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Abstract 

 

In plants, local adaptation across species range is frequent. Yet, much has to 

be discovered on its environmental drivers, the underlying functional traits and their 

molecular determinants. Genome scans are popular to uncover outlier loci potentially 

involved in the genetic architecture of local adaptation, however links between 

outliers and phenotypic variation are rarely addressed. Here we focused on adaptation 

of teosinte populations along two elevation gradients in Mexico that display 

continuous environmental changes at a short geographical scale. We used two 

common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of 

annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers 

as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed 

excess of allele differentiation between pairs of lowland and highland populations 

and/or correlation with environmental variables. Our results revealed that phenotypic 

differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation 

along the elevation gradient indicated that adaptation to altitude results from the 

assembly of multiple co-adapted traits into a complex syndrome: as elevation 

increases, plants flower earlier, produce less tillers, display lower stomata density and 

carry larger, longer and heavier grains. The proportion of outlier SNPs associating 

with phenotypic variation, however, largely depended on whether we considered a 

neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating 

that population stratification greatly affected our results. Finally, chromosomal 

inversions were enriched for both SNPs whose allele frequencies shifted along 

elevation as well as phenotypically-associated SNPs. Altogether, our results are 

consistent with the establishment of an altitudinal syndrome promoted by local 
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selective forces in teosinte populations in spite of detectable gene flow. Because 

elevation mimics climate change through space, SNPs that we found underlying 

phenotypic variation at adaptive traits may be relevant for future maize breeding.  

 

 

Author summary  

Across their native range species encounter a diversity of habitats promoting local 

adaptation of geographically distributed populations. While local adaptation is 

widespread, much has yet to be discovered about the conditions of its emergence, the 

targeted traits, their molecular determinants and the underlying ecological drivers. Here 

we employed a reverse ecology approach, combining phenotypes and genotypes, to 

mine the determinants of local adaptation of teosinte populations distributed along two 

steep altitudinal gradients in Mexico. Evaluation of 11 populations in two common 

gardens located at mid-elevation pointed to adaptation via an altitudinal multivariate 

syndrome, in spite of gene flow. We scanned genomes to identify loci with allele 

frequency shifts along elevation, a subset of which associated to trait variation. Because 

elevation mimics climate change through space, these polymorphisms may be relevant 

for future maize breeding.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4 

Introduction 

 

 Local adaptation is key for the preservation of ecologically useful genetic 

variation [1]. The conditions for its emergence and maintenance have been the focus 

of a long-standing debate nourished by ample theoretical work [2-9]. On the one 

hand, spatially-varying selection promotes the evolution of local adaptation, provided 

that there is genetic diversity underlying the variance of fitness-related traits [10]. On 

the other hand, opposing forces such as neutral genetic drift, temporal fluctuations of 

natural selection, recurrent introduction of maladaptive alleles via migration and 

homogenizing gene flow may hamper local adaptation (reviewed in [11]). Meta-

analyzes indicate that local adaptation is pervasive in plants, with evidence of native-

site fitness advantage in reciprocal transplants detected in 45% to 71% of the cases 

[12, 13].  

While local adaptation is widespread, much has yet to be discovered about the 

traits affected by spatially-varying selection, their molecular determinants and the 

underlying ecological drivers [14]. Local adaptation is predicted to increase with 

phenotypic, genotypic and environmental divergence among populations [6, 15, 16]. 

Comparisons of the quantitative genetic divergence of a trait (QST) with the neutral 

genetic differentiation (FST) can provide hints on whether trait divergence is driven by 

spatially-divergent selection [17-20]. Striking examples of divergent selection include 

developmental rate in the common toad [21], drought and frost tolerance in alpine 

populations of the European silver fir [22], and traits related to plant phenology, size 

and floral display among populations of Helianthus species [23, 24]. These studies 

have reported covariation of physiological, morphological and/or life-history traits 

across environmental gradients which collectively define adaptive syndromes. Such 
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syndromes may result from several non-exclusive mechanisms: plastic responses, 

pleiotropy, non-adaptive genetic correlations among traits (constraints), and joint 

selection of traits encoded by different sets of genes resulting in adaptive correlations. 

In some cases, the latter mechanism may involve selection and rapid spread of 

chromosomal inversions that happen to capture multiple locally favored alleles [25] as 

exemplified in the monkey flower, Mimulus guttatus [26]. While distinction between 

these mechanisms is key to decipher the evolvability of traits, empirical data on the 

genetic bases of correlated traits are currently lacking [27]. 

The genes mediating local adaptation are usually revealed by genomic regions 

harboring population-specific signatures of selection. These signatures include alleles 

displaying greater-than-expected differentiation among populations [28] and can be 

identified through FST-scans [29-35]. However, FST-scans and its derivative methods 

[28] suffer from a number of limitations, among them a high number of false positives 

(reviewed in [36, 37]) and the lack of power to detect true positives [38]. Despite 

these caveats, FST-outlier approaches have helped in the discovery of emblematic 

adaptive alleles such as those segregating at the EPAS1 locus in Tibetan human 

populations adapted to high altitude [39]. An alternative to detect locally adaptive loci 

is to test for genotype-environment correlations [35, 40-45]. Correlation-based 

methods can be more powerful than differentiation-based methods [46], but spatial 

autocorrelation of population structure and environmental variables can lead to 

spurious signatures of selection [47]. 

Ultimately, to identify the outlier loci that have truly contributed to improve 

local fitness, a link between outliers and phenotypic variation needs to be established. 

The most common approach is to undertake association mapping. However, recent 

literature in humans has questioned our ability to control for sample stratification in 
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such approach [48]. Detecting polymorphisms responsible for trait variation is 

particularly challenging when trait variation and demographic history follow parallel 

environmental (geographic) clines. Plants however benefit from the possibility of 

conducting replicated phenotypic measurements in common gardens, where 

environmental variation is controlled. Hence association mapping has been 

successfully employed in the model plant species Arabidopsis thaliana, where 

broadly distributed ecotypes evaluated in replicated common gardens have shown that 

fitness-associated alleles display geographic and climatic patterns indicative of 

selection [49]. Furthermore, the relative fitness of A. thaliana ecotypes in a given 

environment could be predicted from climate-associated SNPs [50]. While climatic 

selection over broad latitudinal scales produces genomic and phenotypic patterns of 

local adaptation in the selfer plant A. thaliana, whether similar patterns exist at shorter 

spatial scale in outcrossing species remains to be elucidated.  

We focused here on a well-established outcrossing plant system, the teosintes, 

to investigate the relationship of molecular, environmental, and phenotypic variation 

in populations sampled across two elevation gradients in Mexico. The gradients 

covered a relatively short yet climatically diverse, spatial scale. They encompassed 

populations of two teosinte subspecies that are the closest wild relatives of maize, Zea 

mays ssp. parviglumis (hereafter parviglumis) and Z. mays ssp. mexicana (hereafter 

mexicana). The two subspecies display large effective population sizes [51], and span 

a diversity of climatic conditions, from warm and mesic conditions below 1800 m for 

parviglumis, to drier and cooler conditions up to 3000 m for mexicana [52]. Previous 

studies have discovered potential determinants of local adaptation in these systems. 

At a genome-wide scale, decrease in genome size correlates with increasing altitude, 

which likely results from the action of natural selection on life cycle duration [53, 54]. 
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More modest structural changes include megabase-scale inversions that harbor 

clusters of SNPs whose frequencies are associated with environmental variation [55, 

56]. Also, differentiation- and correlation-based genome scans in teosinte populations 

have succeeded in finding outlier SNPs potentially involved in local adaptation [57, 

58]. But a link with phenotypic variation has yet to be established. 

In this paper, we genotyped a subset of these outlier SNPs on a broad sample 

of 28 teosinte populations, for which a set of neutral SNPs was also available; as well 

as on an association panel encompassing 11 populations. We set up common gardens 

in two locations to evaluate the association panel for 18 phenotypic traits over two 

consecutive years. Individuals from this association panel were also genotyped at 38 

microsatellite markers to enable associating genotypic to phenotypic variation while 

controlling for sample structure and kinship among individuals. We addressed three 

main questions: What is the extent of phenotypic variation within and among 

populations? Can we define a set of locally-selected traits that constitute a syndrome 

of adaptation to altitude? What are the genetic bases of such syndrome? We further 

discuss the challenges of detecting phenotypically-associated SNPs when trait and 

genetic differentiation parallel environmental clines. 

 

Results 

 

Trait-by-trait analysis of phenotypic variation within and among populations. 

