tested condition (Fig. 7A) and using the model simulated
outputs, under the same sequences of observations shown to the subjects, in place
of Rtq in eq. 36; τθ and normalized-adaptivity values were then obtained in the same
way as the subject’s values. For the main bars in Fig. 7B, the most-efficient model
was defined as the simplest model in our hierarchy with I < 0.1 (as in Fig. 5B);
theoretical predictions were qualitatively conserved across a relatively wide range of
tolerance levels (e.g., between 0.02 and 0.2, see Fig. 7B, dashed gray lines).

Working-memory load. For each subject or most-efficient model and each block
of trials, we computed working-memory load as the maximum τθ across all possible
lags 0 ≤ ∆t ≤ n; i.e., the maximum integration time scale (relative to the threshold
θ) used for any given condition of noise and volatility. We then normalized this
value by the maximum working-memory load across conditions for each subject and
averaged the normalized values across subjects. Error bars were computed as for
adaptivity.
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