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Peroxisome proliferator-activated receptors (PPARs) are a fam-
ily of nuclear receptors that regulate lipid metabolism and
bioenergetic demands within living systems. Consequently,
aberrant expression of PPAR genes could predispose individuals
to diseases including cancer. PPAR signaling exerts pleiotropic
functions in cancer, yet, little is known about the interactions
between genetic and transcriptional events of pathway genes in
a pan-cancer context. Employing multidimensional datasets of
over 18,000 patients involving 21 cancers, we performed system-
atic characterization on copy number alteration and differential
transcript expression of 74 PPAR pathway genes. We identified
18 putative driver candidates demonstrating mutually exclusive
patterns of loss- and gain-of-function phenotypes. These driver
genes successfully predicted patient survival rates in bladder,
renal, glioma, liver and stomach/esophageal cancers. Dysreg-
ulated PPAR signaling in these cancers converged on com-
mon downstream pathways associated with multiple metabolic
processes. Moreover, clinically-relevant relationships between
PPARs and hypoxia were observed where hypoxia further ag-
gravates disease phenotypes in tumor subtypes with aberrant
PPAR signaling. In glioma samples, including astrocytoma and
oligoastrocytoma, PPAR hyperactivation is associated with im-
munosuppression through increased regulatory T cell expres-
sion. Our analysis reveals underappreciated levels of diversity
and conservation in PPAR genes that could lay the groundwork
for therapeutic strategies targeting tumor metabolism, immu-
nity and hypoxia.
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Introduction

A series of genetic and phenotypic changes must take place
during malignant transformation to rewire cellular programs
and signal transduction pathways into a permissive state
that facilitates tumor survival(1–4). Metabolic reprogram-
ming, which occurs through the attainment of genetic and
epigenetic mutations, is often a critical step in tumorigenesis
because cancer cells have a unique requirement for increase
glucose uptake and lactate fermentation even in the presence
of oxygen(5, 6). Tumor cells also have increased fatty
acid oxidation and turnover(7), and this is perhaps not
unforeseen because fatty acids yield twice as much energy

as glucose. Tumor cells with increased de novo fatty acid
synthesis through the upregulation of fatty acid synthase
are also often more aggressive(8). Fatty acid oxidation is
activated by upstream effectors involving signal transduction
pathways such as peroxisome proliferator-activated receptor
(PPAR) and AMP-activated protein kinase(5, 9). Given
their bioenergetic dependence on fatty acid oxidation, a
better understanding of how lipid pathways are dysregu-
lated in cancer cells will be crucial for successful therapy.

PPARs are a family of nuclear receptor transcription factors
involved in regulating metabolic homeostasis whose activity
is regulated by fatty acid ligands(10). Three categories of
PPARs have been identified in humans; PPARα, PPARβ/δ,
and PPARγ. Once activated, PPARs heterodimerize with
retinoid X receptors (RXRs) to regulate the expression of
downstream target genes harboring peroxisome proliferator
response element motifs. Given the availability of PPAR
agonists and antagonists, investigations on the role of
PPAR signaling in cancer has begun to gain momentum.
PPAR agonists may promote or suppress tumor formation
depending on the cellular context. PPARγ agonists such
as pioglitazone and troglitazone are effective inhibitors
of cell growth in colorectal(11–13), melanoma(14) and
ovarian cancers(15). PPARγ agonists could also inhibit
the proliferation and induce cell cycle arrest in brain tumor
stem cells in a dose-dependent manner(16). In contrast,
treatment with a PPARγ antagonist depletes tumorsphere
formation in ERBB2+ breast cancer stem cells, suggest-
ing that PPARγ is essential for breast cancer stem cell
maintenance(17). PPARδ is also required for hematopoietic
stem cell maintenance, and its inhibition prevents asymmet-
rical cell division required for stem cell self-renewal(18).

The ubiquitous impact of PPAR signaling across diverse can-
cer types necessitates a systematic curation of genomic and
transcriptomic alterations of all PPAR pathway genes us-
ing a pan-cancer approach, which may offer unprecedented
insights into elucidating novel druggable targets. We per-
formed an integrated analysis on PPAR pathway genes us-
ing genomic, transcriptomic and clinical data from 18,484
patients involving 21 cancer types (Fig. 1A). We discovered
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common and distinct patterns of genetic mutations and dys-
regulated transcript expression converging on a core set of 18
putative driver genes that harbor clinically-relevant prognos-
tic information in multiple cancer types. Given its pervasive
influence in numerous biological processes, we also exam-
ined the crosstalk between PPAR signaling and tumor hy-
poxia or tumor immunity. Oncogenic variants of the PPAR
pathway identified in this study can be integrated into current
initiatives on personalized therapy employing PPAR agonists
to target fatty acid metabolism in conjunction with first-line
treatments.