In order to investigate phenotypic variation, we set up two common garden 

experiments located in Mexico to evaluate individuals from 11 teosinte populations 

(Fig 1). The two experimental fields were chosen because they were located at 

intermediate altitudes (S1 Fig). Although natural teosinte populations are not typically 
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encountered around these locations [52], we verified that environmental conditions 

were compatible with both subspecies (S2 Fig).The 11 populations were sampled 

among 37 populations (S1 Table) distributed along two altitudinal gradients that range 

from 504 to 2176 m in altitude over ~460 kms for gradient a, and from 342 to 2581m 

in altitude over ~350 kms for gradient b (S1 Fig). Lowland populations of the 

subspecies parviglumis (n=8) and highland populations of the subspecies mexicana 

(n=3) were climatically contrasted as can be appreciated in the Principal Component 

Analysis (PCA) computed on 19 environmental variables (S2 Fig). The corresponding 

set of individuals grown from seeds sampled from the 11 populations formed the 

association panel. 

 
Figure 1. Geographical location of sampled populations and experimental fields. 

The entire set of 37 Mexican teosinte populations is shown with parviglumis (circles) 

and mexicana (triangles) populations sampled along gradient a (white) and gradient b 

(black). The 11 populations indicated with a purple outline constituted the association 

panel. This panel was evaluated in a four-block design over two years in two 

experimental fields located at mid-elevation, SENGUA and CEBAJ. Two major cities 

(Mexico City and Guadalajara) are also indicated. Topographic surfaces have been 

obtained from International Centre for Tropical Agriculture (Jarvis A., H.I. Reuter, A. 

Nelson, E. Guevara, 2008, Hole-filled seamless SRTM data V4, International Centre 

for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org). 

 

We gathered phenotypic data during two consecutive years (2013 and 2014). 

We targeted 18 phenotypic traits that included six traits related to plant architecture, 

three traits related to leaves, three traits related to reproduction, five traits related to 

grains, and one trait related to stomata (S2 Table). Each of the four experimental 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9 

assays (year-field combinations) encompassed four blocks. In each block, we 

evaluated one offspring (half-sibs) of ~15 mother plants from each of the 11 teosinte 

populations using a semi-randomized design. After filtering for missing data, the 

association panel included 1664 teosinte individuals. We found significant effects of 

Field, Year and/or their interaction for most traits, and a highly significant Population 

effect for all of them (model 1, S3 Table).  

We investigated the influence of altitude on each trait independently. All traits, 

except for the number of nodes with ears (NoE), exhibited a significant effect of 

altitude (S3 Table, model 4). Note that after accounting for elevation, the population 

effect remained significant for all traits, suggesting that factors other than altitude 

contributed to shape phenotypic variation among populations. Traits related to 

flowering time and tillering displayed a continuous decrease with elevation, and traits 

related to grain size increased with elevation (Fig 2 & S3 Fig). Stomata density also 

diminished with altitude (Fig 2). In contrast, plant height, height of the highest ear, 

number of nodes with ear in the main tiller displayed maximum values at intermediate 

altitudes (highland parviglumis and lowland mexicana) (S3 Fig).  

 

Figure 2: Population-level box-plots of adjusted means for four traits. Traits are 

female flowering time (A), male flowering time (B), grain length (C) and stomata 

density (D). Populations are ranked by altitude. Parviglumis populations are shown in 

green and mexicana in red, lighter colors are used for gradient ‘a’ and darker colors 

for gradient ‘b’.  In the case of male and female flowering time, we report data for 9 

out of 11 populations because most individuals from the two lowland populations 

(P1a and P2b) did not flower in our common gardens. Covariation with elevation was 
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significant for the four traits. Corrections for the experimental setting are detailed in 

the Material and Methods section (Model 2). 

 

We estimated narrow-sense heritabilites (additive genotypic effect) per 

population for all traits using a mixed animal model. Average per-trait heritability 

ranged from 0.150 for tassel branching to 0.664 for female flowering time, albeit with 

large standard errors (S2 Table). We obtained higher heritability for grain related 

traits when mother plant measurements were included in the model with 0.631 (sd= 

0.246), 0.511 (sd= 0.043) and 0.274 (sd= 0.160) for grain length, weight and width, 

respectively, suggesting that heritability was under-estimated for other traits where 

mother plant values were not available.  

 

Multivariate analysis of phenotypic variation and correlation between traits. 

Principal component analysis including all phenotypic measurements 

highlighted that 21.26% of the phenotypic variation scaled along PC1 (Fig 3A), a PC 

axis that is strongly collinear with altitude (Fig 3B). Although populations partly 

overlapped along PC1, we observed a consistent tendency for population phenotypic 

differentiation along altitude irrespective of the gradient (Fig 3C). Traits that 

correlated the most to PC1 were related to grain characteristics, tillering, flowering 

and to a lesser extent to stomata density (Fig 3B). PC2 correlated with traits 

exhibiting a trend toward increase-with-elevation within parviglumis, but decrease-

with-elevation within mexicana (Fig 3D). Those traits were mainly related to 

vegetative growth (Fig 3B). Together, both axes explained 37.4% of the phenotypic 

variation.  
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Figure 3: Principal Component Analysis on phenotypic values corrected for the 

experimental setting. Individuals factor map (A) and corresponding correlation 

circle (B) on the first two principal components with altitude (Alt) added as a 

supplementary variable (in blue). Individual phenotypic values on PC1 (C) and PC2 

(D) are plotted against population ranked by altitude and color-coded following A. 

For populations from the two subspecies, parviglumis (circles) and mexicana 

(triangles), color intensity indicates ascending elevation in green for parviglumis and 

red for mexicana. Corrections for experimental setting are detailed in the Material and 

Methods (Model 3). 

 

We assessed more formally pairwise-correlations between traits after 

correcting for the experimental design and population structure (K=5). We found 82 

(54%) significant correlations among 153 tested pairs of traits. The following pairs of 

traits had the strongest positive correlations: male and female flowering time, plant 

height and height of the highest ear, height of the highest and lowest ear, grain length 

with grain weight and width (S4 Fig). The correlation between flowering time (female 

or male) with grain weight and length were among the strongest negative correlations 

(S4 Fig).  

 

Neutral structuring of the association panel. 

We characterized the genetic structure of the association panel using SSRs. 

The highest likelihood from Bayesian classification was obtained at K=2 and K=5 

clusters (S5 Fig). At K=2, the clustering separated the lowland of gradient a from the 

rest of the populations. From K=3 to K=5, a clear separation between the eight 

parviglumis and the three mexicana populations emerged. Increasing K values finally 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12 

split the association panel into the 11 populations it encompassed (S6 Fig). The K=5 

structure reflected both altitude (lowland parviglumis versus highland mexicana) and 

gradients a and b (Fig 4A & B). TreeMix analysis for a subset of 10 of these 

populations confirmed those results with an early split separating the lowlands from 

gradient a (cf. K=2, S6 Fig) followed by the separation of the three mexicana from the 

remaining populations (Fig 4C). TreeMix results further supported three migration 

edges, a model that explained 98.75% of the variance and represented a significant 

improvement over a model without admixture (95.7%, Figure S7). This admixture 

model was consistent with gene flow between distant lowland parviglumis 

populations from gradient a and b, as well as between parviglumis and mexicana 

populations (Fig 4C). Likewise, Structure analysis also suggested admixture among 

some of the lowland populations, and to a lesser extent between the two subspecies 

(Fig 4B).  

 

Figure 4: Genetic clustering, historical splits and admixture among populations 

of the association panel.  Genetic clustering visualization based on 38 SSRs is shown 

for K=5 (A). Colors represent the K clusters. Individuals (vertical lines) are 

partitioned into colored segments whose length represents the membership 

proportions to the K clusters. Populations (named after the subspecies M: mexicana, 

P: parviglumis and gradient ‘a’ or ‘b’) are ranked by altitude indicated in meters 

above sea level. The corresponding geographic distribution of populations along with 

their average membership probabilities are plotted (B). Historical splits and admixture 

between populations were inferred from neutral SNP data for a subset of 10 

populations of the association panel (C). Admixtures are colored according to their 

weight.  
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Identification of traits evolving under spatially-varying selection.  

We estimated the posterior mean (and 95% credibility interval) of genetic 

differentiation (FST) among the 11 populations of the association panel using 

DRIFTSEL. Considering 1125 plants for which we had both individual phenotypes and 

individual genotypes for 38 SSRs (S4 Table), we estimated the mean FST to 0.22 

(0.21-0.23). Note that we found a similar estimate on a subset of 10 of these 

populations using 1000 neutral SNPs (FST (CI)=0.26 (0.25-0.27)). To identify traits 

whose variation among populations was driven primarily by local selection, we 

employed the Bayesian method implemented in DRIFTSEL, that infers additive genetic 

values of traits from a model of population divergence under drift [59]. Selection was 

inferred when observed phenotypic differentiation exceeded neutral expectations for 

phenotypic differentiation under random genetic drift. Single-trait analyses revealed 

evidence for spatially-varying selection at 12 traits, with high consistency between 

SSRs and neutral SNPs (Table 1). Another method that contrasted genetic and 

phenotypic differentiation (QST-FST) uncovered a large overlap with nine out of the 12 

traits significantly deviating from the neutral model (Table 1) and one of the 

remaining ones displaying borderline significance (Plant height=PL, S8 Fig). 

Together, these two methods indicated that phenotypic divergence among populations 

was driven by local selective forces.   
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Table 1. Signals of selection (posterior probability S) for each trait considering SSR 

markers (11 populations) or SNPs (10 populations). 

 

Traitsa SSRb SNPb 

Plant height 0.995 0.972 

Height of the lowest ear* 0.950 0.959 

Height of the highest ear 0.982 0.966 

Number of tillers* 1.000 1.000 

Number of lateral branches* 1.000 0.990 

Number of nodes with ears 0.682 0.699 

Leaf length 0.888 0.875 

Leaf width 0.999 0.996 

Leaf color 0.633 0.583 

Female flowering time* 1.000 1.000 

Male flowering time* 1.000 1.000 

Tassel branching* 0.925 0.908 

Number of grains per ear 0.832 0.622 

Grain length* 1.000 1.000 

Grain width* 0.995 0.984 

Grain weight* 1.000 0.999 

Grain color 0.717 0.689 

Stomata density* 0.999 0.999 

a: Traits displaying signal of selection (spatially-varying traits, S > 0.95) are indicated in bold, 

and marked by an asterisk (*) when significant in QSTFSTCompanalysis. We considered the 

underlined traits as spatially varying. For a detailed description of traits see S2 Table. 
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b: Values reported correspond to S from DRIFTSEL. S is the posterior probability that 

divergence among populations was not driven by drift only. Following [60], we used here a 

conservative credibility value of S > 0.95 to declare divergent selection. 

 

 Altogether, evidence of spatially varying selection at 10 traits (Table 1) as 

well as continuous variation of a subset of traits across populations in both elevation 

gradients (Fig 2, S3 Fig) was consistent with a syndrome where populations produced 

less tillers, flowered earlier, displayed lower stomata density and carried larger, 

longer and heavier grains with increasing elevation.  

 

Outlier detection and correlation with environmental variables. 

We successfully genotyped 218 (~81%) out of 270 outlier SNPs on a broad set 

of 28 populations, of which 141 were previously detected in candidate regions for 

local adaptation [58].Candidate regions were originally identified from re-sequencing 

data of only six teosinte populations (S1 Table) following an approach that included 

high differentiation between highlands and lowlands, environmental correlation, and 

in some cases their intersection with genomic regions involved in quantitative trait 

variation in maize. The remaining outlier SNPs (77) were discovered in the present 

study by performing FST-scans on the same re-sequencing data (S5 Table). We 

selected outlier SNPs that were both highly differentiated between highland and 

lowland populations within gradients (high/low in gradient a or b or both), and 

between highland and lowland populations within subspecies in gradient b (high/low 

within parviglumis, mexicana or both). FST-scans pinpointed three genomic regions of 

particularly high differentiation (S9 Fig) that corresponded to previously described 
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inversions [55, 56]: one inversion on chromosome 1 (Inv1n), one on chromosome 4 

(Inv4m) and one on the far end of chromosome 9 (Inv9e).  

A substantial proportion of outlier SNPs was chosen based on their significant 

correlation among six populations between variation of allele frequency and their 

coordinate on the first environmental principal component [58]. We extended 

environmental analyses to 171outlier SNPs (MAF>5%) on a broader sample of 28 

populations (S1 Table) and used the two first components (PCenv1 and PCenv2) to 

summarize environmental information. When considering all 37 populations, the first 

component that explained 56% of the variation, correlated with altitude but displayed 

no correlation to either latitude or longitude. PCenv1 was defined both by 

temperature- and precipitation- related variables (S2 B Fig) including Minimum 

Temperature of Coldest Month (T6), Mean Temperature of Driest and Coldest 

Quarter (T9 and T11) and Precipitation of Driest Month and Quarter (P14 and P17). 

The second PC explained 20.5% of the variation and was mainly defined (S2 B Fig) 

by Isothermality (T3), Temperature Seasonality (T4) and Temperature Annual Range 

(T7).  

We first employed multiple regression to test for each SNP, whether the 

pairwise FST matrix across 28 populations correlated to the environmental (distance 

along PCenv1) and/or the geographical distance. As expected, we found a 

significantly greater proportion of environmentally-correlated SNPs among outliers 

compared with neutral SNPs (χ² =264.07, P-value=2.2 10-16), a pattern not seen with 

geographically-correlated SNPs. That outlier SNPs displayed a greater isolation-by-

environment than isolation-by-distance, indicated that patterns of allele frequency 

differentiation among populations were primarily driven by adaptive processes. We 

further tested correlations between allele frequencies and environmental variation. 
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Roughly 60.8% (104) of the 171 outlier SNPs associated with at least one of the two 

first PCenvs, with 87 and 33 associated with PCenv1 and PCenv2, respectively, and 

little overlap (S5 Table). As expected, the principal component driven by altitude 

(PCenv1) correlated to allele frequency for a greater fraction of SNPs than the second 

orthogonal component. Interestingly, we found enrichment of environmentally-

associated SNPs within inversions both for PCenv1 (χ² = 14.63, P-value=1.30 10-4) 

and PCenv2 (χ² = 33.77, P-value=6.22 10-9). 

 

Associating genotypic variation to phenotypic variation. 

We tested the association between phenotypes and 171 of the outlier SNPs 

(MAF>5%) using the association panel. For each SNP-trait combination, the sample 

size ranged from 264 to 1068, with a median of 1004 individuals (S6 Table). We used 

SSRs to correct for both structure (at K=5) and kinship among individual genotypes. 

This model (model 6) resulted in a uniform distribution of P-values when testing the 

association between genotypic variation at SSRs and phenotypic trait variation (S10 

Fig). Under this model, we found that 126 outlier SNPs (73.7%) associated to at least 

one trait (Fig 5 and S11 Fig) at an FDR of 10%.The number of associated SNPs per 

trait varied from 0 for leaf and grain coloration, to 55 SNPs for grain length, with an 

average of 22.6 SNPs per trait (S5 Table). Ninety-three (73.8%) out of the 126 

associated SNPs were common to at least two traits, and the remaining 33 SNPs were 

associated to a single trait (S5 Table). The ten traits displaying evidence of spatially 

varying selection in the QST-FST analyses displayed more associated SNPs per trait 

(30.5 on average), than the non-spatially varying traits (12.75 on average).  

A growing body of literature stresses that incomplete control of population 

stratification may lead to spurious associations [61]. Hence, highly differentiated 
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traits along environmental gradients are expected to co-vary with any variant whose 

allele frequency is differentiated along the same gradients, without underlying causal 

link. We therefore expected false positives in our setting where both phenotypic traits 

and outlier SNPs varied with altitude. We indeed found a slightly significant 

correlation (r=0.5, P-value=0.03) between the strength of the population effect for 

each trait – a measure of trait differentiation (S3 Table) – and its number of associated 

SNPs (S5 Table).  

To verify that additional layers of structuring among populations did not cause 

an excess of associations, we repeated the association analyzes considering a 

structuring with 11 populations (instead of K=5) as covariate (model 7), a proxy of 

the structuring revealed at K=11 (S6 Fig). With this level of structuring, we retrieved 

much less associated SNPs (S5 Table). Among the 126 SNPs associating with at least 

one trait at K=5, only 22 were recovered considering 11 populations. An additional 

SNP was detected with structuring at 11 populations that was absent at K=5. Eight 

traits displayed no association, and the remaining traits varied from a single 

associated SNP (Leaf length – LeL and the number of tillers – Til) to 8 associated 

SNPs for grain weight (S5 Table). For instance, traits such as female or male 

flowering time that displayed 45 and 43 associated SNPs at K=5, now displayed only 

4 and 3 associated SNPs, respectively (Fig 5). Note that one trait (Leaf color) 

associated with 4 SNPs considering 11 populations while displaying no association at 

K=5. Significant genetic associations were therefore highly contingent on the 

population structure. Noteworthy, traits under spatially varying selection still 

associated with more SNPs (2.00 on average) than those with no spatially varying 

selection (1.25 SNPs on average).  
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Figure 5: Manhattan plots of associations between 171 outlier SNPs and 6 

phenotypic traits. X-axis indicates the positions of outlier SNPs on chromosomes 1 

to 10, black and gray colors alternating per chromosome. Plotted on the Y-axis are the 

negative Log10-transformed P values obtained for the K=5 model. Significant 

associations (10% FDR) are indicated considering either a structure matrix at K=5 

(pink dots), 11 populations (blue dots) or both K=5 and 11 populations (purple dots) 

models.  

 

Altogether the 23 SNPs recovered considering a neutral genetic structure with 

11 populations corresponded to 30 associations, 7 of the SNPs being associated to 

more than one trait (S5 Table). For all these 30 associations except in two cases (FFT 

with SNP_7, and MFT with SNP_28), the SNP effect did not vary among populations 

(non-significant SNP-by-population interaction in model 7 when we included the SNP 

interactions with year*field and population). For a subset of two SNPs, we illustrated 

the regression between the trait value and the shift of allele frequencies with altitude 

(Fig 6 A&B). We estimated corresponding additive and dominance effects (S7 Table). 