Methods
Gene set and cancer cohorts: Seventy-four PPAR pathway
genes were retrieved from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database listed in Table S1. Tran-
scriptomic, genomic and clinical datasets of 21 cancer types
generated by The Cancer Genome Atlas (TCGA) were re-
trieved from the Broad Institute GDAC Firehose website(19).

Somatic copy number alterations analyses: GISTIC Level
4 copy number variation profiles for each cancer type were
downloaded from Firehose. To determine gene amplifica-
tions and deletions, we utilized GISTIC gene-level tables that
provided discrete amplification and deletion indicators(20).
Samples with GISTIC values higher than the maximum
copy-ratio for each chromosome arm (> +2) were annotated
as ‘deep amplification’ events. In contrast, samples with
values lower than the minimum copy-ratio for each chromo-
some arm (< -2) were annotated as ‘deep deletion’ events.
Samples with GISTIC values of +1 and -1 were annotated as
‘shallow amplifications’ and ‘shallow deletions’ respectively.

Determining PPAR, hypoxia and regulatory T cell
(Treg) scores: An 18-gene signature of PPAR signaling
is developed from putative loss- or gain-of-function genes.
Loss-of-function genes were identified from genes that were
recurrently deleted and downregulated in tumors. Gain-of-
function genes were identified from genes that were recur-
rently amplified and upregulated in tumors. We calculated
18-gene scores for each patient by taking the average ex-
pression of APOA1, PPARA, ACOX2, ANGPTL4, FABP3,
PLIN2, AQP7, ACSL1, FABP5, ACADL, PLIN5, PPARG,
ACADM, GK, CPT2, SCP2, ACAA1, and PCK2. Hypoxia
scores were calculated from the average expression of 52-
computationally-derived hypoxia-responsive genes(21). Treg
scores were determined from the expression of 31 Treg genes
identified from the overlap of four Treg signatures(22–25).

Differential expression and survival analyses: We have
published detailed methods on both types of analyses(26);
hence they will not be repeated here. Briefly, differential
expression analyses on 74 PPAR pathway genes were
performed on tumor and non-tumor samples. Differential
expression analyses were also performed between the
4th and 1st quartile patients stratified using the 18-gene
signature. Survival analyses were performed using the
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Fig. 1. Pan-cancer genomic alterations of PPAR pathway genes. (A) Development
of an 18-gene signature consisting of putative loss- and gain-of-function drivers.
Somatic copy number alterations and differential expression of 74 PPAR genes are
investigated. Prognosis of the signature is validated in six cancer cohorts. Pie
slices depict the number of patients within each cohort. Crosstalk between PPAR
signaling, tumor hypoxia, and tumor immunity is investigated. (B) Stacked bar chart
depicts the fraction of samples within each cancer that contain shallow and deep
copy number alterations. The width of the bars is proportional to the number of
samples within each cancer type. (C) Somatic losses and differential expression
profiles of 51 genes and (D) somatic gains and differential expression profiles of 25
genes that are recurrently deleted or amplified respectively in at least 20% of sam-
ples within each cancer in at least 7 cancer types. Heatmaps on the far left show the
fraction of samples in which a given gene is deleted or amplified. Heatmaps in the
center show differential expression values between tumor and non-tumor samples.
Cancer types are ordered using hierarchical clustering with Euclidean distance met-
ric. Genes that are lost and downregulated (38 genes) and genes that are gained
and upregulated (5 genes) are highlighted in red. Bar charts on the far right depict
the number of cancers harboring at least 20% of samples affected by gains and
losses. Refer to Table S2 for cancer abbreviations.
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Kaplan-Meier method coupled with log-rank tests, Cox
proportional hazards regression and receiver operating
characteristics. For figures 5 and 6, Spearman’s correlation
analyses were performed to determine the relationship
between PPAR signaling and tumor hypoxia or Treg expres-
sion. Patients were separated into four categories based on
median PPAR 18-gene scores and hypoxia or Treg scores
for Kaplan-Meier and Cox regression analyses. Circular
heatmaps in figure 7 were generated based on 18-gene
scores in glioma patients ranked in decreasing order from
high (purple) to low (yellow). Immune checkpoint genes
(PD1, PDL1, PDL2, CTLA4, and CD276) were sorted ac-
cording to decreasing 18-gene scores for heatmap generation.