In some cases, the intra-population effect corroborated the inter-population variation 

with relatively large additive effects of the same sign (Fig 6). Note that in both 

examples shown in Fig 6, one or the other allele was dominant. In other cases, the 

results were more difficult to interpret with negligible additive effect but extremely 

strong dominance (S7 Table, SNP_210 for instance).  
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Figure 6: Regression of phenotypic average value on SNP allele frequency across 

populations, and within-populationaverage phenotypic value for each SNP 

genotype. Per-population phenotypic average values of traits are regressed on allele 

frequencies at SNP_149 (A) and SNP_179 (B) with corresponding within-population 

average phenotypic value per genotype (C & D). In A and B, the 11 populations of 

the association panel are shown with parviglumis (green circles) and mexicana (red 

triangles) populations sampled along gradient a and gradient b. Phenotypic average 

values were corrected for the experimental design (calculated as the residues of model 

3). Pval refers to the P-value of the linear regression represented in blue. In C and D, 

genotypic effects from model 7 are expressed as the average phenotypic value of 

heterozygotes (1) and homozygotes for the alternative allele (2) as compared to the 

homozygous for the reference allele (0). FDR values were obtained from the 

association analysis on 171 SNPs with correction for genetic structure using 11 

populations. 

 

Independence of SNPs associated to phenotypes. 

We computed the pairwise linkage disequilibrium (LD) as measured by r2 

between the 171 outlier SNPs using the R package LDcorSV [62]. Because we were 

specifically interested by LD pattern between phenotypically-associated SNPs, as for 

the association analyses we accounted for structure (K=5) and kinship computed from 

SSRs while estimating LD [63]. The 171 outlier SNPs were distributed along the 10 

chromosomes of maize, and exhibited low level of linkage disequilibrium (LD), 

except for SNPs located on chromosomes eight, nine, and a cluster of SNPs located 

on chromosome 4 (S12 Fig).  
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Among the 171, the subset of 23 phenotypically-associated SNPs (detected 

when considering the 11-populationstructure) displayed an excess of elevated LD 

values – out of 47 pairs of SNPs phenotypically-associated to a same trait, 16 pairs 

were contained in the 5% higher values of the LD distribution of all outlier SNP pairs. 

Twelve out of the 16 pairs associated to grain weight, the remaining four to leaf 

coloration, and one pair of SNPs associated to both traits. Noteworthy was that 

inversions on chromosomes 1, 4, and 9, taken together, were enriched for 

phenotypically-associated SNPs (χ² = 8.95, P-value=0.0028). We recovered a 

borderline significant enrichment with the correction K=5 (χ² = 3.82, P-value=0.051). 

Finally, we asked whether multiple SNPs contributed independently to the 

phenotypic variation of a single trait. We tested a multiple SNP model where SNPs 

were added incrementally when significantly associated (FDR < 0.10). We found 2, 3 

and 2 SNPs for female, male flowering time and height of the highest ear, 

respectively (S5 Table). For the two former traits, the SNPs were located on different 

chromosomes. For the latter trait, the SNPs were both located on chromosome 5 but 

displayed no LD (SNP_25 and SNP_30, S12 Fig). 

 

Discussion 

 

Plants are excellent systems to study local adaptation. First, owing to their 

sessile nature, local adaptation of plant populations is pervasive [13]. Second, 

environmental effects can be efficiently controlled in common garden experiments, 

facilitating the identification of the physiological, morphological and phenological 

traits influenced by spatially-variable selection [64]. Identification of the determinants 

of complex trait variation and their covariation in natural populations is however 
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challenging [65]. While population genomics has brought a flurry of tools to detect 

footprints of local adaptation, their reliability remains questioned [61]. In addition, 

local adaptation and demographic history frequently follow the same geographic 

route, making the disentangling of trait, molecular, and environmental variation, 

particularly arduous. Here we investigated those links on a well-established 

outcrossing system, the closest wild relatives of maize, along altitudinal gradients that 

display considerable environmental shifts over short geographical scales.  

 

The syndrome of altitudinal adaptation results from selection at multiple co-

adapted traits. 

Common garden studies along elevation gradients have been conducted in 

European and North American plants species [66]. Together with other studies, they 

have revealed that adaptive responses to altitude are multifarious [67]. They include 

physiological responses such as high photosynthetic rates [68], tolerance to frost [69], 

biosynthesis of UV-induced phenolic components [70]; morphological responses with 

reduced stature [71, 72], modification of leaf surface [73], increase in leaf non-

glandular trichomes [74], modification of stomata density; and phenological 

responses with variation in flowering time [75], and reduced growth period [76].  

Our multivariate analysis of teosinte phenotypic variation revealed a marked 

differentiation between teosinte subspecies along an axis of variation (21.26% of the 

total variation) that also discriminated populations by altitude (Fig 2A & B). The 

combined effects of assortative mating and environmental elevation variation may 

generate, in certain conditions, trait differentiation along gradients without underlying 

divergent selection [77]. While we did not measure flowering time differences among 

populations in situ, we did find evidence for long distance gene flow between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23 

gradients and subspecies (Fig 4 A & C). In addition, several lines of arguments 

suggest that the observed clinal patterns result from selection at independent traits and 

is not solely driven by differences in flowering time among populations. First, two 

distinct methods accounting for shared population history concur with signals of 

spatially-varying selection at ten out of the 18 traits (Table 1). Nine of them exhibited 

a clinal trend of increase/decrease of population phenotypic values with elevation (S3 

Fig) within at least one of the two subspecies. This number is actually conservative, 

because these approaches disregard the impact of selective constraints which in fact 

tend to decrease inter-population differences in phenotypes. Second, while male and 

female flowering times were positively correlated, they displayed only subtle 

correlations (|r|<0.16) with other spatially-varying traits except for grain weight and 

length (|r| <0.33). Third, we observed convergence at multiple phenotypes between 

the lowland populations from the two gradients that occurred despite their geographic 

and genetic distance (Fig 4) again arguing that local adaptation drives the underlying 

patterns.  

Spatially-varying traits that displayed altitudinal trends, collectively defined a 

teosinte altitudinal syndrome of adaptation characterized by early-flowering, 

production of few tillers albeit numerous lateral branches, production of heavy, long 

and large grains, and decrease in stomata density. We also observed increased leaf 

pigmentation with elevation, although with a less significant signal (S3 Table), 

consistent with the pronounced difference in sheath color reported between 

parviglumis and mexicana [78, 79]. Because seeds were collected from wild 

populations, a potential limitation of our experimental setting is the confusion 

between genetic and environmental maternal effects. Environmental maternal effects 

could bias upward our heritability estimates. However, our results corroborate 
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previous findings of reduced number of tillers and increased grain weight in mexicana 

compared with parviglumis [80]. Thus, although maternal effects could not be fully 

discarded, we believe they were likely to be weak. 

The trend towards depleted stomata density at high altitudes (Fig 2) could 

arguably represent a physiological adaptation as stomata influence components of 

plant fitness through their control of transpiration and photosynthetic rate [81]. 

Indeed, in natural accessions of A. thaliana, stomatal traits showed signatures of local 

adaptation and were associated with both climatic conditions and water-use efficiency 

[82]. Furthermore, previous work has shown that in arid and hot highland 

environments, densely-packed stomata may promote increased leaf cooling in 

response to desiccation [83] and may also counteract limited photosynthetic rate with 

decreasing pCO2 [84]. Accordingly, increased stomata density at high elevation sites 

has been reported in alpine species such as the European beech [85] as well as in 

populations of Mimulus guttatus subjected to higher precipitations in the Sierra 

Nevada [86]. In our case, higher elevations display both arid environment and cooler 

temperatures during the growing season, features perhaps more comparable to other 

tropical mountains for which a diversity of patterns in stomatal density variation with 

altitude has been reported [87]. Further work will be needed to decipher the 

mechanisms driving the pattern of declining stomata density with altitude in teosintes. 

Altogether, the altitudinal syndrome was consistent with natural selection for rapid 

life-cycle shift, with early-flowering in the shorter growing season of the highlands 

and production of larger propagules than in the lowlands. This altitudinal syndrome 

evolved in spite of detectable gene flow.  

Although we did not formally measure biomass production, the lower number 

of tillers and higher amount and size of grains in the highlands when compared with 
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the lowlands may reflect trade-offs between allocation to grain production and 

vegetative growth [88]. Because grains fell at maturity and a single teosinte individual 

produces hundreds of ears, we were unable to provide a proxy for total grain 

production. The existence of fitness-related trade-offs therefore still needs to be 

formally addressed.  

Beyond trade-offs, our results more generally question the extent of 

correlations between traits. In maize, for instance, we know that female and male 

flowering time are positively correlated and that their genetic control is in part 

determined by a common set of genes [89]. They themselves further increase with 

yield-related traits [90]. Response to selection for late-flowering also led to a 

correlated increase in leaf number in cultivated maize [91], and common genetic loci 

have been shown to determine these traits as well [92]. Here we found strong positive 

correlations between traits: male and female flowering time, grain length and width, 

plant height and height of the lowest or highest ear. Strong negative correlations were 

observed instead between grain weight and both male and female flowering time. 

Trait correlations were therefore partly consistent with previous observations in 

maize, suggesting that they were inherited from wild ancestors [93]. 

 

Footprints of past adaptation are relevant to detect variants involved in present 

phenotypic variation. 

The overall level of differentiation in our outcrossing system (FST »22%) fell 

close to the range of previous estimates (23% [94] and 33% [55] for samples 

encompassing both teosinte subspecies). It is relatively low compared to other 

systems such as the selfer Arabidopsis thaliana, where association panels typically 

display maximum values of FST around 60% within 10kb-windows genome-wide 
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[95]. Nevertheless, correction for sample structure is key for statistical associations 

between genotypes and phenotypes along environmental gradients. This is because 

outliers that display lowland/highland differentiation co-vary with environmental 

factors, which themselves may affect traits [96]. Consistently, we found that 73.7% 

SNPs associated with phenotypic variation at K=5, but only 13.5% of them did so 

when considering a genetic structure with 11 populations. Except for one, the latter 

set of SNPs represented a subset of the former. Because teosinte subspecies 

differentiation was fully accounted for at K=5 (as shown by the clear distinction 

between mexicana populations and the rest of the samples, Fig 4A), the inflation of 

significant associations at K=5 is not due to subspecies differentiation, but rather to 

residual stratification among populations within genetic groups. Likewise, recent 

studies in humans, where global differentiation is comparatively low [97] have shown 

that incomplete control for population structure within European samples strongly 

impacts association results [61, 98]. Controlling for such structure may be even more 

critical in domesticated plants, where genetic structure is inferred a posteriori from 

genetic data (rather than a priori from population information) and pedigrees are 

often not well described. Below, we show that considering more than one correction 

using minor peaks delivered by the Evanno statistic (S5 Fig) can be informative.  

Considering a structure with 5 genetic groups, the number of SNPs associated 

per trait varied from 1 to 55, with no association for leaf and grain coloration (S5 

Table). False positives likely represent a greater proportion of associations at K=5 as 

illustrated by a slight excess of small P-values when compared with a correction with 

11 populations for most traits (S11 Fig). Nevertheless, our analysis recovered credible 

candidate adaptive loci that were no longer associated when a finer-grained 

population structure was included in the model. For instance, at K=5 we detected 
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Sugary1 (Su1), a gene encoding a starch debranching enzyme that was selected during 

maize domestication and subsequent breeding [99, 100]. We found that Su1 was 

associated with variation at six traits (male and female flowering time, tassel 

branching, height of the highest ear, grain weight and stomata density) pointing to 

high pleiotropy. A previous study reported association of this gene to oil content in 

teosintes [101]. In maize, this gene has a demonstrated role in kernel phenotypic 

differences between maize genetic groups [102]. Su1 is therefore most probably a 

true-positive. That this gene was no longer recovered with the 11-population structure 

correction indicated that divergent selection acted among populations. Indeed, allelic 

frequency was highly contrasted among populations, with most populations fixed for 

one or the other allele, and a single population with intermediate allelic frequency. 

With the 11-population correction, very low power is thus left to detect the effect of 

Su1 on phenotypes.  

Although the confounding population structure likely influenced the genetic 

associations, experimental evidence indicates that an appreciable proportion of the 

variants recovered with both K=5 and 11 populations are true-positives (S5 Table). 

One SNP associated with female and male flowering time, as well as with plant height 

and grain length (at K=5 only for the two latter traits) maps within the phytochrome 

B2 (SNP_210; phyB2) gene. Phytochromes are involved in perceiving light signals 

and are essential for growth and development in plants. The maize gene phyB2 

regulates the photoperiod-dependent floral transition, with mutants producing early 

flowering phenotypes and reduced plant height [103]. Genes from the 

phosphatidylethanolamine-binding proteins (PEBPs) family – Zea mays 

CENTRORADIALIS (ZCN) family in maize – are also well-known to act as promotor 

and repressor of the floral transition in plants [104]. ZCN8 is the main floral activator 
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of maize [105], and both ZCN8 and ZCN5 strongly associate with flowering time 

variation [102, 106]. Consistently, we found associations of male and female 

flowering time with PEBP18 (SNP_15). It is interesting to note that SNPs at two 

flowering time genes, phyB2 and PEBP18, influenced independently as well as in 

combination both female and male flowering time variation (S5 Table).  

The proportion of genic SNPs associated to phenotypic variation was not 

significantly higher than that of non-genic SNPs (i.e, SNPs >1kb from a gene) (χ²(df=1) 

= 0.043, P-value = 0.84 at K=5 and χ²(df=1)=1.623, P-value =0.020 with 11 

populations) stressing the importance of considering both types of variants [107]. For 

instance, we discovered a non-genic SNP (SNP_149) that displayed a strong 

association with leaf width variation as well as a pattern of allele frequency shift with 

altitude among populations (Fig 6B).  

 

Physically-linked and independent SNPs both contribute to the establishment of 

adaptive genetic correlations. 

We found limited LD among our outlier SNPs (S12 Fig) corroborating 

previous reports (LD decay within <100bp, [58, 94]). However, the subset of 

phenotypically-associated SNPs displayed greater LD, a pattern likely exacerbated by 

three Mb-scale inversions located on chromosomes 1 (Inv1n), 4 (Inv4m) and 9 (Inv9e) 

that, taken together, were enriched for SNPs associated with environmental variables 

related to altitude and/or SNPs associated with phenotypic variation. Previous work 

[55, 56] has shown that Inv1n and Inv4m segregate within both parviglumis and 

mexicana, while two inversions on chromosome 9, Inv9d and Inv9e, are present only 

in some of the highest mexicana populations; such that all four inversions also follow 

an altitudinal pattern. Our findings confirmed that three of these inversions possessed 
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an excess of SNPs with high FST between subspecies and between low- and high-

mexicana populations for Inv9e [57]. Noteworthy Inv9d contains a large ear leaf 

width quantitative trait locus in maize [107]. Corroborating these results, we found 

consistent association between the only SNP located within this inversion and leaf 

width variation in teosinte populations (S5 Table). Overall, our results further 

strengthen the role of chromosomal inversions in teosinte altitudinal adaptation.  

Because inversions suppress recombination between inverted and non-inverted 

genotypes, their spread has likely contributed to the emergence and maintenance of 

locally adaptive allelic combinations in the face of gene flow, as reported in a 

growing number of other models (reviewed in [108]) including insects [109], fish 

[110], birds [111] and plants [26, 112]. But we also found three cases of multi-SNP 

determinism of traits (male and female flowering time and height of the highest ear, 

Table S5) supporting selection on genetically independent loci. Consistently with 

Weber et al. [101], we found that individual SNPs account for small proportions of 

the phenotypic variance (S7 Table). Altogether, these observations are consistent with 

joint selection of complex traits determined by several alleles of small effects, some 

of which being maintained in linkage through selection of chromosomal 

rearrangements.  

 

Conclusion. 

 

Elevation gradients provide an exceptional opportunity for investigating 

variation of functional traits in response to continuous environmental factors at short 

geographical scales. Here we documented patterns indicating that local adaptation, 

likely facilitated by the existence of chromosomal inversions, allows teosintes to cope 
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with specific environmental conditions in spite of gene flow. We detected an 

altitudinal syndrome in teosintes composed of sets of independent traits evolving 

under spatially-varying selection. Because traits co-varied with environmental 

differences along gradients, however, statistical associations between genotypes and 

phenotypes largely depended on control of population stratification. Yet, several of 

the variants we uncovered seem to underlie adaptive trait variation in teosintes. 

Adaptive teosinte trait variation may be relevant for maize evolution and breeding. 

Whether the underlying SNPs detected in teosintes bear similar effects in maize or 

whether their effects differ in domesticated backgrounds will have to be further 

investigated.   
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Material and Methods 

 

Ethics Statement 

All the field work has been done in Mexico in collaboration with Instituto Nacional de 

InvestigacionesForestales, Agrícolas y Pecuarias, Celaya in Celaya.   

 

Description of teosinte populations and sampling. 