KEGG enrichment, Gene Ontology (GO) and tran-
scription factor analyses: Differentially expressed genes
(DEGs) from 4th vs. 1st quartile patients were used
for pathway analyses using GeneCodis(27) and Enrichr(28,
29). DEGs were mapped to KEGG and GO databases
to identify significantly enriched pathways. DEGs were
mapped to ChEA and ENCODE databases to identify
transcription factors involved in regulating the DEGs.
All plots were generated using R packages (pheatmap, gg-
plot2, and GOplot). The Venn diagram was generated using
InteractiVenn(30).

Results
Somatic copy number alterations of PPAR
pathway genes reveal conserved driver muta-
tions that were recurrently amplified or deleted

We retrieved 74 genes implicated in PPAR signaling from
the KEGG database along with genomic, transcriptomic
and clinical data representing 21 major cancer types
(n=18,484) from TCGA (Fig. 1A; Table S2). We analyzed
somatic copy number alteration (SCNA) events of the
74 genes in these cancer types and observed that lung
squamous cell carcinoma (LUSC) and papillary renal cell
carcinoma (KIRP) had the highest and lowest fraction of
samples with deleted PPAR pathway genes respectively
(Fig. 1B). When considering gene amplification, the
highest and lowest fraction of samples with amplified
genes were observed in esophageal carcinoma (ESCA) and
pancreatic adenocarcinoma (PAAD) respectively (Fig. 1B).

To identify genes that exhibited similar patterns of recurrent
deletion or amplification across cancers, we interrogated
SCNA profiles that were present in at least 20% of samples
per cancer type in at least one-third of cancer types (> 7
cancers). Using these criteria, we identified 51 and 25 genes
that were recurrently lost (Fig. 1C) and gained (Fig. 1D)
respectively. All 51 genes were found to be deleted in at
least 20% of samples in esophageal carcinoma (ESCA)
and lung squamous cell carcinoma (LUSC) (Fig. 1C). In
contrast, only 2 out of 51 genes (CPT1B and PPARA)
were recurrently deleted in papillary renal cell carcinoma
(KIRP) (Fig. 1C). Again, esophageal carcinoma (ESCA)

emerged with the highest number of recurrently amplified
genes (24 out of 25 genes) while only 3 out of 25 genes
(PCK1, PLTP, and CD36) were recurrently amplified in
glioma (GBMLGG) (Fig. 1D). Further examination into
individual genes revealed that LPL was the most deleted
gene found in 17 cancer types, followed by AQP7, CPT1B,
ME1, PLIN2, PPARA and SCD that were each recurrently
deleted in 16 cancer types (Fig. 1C). In contrast, NR1H3,
PDPK1, RXRB, and SLC27A1 were some of the least
deleted genes found only in 7 cancer types (Fig. 1C). PCK1
and PLTP were both amplified in all 21 cancers, and four
other genes (CD36, CYP7A1, FABP4, and FABP5) were
found to be amplified in at least 16 cancer types (Fig. 1D).

We reasoned that SCNA events associated with transcript
upregulation or downregulation might represent candidate
driver genes. Genes that were concomitantly deleted and
downregulated could indicate loss-of-function. More-
over, gain-of-function phenotypes can be predicted from
genes that were concurrently amplified and overexpressed.
When overlaid with mutation data, differential expres-
sion analyses performed between tumor and non-tumor
samples identified 43 genes that conformed to these cri-
teria. A total of 38 genes were recurrently deleted and
downregulated (log2 fold-change < -0.5, P < 0.05) in at
least 7 cancer types: LPL, AQP7, ME1, PLIN2, PPARA,
ACSL1, SORBS1, ACOX2, CYP8B1, FABP2, FABP3,
PCK2, RXRA, SCD5, ACAA1, APOA1, APOA5, APOC3,
SLC27A2, SLC27A4, ACOX3, ACSBG2, ANGPTL4,
GK, ILK, PLIN4, PLIN5, PPARG, ACSBG1, ACSL6,
CPT2, CYP4A22, SCP2, SLC27A6, ACADM, CYP4A11,
ACADL, and CYP27A1 (Fig. 1C). Five genes were found
to be amplified and upregulated (log2 fold-change > 0.5,
P < 0.05) in at least 7 cancer types: FABP5, APOA2,
OLR1, CPT1C, and FABP6 (Fig. 1D). These genes were
subsequently prioritized as pan-cancer PPAR driver genes.