We used 37 teosinte populations of mexicana (16) and parviglumis (21) 

subspecies from two previous collections [57, 58, 113] to design our sampling. These 

populations (S1 Table) are distributed along two altitudinal gradients (Fig 1). We 

plotted their altitudinal profiles using R ‘raster’ package [114] (S1 Fig). We further 

obtained 19 environmental variable layers from 

http://idrisi.uaemex.mx/distribucion/superficies-climaticas-para-mexico. These high-

resolution layers comprised monthly values from 1910 to 2009 estimated via 

interpolation methods [115]. We extracted values of the 19 climatic variables for each 

population (S1 Table). Note that high throughput sequencing (HTS) data were 

obtained in a previous study for six populations out of the 37 (M6a, P1a, M7b, P2b, 

M1b and P8b; Fig 1, S1 Table) to detect candidate genomic regions for local 

adaptation [58]. The four highest and lowest of these populations were included in the 

association panel described below. 

We defined an association panel of 11 populations on which to perform a 

genotype-phenotype association study (S1 Table). Our choice was guided by grain 

availability as well as the coverage of the whole climatic and altitudinal ranges. 

Hence, we computed Principal Component Analyses (PCA) from environmental 

variables using the FactoMineR package in R [116] and added altitude to the PCA 
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graphs as a supplementary variable. Our association panel comprised five populations 

from a first gradient (a) – two mexicana and three parviglumis, and six populations 

from a second gradient (b) – one mexicana and five parviglumis (Fig 1).  

Finally, we extracted available SNP genotypes generated with the 

MaizeSNP50 Genotyping BeadChipfor 28 populations out of our 37 populations [57] 

(S1 Table). From this available SNP dataset, we randomly sampled 1000 SNPs found 

to display no selection footprint [57], hereafter neutral SNPs. Data for neutral SNPs 

(Data S1) are available at: https://doi.org/10.6084/m9.figshare.9901472. We used this 

panel of 28 populations to investigate correlation with environmental variation. Note 

that 10 out of the 28 populations were common to our association panel, and 

genotypes were available for 24 to 34 individuals per population, albeit different from 

the ones of our association mapping panel.  

 

Common garden experiments  

We used two common gardens for phenotypic evaluation of the association 

panel (11 populations). Common gardens were located at INIFAP (Instituto Nacional 

de Investigaciones Forestales, Agrícolas y Pecuarias) experimental field stations in 

the state of Guanajuato in Mexico, one in Celaya municipality at the Campo 

Experimental Bajío (CEBAJ) (20°31’20’’ N, 100°48’44’’W) at 1750 meters of 

elevation, and one in San Luis de la Paz municipality at the Sitio Experimental Norte 

de Guanajuato (SENGUA) (21°17’55’’N, 100°30’59’’W) at 2017 meters of elevation. 

These locations were selected because they present intermediate altitudes (S1 Fig). 

The two common gardens were replicated in 2013 and 2014. 

The original sampling contained 15 to 22 mother plants per population. Eight 

to 12 grains per mother plant were sown each year in individual pots. After one 
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month, seedlings were transplanted to the field. Each of the four fields (2 locations, 2 

years) was divided into four blocks encompassing 10 rows and 20 columns. We 

evaluated one offspring of ~15 mother plants from each of the 11 teosinte populations 

in each block, using a semi-randomized design, i.e. each row containing one or two 

individuals from each population, and individuals being randomized within row, 

leading to a total of 2,640 individual teosinte plants evaluated. 

 

SSR genotyping and genetic structuring analyses on the association panel 

In order to quantify the population structure and individual kinship in our 

association panel, we genotyped 46 SSRs (microsatellites, S4 Table). Primers 

sequences are available from the maize database project [117] and genotyping 

protocol were previously published [118]. Genotyping was done at the GENTYANE 

platform (UMR INRA 1095, Clermont-Ferrand, France). Allele calling was 

performed on electropherograms with GeneMapper Software Applied Biosystems. 

Allele binning was carried out using Autobin software [119], and further checked 

manually.  

We employed STRUCTURE Bayesian classification software to compute a 

genetic structure matrix on individual genotypes. Individuals with over 40% missing 

data were excluded from analysis. We applied the same criterion on SSRs success rate 

and restricted all analyses to a subset of 38 SSRs (S4 Table). For each number of 

clusters (K from 2 to 13), we performed 10 independent runs of 500,000 iterations 

after a burn-in period of 50,000 iterations, and combined these 10 replicates using the 

LargeKGreedy algorithm from the CLUMPP program [120]. We plotted the resulting 

clusters using DISTRUCT software. We then used the Evanno method [121] to 

choose the optimal K value.  
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We inferred a kinship matrix K from the same SSRs using SPAGeDI [122]. 

Kinship coefficients were calculated for each pair of individuals as the correlation 

between allelic states [123]. Since teosintes are outcrossers and expected to exhibit an 

elevated level of heterozygosity, we estimated intra-individual kinship to fill in the 

diagonal. We calculated ten kinship matrices, each excluding the SSRs from one out 

of the 10 chromosomes. Microsatellite data (Data S2) are available 

at: https://doi.org/10.6084/m9.figshare.9901472.  

In order to gain insights into population history of divergence and admixture, 

we used 1000 neutral SNPs (i.e. SNPs genotyped by Aguirre-Liguori and 

collaborators [57] and that displayed patterns consistent with neutrality among 49 

teosinte populations) genotyped on 10 out of the 11 populations of the association 

panel to run a TreeMix analysis (TreeMix version 1.13 [124]). TreeMix models 

genetic drift to infer populations’ splits from an outgroup as well as migration edges 

along a bifurcating tree. We oriented the SNPs using the previously published 

MaizeSNP50 Genotyping BeadChip data from the outgroup species 

Tripsacumdactyloides [55]. We tested from 0 to 10 migration edges. We fitted both a 

simple exponential and a non-linear least square model (threshold of 1%) to select the 

optimal number of migration edges as implemented in the OptM R package [125]. We 

further verified that the proportion of variance did not substantially increase beyond 

the optimal selected value. 

 

Phenotypic trait measurements  

 We evaluated a total of 18 phenotypic traits on the association panel (S2 

Table). We measured six traits related to plant architecture (PL: Plant Height, HLE: 

Height of the Lowest Ear, HHE: Height of the Highest Ear, Til: number of Tillers, 
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LBr: number of Lateral Branches, NoE: number of Nodes with Ears), three traits 

related to leave morphologies (LeL: Leaf Length, LeW: Leaf Width, LeC: Leaf 

Color), three traits related to reproduction (MFT: Male Flowering Time, FFT: Female 

Flowering Time, TBr : Tassel Branching), five traits related to grains (Gr: number of 

Grains per ear, GrL: Grain Length, GrWi: Grain Width, GrWe: Grain Weight, GrC: 

Grain Color), and one trait related to Stomata (StD: Stomata Density). These traits 

were chosen because we suspected they could contribute to differences among 

teosinte populations based on a previous report of morphological characterization of 

112 teosintes grown in five localities [126]. 

We measured the traits related to plant architecture and leaves after silk 

emergence. Grain traits were measured at maturity. Leaf and grain coloration were 

evaluated on a qualitative scale. For stomata density, we sampled three leaves per 

plant and conserved them in humid paper in plastic bags. Analyses were undertaken at 

the Institute for Evolution and Biodiversity (University of Münster) as follows: 5mm 

blade discs were cut out from the mid length of one of the leaves and microscopic 

images were taken after excitation with a 488nm laser. Nine locations (0.15mm2) per 

disc were captured with 10 images per location along the z-axis (vertically along the 

tissue). We automatically filtered images based on quality and estimated leaf stomata 

density using custom image analysis algorithms implemented in Matlab. For each 

sample, we calculated the median stomata density over the (up to) nine locations. To 

verify detection accuracy, manual counts were undertaken for 54 random samples. 

Automatic and manual counts were highly correlated (R²=0.82), indicating reliable 

detection (see S1 Annex Stomata Detection, Dittberner and de Meaux, for a detailed 

description). The filtered data set of phenotypic measurements (Data S3) is available 

at: https://doi.org/10.6084/m9.figshare.9901472. 
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Statistical analyses of phenotypic variation 

In order to test for genetic effects on teosinte phenotypic variation, we 

decomposed phenotypic values of each trait considering a fixed population effect plus 

a random mother-plant effect (model 1): 

𝑌"#$%& = 𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"# + 𝛿% + 𝜒"% + 𝜓#%+	𝑃&/% + 𝜀"#$%&										(1) 

where the response variable Y is the observed phenotypic value, µ is the total mean, αi 

is the fixed year effect (i = 2013, 2014), βj  the fixed field effect (j = field station: 

SENGUA, CEBAJ), θij is the year-by-field interaction, γk/ij is the fixed block effect 

(k = 1, 2, 3, 4) nested within the year-by-field combination, δl is the fixed effect of the 

population of origin (l = 1 to 11),χil is the year-by-population interaction, ψjl is the 

field-by-population interaction, Pm/l is the random effect of mother plant (m = 1 to 15) 

nested within population, and εijklm is the individual residue. Identical notations were 

used in all following models. For the distribution of the effects, the same variance was 

estimated within all populations. Mixed models were run using ASRemlv.3.0 [127] 

and MM4LMM v2.0.1 [https://rdrr.io/cran/MM4LMM/man/MM4LMM-

package.html, update by F. Laporte] R packages, which both gave very similar 

results, and fixed effects were tested through Wald tests. 

 For each trait, we represented variation among populations using box-plots on 

mean values per mother plant adjusted for the experimental design following model 2: 

𝑌"#$%& = 𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"#+	𝑝&/% + 𝜀"#$%&										(2) 

where mother plant within population is considered as a fixed effect. We used the 

function predict to obtain least-square means (ls-means) of each mother plant, and 

looked at the tendencies between population’s values. All fixed models were 

computed using lm package in R, and we visually checked the assumptions of 

residues independence and normal distribution. 
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We performed a principal component analysis (PCA) on phenotypic values 

corrected for the experimental design, using FactoMineR package in R [116] from the 

residues of model 3 computed using the lm package in R: 

𝑌"#$%& = 	𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"#+	𝜀"#$%&										(3) 

Finally, we tested for altitudinal effects on traits by considering the altitude of 

the sampled population (l) as a covariate (ALT) and its interaction with year and field 

in model 4: 

𝑌"#$%& = 𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"# + 𝑐. 𝐴𝐿𝑇%+	𝑎". 𝐴𝐿𝑇% + 𝑏#. 𝐴𝐿𝑇% + 𝑃&/% + 𝜀"#$%&  

(4) 

where all terms are equal to those in model 1 except that the fixed effect of the 

population of origin was replaced by a regression on the population altitude (ALTl).  

 

Detection of selection acting on phenotypic traits 

 

We aimed at detecting traits evolving under spatially varying selection by 

comparing phenotypic to neutral genotypic differentiation. QST is a statistic analogous 

to FST but for quantitative traits, which can be described as the proportion of 

phenotypic variation explained by differences among populations [19, 128]. 

Significant differences between QST and FST can be interpreted as evidence for 

spatially-varying selection when QST>FST [128]. We used the R package 

QSTFSTComp[129] that is adequate for experimental designs with randomized half-

sibs in outcrossing species. We used individuals that were both genotyped and 

phenotyped on the association panel to establish the distribution of the difference 

between statistics (QST-FST) under the neutral hypothesis of evolution by drift - using 

the half-sib dam breeding design and 1000 resamples. We next compared it to the 
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observed difference with 95% threshold cutoff value in order to detect traits under 

spatially-varying selection.  

In addition to QST-FSTanalyses, we employed the DRIFTSEL R package [130] to 

test for signal of selection of traits while accounting for drift-driven population 

divergence and genetic relatedness among individuals (half-sib design). DRIFTSEL is a 

Bayesian method that compares the probability distribution of predicted and observed 

mean additive genetic values. It provides the S statistic as output, which measures the 

posterior probability that the observed population divergence arose under divergent 

selection (S~1), stabilizing selection (S~0) or genetic drift (intermediate S values) 

[59]. It is particularly powerful for small datasets, and can distinguish between drift 

and selection even when QST-FST are equal [59]. We first applied RAFM to estimate the 

FST value across populations, and the population-by-population coancestry coefficient 

matrix. We next fitted both the RAFM and DRIFTSEL models with 15,000 MCMC 

iterations, discarded the first 5,000 iterations as transient, and thinned the remaining 

by 10 to provide 1000 samples from the posterior distribution. Note that DRIFTSEL was 

slightly modified because we had information only about the dams, but not the sires, 

of the phenotyped individuals. We thus modified DRIFTSEL with the conservative 

assumption of all sires being unrelated. Because DRIFTSEL does not require that the 

same individuals were both genotyped and phenotyped, we used SSRs and phenotype 

data of the association panel as well as the set of neutral SNPs and phenotype data on 

10 out of the 11 populations. For the SNP analyses, we selected out of the 1000 

neutral SNPs the 465 most informative SNPs based on the following criteria: 

frequency of the less common variant at least 10%, and proportion of missing data at 

most 1%. Finally, we estimated from DRIFTSEL the posterior probability of the 
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ancestral population mean for each trait as well as deviations of each population from 

these values.  

Both QST-FST and DRIFTSEL rely on the assumption that the observed 

phenotypic variation was determined by additive genotypic variation. We thus 

estimated narrow-sense heritability for each trait in each population to estimate the 

proportion of additive variance in performance. We calculated per population narrow-

sense heritabilites as the ratio of the estimated additive genetic variance over the total 

phenotypic variance on our common garden measurements using the MCMCglmm R 

package [131] where half sib family is the single random factor, and the design (block 

nested within year and field) is corrected as fixed factor. For three grain-related traits, 

we also ran the same model but including mother plants phenotypic values calculated 

from the remaining grains not sown. We ran 100,000 iterations with 10,000 burn-in, 

inverse gamma (0.001; 0.001) as priors. We then calculated the mean and standard 

deviation of the 11 per population h² estimates. 

 

Pairwise correlations between traits. 

We evaluated pairwise-correlations between traits by correlating the residues 

obtained from model 5, that corrects the experiment design (year, field and blocks) as 

well as the underlying genetic structure estimated from SSRs: 

𝑌"#$%& = 	𝜇 +	𝛼"	 + 	𝛽# +	𝜃"# +	𝛾$/"# +	C𝑏D	. 𝐶"#$%&	
D

F

DGH

+	𝜀"#$%&									(5) 

where bn is the slope of the regression of Y on the nth structure covariate Cn. Structure 

covariate values (Cn covariates, from STRUCTURE output) were calculated at the 

individual level, i.e. for each offspring of mother plant m from population l, grown in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40 

the year i field j and block k. Cn are thus declared with ijklm indices, although they are 

purely genetic covariates.   

 

Genotyping of outlier SNPs on 28 populations 

We extracted total DNA from each individual plant of the association panel as 

well as 20 individuals from each of the 18 remaining populations that were not 

included in the association panel (Table 1). Extractions were performed from 30 mg 

of lyophilized adult leaf material following recommendations of DNeasy 96 Plant Kit 

manufacturer (QIAGEN, Valencia, CA, USA). We genotyped outlier SNPs using 

Kompetitive Allele Specific PCR technology (KASPar, LGC Group) [132]. Data for 

outlier SNPs (Data S4 and Data S5) are available 

at: https://doi.org/10.6084/m9.figshare.9901472. 

Among SNPs identified as potentially involved in local adaptation, 270 were 

designed for KASPar assays, among which 218 delivered accurate quality data. Of the 

218 SNPs, 141 were detected as outliers in two previous studies using a combination 

of statistical methods – including FST-scans [133], Bayescan [32] and Bayenv2 [35, 

134], Bayescenv [135] – applied to either six of our teosinte populations [58] or to a 

broader set of 49 populations genotyped by the Illumina MaizeSNP50 BeadChip [57]. 

The remaining outlier SNPs (77) were detected by FST-scans from six populations (S9 

Fig, S5 Table), following a simplified version of the rationale in [58] by considering 

only differentiation statistics: SNPs were selected if they displayed both a high 

differentiation (5% highest FST values) between highland and lowland populations in 

at least one of the two gradients, and a high differentiation (5% highest FST values) 

between highland and lowland populations either within parviglumis (P2b and P8b) or 
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within mexicana (M7b and M1b) or both in gradient b (Fig 1). We thereby avoided 

SNPs fixed between the two subspecies.  

 

Association mapping 

We tested the association of phenotypic measurements with outlier SNPs on a 

subset of individuals for which (1) phenotypic measurements were available, (2) at 

least 60% of outlier SNPs were adequately genotyped, and (3) kinship and cluster 

membership values were available from SSR genotyping. For association, we 

removed SNPs with minor allele frequency lower than 5%. 

In order to detect statistical associations between outlier SNPs and phenotypic 

variation, we used the following mixed model derived from [136]:  

𝑌"#$%& = 	𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"# +C𝑏D	. 𝐶"#$%&	D
F

DGH

+ 𝜁K+	𝑢"#$%& + 𝜀"#$%&								(6) 

where ζ is the fixed bi-allelic SNP factor with one level for each of the three 

genotypes (o=0, 1, 2; with o=1 for heterozygous individuals), and uijklm is the random 

genetic effect of the individual. We assumed that the vector of uijklm effects followed a 

N(0,K σ2u) distribution, where K is the kinship matrix computed as described above.	
 A variant of model 6 was employed to test for SNP association to traits, while 

correcting for structure as the effect of population membership (δl), δ being a factor 

with 11 levels (populations): 

𝑌"#$%& = 	𝜇 + 𝛼"	 + 𝛽# + 𝜃"# + 𝛾$/"# + 𝛿% + 𝜁K+	𝑢"#$%& + 𝜀"#$%&						(7)			 

In order to avoid overcorrection of neutral genetic structure and improve 

power, we ran the two models independently for each chromosome using a kinship 

matrix K estimated from all SSRs except those contained in the chromosome of the 

tested SNP [137]. We tested SNP effects through the Wald statistics, and applied a 
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10% False Discovery Rate (FDR) threshold for each phenotype separately. In order to 

validate the correction for genetic structure, the 38 multiallelic SSR genotypes were 

transformed into biallelic genotypes, filtered for MAF > 5%, and used to run 

associations with the complete 6 and 7 models, as well as 6-type models excluding 

either kinship or both structure and kinship. For each trait, we generated QQplots of 

P-values for each of these models.	
Multiple SNP models were built by successively adding at each step the most 

significant SNP, as long as its FDR was lower than 0.10. We controlled for population 

structure considering 11 populations and used the kinship matrix that excluded the 

SSRs on the same chromosome as the last tested SNP.	
 

Environmental correlation of outlier SNPs 

We tested associations between allelic frequency at 171 outlier SNPs and 

environmental variables across 28 populations, using Bayenv 2.0 [40]. Because 

environmental variables are highly correlated, we used the first two principal 

component axes from the environmental PCA analysis (PCenv1 and PCenv2) to run 

Bayenv 2.0. This software requires a neutral covariance matrix, that we computed 

from the available dataset of 1000 neutral SNPs (S1 Table). We performed 100,000 

iterations, saving the matrix every 500 iterations. We then tested the correlation of 

these to the last matrix obtained, as well as to an FST matrix calculated with 

BEDASSLE [138], as described in [57]. 

For each outlier SNP, we compared the posterior probability of a model that 

included an environmental factor (PCenv1 or PCenv2) to a null model. We 

determined a 5% threshold for significance of environmental association by running 

100,000 iterations on neutral SNPs. We carried out five independent runs for each 
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outlier SNP and evaluated their consistency from the coefficient of variation of the 

Bayes factors calculated among runs. 

In order to test whether environmental distance was a better predictor of allele 

frequencies at candidate SNPs than geography, we used multiple regression on 

distance matrices (MRM, [139]) implemented in the ecodist R package [140] for each 

outlier SNP. We used pairwise FST values as the response distance matrix and the 

geographic and environmental distance matrices as explanatory matrices. We 

evaluated the significance of regression coefficients by 1000 permutations and 

iterations of the MRM. We determined the total number of environmentally and 

geographically associated SNPs (P-value<0.05) among outliers. We employed the 

same methodology for our set of 1000 neutral SNPs.   
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Supporting information captions 

 

Figure S1: Altitudinal profiles along gradients a and b. Sampled populations are 

plotted on parallel altitudinal profiles for gradients a and b. Darker gray lines indicate 

lower latitude for gradient a and lower longitude for gradient b. Sampled populations 

are plotted by green circles (parviglumis) or red triangles (mexicana). The altitude of 

the two experimental fields (CEBAJ: 1750m and SENGUA: 2017m) are marked with 

asterisks on the y-axes. 

 

Figure S2: Principal Component Analysis of 19 climate variables for 37 teosinte 

populations. A: Projection of parviglumis (in green) and mexicana (in red) 

populations on the first PCA plane with gradients a and b indicated by triangles and 

circles, respectively. The 11 populations evaluated in common gardens are 

surrounded by a purple outline. Populations that were previously sequenced to detect 

selection footprints are shown in bold (S1 Table). B: Correlation circle of the 19 

climatic variables on the first PCA plane. Climatic variables indicated as Tn (n from 1 
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to 11) and Pn (n from 12 to 19) are related to temperature and precipitation, 

respectively. Altitude, Latitude and Longitude (in blue) were added as supplementary 

variables, and CEBAJ and SENGUA field locations were added as supplementary 

individuals. 

 

Figure S3: Box-plots of means adjusted by field, year and block, for all traits. 

Populations are ranked by altitude. parviglumis populations are shown in green and 

mexicana in red. Lighter colors are used for gradient ‘a’ and darker colors for gradient 

‘b’. Units of measurement correspond to those defined in S2 Table. For male and 

female flowering time, we report values for all 11 populations although very few 

individuals from the two most lowland populations (P1a and P2b) flowered. 

Covariation with altitude was significant for all traits except for the number of nodes 

with ears on the main tiller (S3 Table). 

 

Figure S4: Pairwise correlations between phenotypic traits. Pearson coefficient 

sign and magnitude for significant correlations between phenotypic traits after 

correction for experiment design (Model 2). X: correlations that are not significant. 

 

Figure S5. Evanno method calculations for population number ∆K in the 

association panel genotyped for 38 SSRs.  

 

Figure S6. Genetic clustering of ancestry proportions in the association panel 

genotyped for 38 SSRs. Genetic clustering was computed for K=2 to K=11. Vertical 

lines (individuals) are partitioned into coloured segments whose length represents the 

admixture proportions from the K clusters.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2019. ; https://doi.org/10.1101/563585doi: bioRxiv preprint 

https://doi.org/10.1101/563585
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 53 

 

Figure S7. Determination of the migration edge number in the TreeMix model. 

Observed Log likelihood values are plotted against the number of migration edges 

tested from 0 to 10, and two models are fitted to the data (A). Both the simple 

exponential and the non-linear least squares delivered an optimal value of 3 for the 

number of migration edges (change points). The model with 3 migration edges 

explained 98.75% of the variance, a substantial increase from the null model with no 

migration edge which is 95.7% (B). 

 

Figure S8: Significance of QST-FST difference for each trait. The dotted blue line 

indicates the 95% threshold of the simulated distributions and the red line refers to the 

observed difference. In this analysis, we considered as spatially-varying traits those 

for which the observed difference fell outside the 95% threshold. Note that Plant 

height was borderline significant. *: Set of traits detected by DRIFTSEL. 

 

Figure S9: Genomic FST-scans on 6 teosinte populations. We computed 4 pairwise-

FST values from 6 populations previously sequenced (S1 Table). Those include FST 

between lowland and highland populations of each gradient (P1a-M6a, P2b-M7b) as 

well as within subspecies on gradient b (P2b-P8b, M1b-M7b). FST values are 

averaged across sliding windows of 20 SNPs with a step of five SNPs (from top to 

bottom, chromosome 1 to 10) and normalized by subtracting the FST mean and 

dividing by the standard deviation across pairwise comparisons. Only the top 1% 

values are represented. The 1‰ thresholds for each pairwise comparisons are 

indicated by colored horizontal lines. Horizontal black bars indicate location of 

inversions on chromosome 1 (Inv1n), chromosome 4 (Inv4m) and chromosome 9 
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(Inv9d).  The subset of 171 outlier SNPs analyzed in the present study is indicated 

with black diamond marks along the X axes. 

 

Figure S10: QQ-plots of observed P-values and expected P-values generated 

from 38 SSRs. We employed three versions of the model 6 with correction for neither 

structure nor kinship, with correction for genetic structure (at K=5), with correction 

for genetic structure (at K=5 and with 11 populations) and kinship. 

 

Figure S11: Manhattan plots of associations between 171 outlier SNPs and 12 

phenotypic traits. X-axis indicates the positions of outlier SNPs on chromosomes 1 

to 10, black and gray colors alternating per chromosome. Plotted on the Y-axis are the 

negative Log10-transformed P values obtained for the K=5 model. Significant 

associations (10% FDR) are indicated considering either a structure matrix at K=5 

(pink dots), for 11 populations (blue dots), or for both K=5 and 11 populations models 

(purple dots). 

 

Figure S12: Pairwise Linkage Disequilibrium (LD) between outlier SNPs. 

Pairwise LD between 171 SNPs was estimated using r2, and corrected for structure at 

K=5 and kinship computed from 38 SSRs. Blue shaded bars show the 23 SNPs found 

to associate with at least one phenotype under the 11 populations structure correction. 
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S1 Table.  Description of 37 teosinte populations and sets of populations used in 

the present study by data types. 

 

S2 Table. List of the 18 phenotypic traits measured and estimates of narrow-

sense heritabilities (h2).  

 

S3 Table. Significance of main effects for each trait as determined by models 1 

and 4.  

 
S4 Table. Description of 46 SSRs and genotyping success rate. 

 

S5 Table. Characteristics, association with phenotypes, effects and correlation 

with environment of outlier SNPs. 

 
S6 Table. Number of individuals used to test associations between 171 SNPs and 

18 phenotypes.  

 

S7 Table. Additive and dominance effects of SNPs associated to traits after the 

11-population structure correction. 

 

S1 Annex. Stomata detection. 

 

All data (Data S1-S5) are available at : https://doi.org/10.6084/m9.figshare.9901472. 

Data S1. Set of neutral SNPs used for 10 populations. 

Data S2. Genotyping of 38 microsatellites on the association panel. 

Data S3. Phenotypic data from the association panel. 
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Data S4. Candidate SNPs genotyping on the association panel. 

Data S5. Candidate SNPs genotyping on 28 populations. 
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