Prognostic significance of highly-correlated PPAR
driver mutations in six diverse cancer types

Given the widespread patterns of genomic and transcrip-
tomic alterations of PPAR pathway genes, we reasoned
that these features would be significantly associated with
patient survival outcomes. Employing Cox proportional
hazards regression, we examined the prognostic roles of all
43 driver genes identified previously. Except for ACSBG2,
all driver genes harbored prognostic information in at least
one cancer type (Fig. 2A). Interestingly, the glioma cohort
has the highest number of prognostic genes (30 out of 43)
(Fig. 2A). We performed Spearman’s correlation analyses
on hazard ratios (HR) retrieved from Cox regression anal-
yses to reveal prognostic genes that symbolize pan-cancer
significance. We identified 18 highly-correlated genes in
this manner and considered them as a pan-cancer PPAR
signature: APOA1, PPARA, ACOX2, ANGPTL4, FABP3,
PLIN2, AQP7, ACSL1, FABP5, ACADL, PLIN5, PPARG,
ACADM, GK, CPT2, SCP2, ACAA1 and PCK2 (Fig.
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Fig. 2. Prognostic significance of PPAR driver genes. (A) Heatmap depicts hazard ratio values obtained from Cox regression analyses on 43 driver candidates across all
cancer types. Refer to Table S2 for cancer abbreviations. (B) The heatmap shows Spearman’s correlation coefficient values comparing hazard ratios of the 43 driver genes.
Highly correlated prognostic genes are highlighted; gene names marked in blue and correlation coefficients marked with a red box. (C) Box plot represents the distribution of
18-gene scores derived from PPAR signature genes across all cancers. Cancers are ranked from high to low using median scores. (D) Kaplan-Meier analyses of the 18-gene
signature confirmed prognosis in six cancer cohorts. Patients are stratified into the 1st and 4th quartiles based on their 18-gene scores. P values are obtained from log-rank
tests. (E) Chord diagram shows which of the individual 18 genes harbored prognostic information in the six cohorts shown in (D). For example, GK, PLIN5, and PPARG
are individually prognostic in bladder cancer. BLCA = bladder, GBMLGG = glioma, KIPAN = pan-kidney, KIRC = clear cell renal cell, LIHC = liver and STES = stomach and
esophageal.

2B). We next quantified the extent of PPAR signaling by
generating a summary score for each patient based on the
average expression of the 18 genes. On average, liver
(LIHC) and head and neck cancers (HNSC) had the highest
and lowest levels of PPAR activity respectively (Fig. 2C).
When employing the 18-gene scores for patient stratifica-
tion, we observed that levels of PPAR signaling conferred
prognostic information in six cancer cohorts (Fig. 2D and
2E). Interestingly, the significance of PPAR driver genes
in determining overall survival is cancer-type dependent.
Kaplan-Meier analyses on patients within the 1st and 4th

survival quartiles demonstrated that elevated PPAR signaling
was significantly correlated with poor prognosis in patients
with glioma (P<0.0001) and stomach and esophageal cancers
(P=0.0078) (Fig. 2D). On the contrary, high expression of
signature genes was associated with better survival outcomes
in bladder (P=0.031), pan-kidney (consisting of clear cell
renal cell, chromophobe renal cell and papillary renal cell
carcinoma; P=0.041), clear cell renal cell (P=0.0027) and
liver cancer (P=0.0029) cohorts (Fig. 2D). Univariate
Cox regression analyses confirmed that patients with high
18-gene scores (4th quartile) had significantly higher death
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risks in glioma (HR=6.899, P<0.0001) and stomach and
esophageal cancers (HR=1.623, P=0.0084) (Table S3).
Likewise, in cancers where PPAR signaling is associated
with good outcomes, Cox regression analyses confirmed
that patients with high 18-gene scores (4th quartile) had
improved overall survival rates, which support the hypoth-
esis on the tumor-attenuating effects of PPAR signaling in
these cancers: bladder (HR=0.578, P=0.033), pan-kidney
(HR=0.687, P=0.032), clear cell renal cell (HR=0.543,
P=0.0041) and liver (HR=0.403, P=0.0063) (Table S3).

The 18-gene signature is an in-
dependent predictor of survival

The tumor, node, and metastasis (TNM) staging system is
frequently used in cancer prognostication. To determine
whether the signature was confounded by TNM staging,
we performed multivariate Cox regression analyses and
found that the PPAR signature remained an independent
predictor of overall survival: bladder (HR=0.692, P=0.031),
pan-kidney (HR=0.625, P=0.012), clear cell renal cell
(HR=0.604, P=0.018), liver (HR=0.492, P=0.035) and
stomach and esophageal (HR=1.509, P=0.033) (Table S3).
Since the signature was independent of TNM stage, we
predict that it could be used to improve the sensitivity and
specificity of TNM staging. We employed receiver operating
characteristic (ROC) analyses to compare the predictive per-
formance of the signature with a combined model that unites
the signature with TNM staging. ROC analyses revealed
that the combined model (signature + TNM staging) had
higher area under the curve (AUC) values: bladder (0.722
vs. 0.697), pan-kidney (0.811 vs. 0.720), clear cell renal
cell (0.813 vs. 0.722), liver (0.745 vs. 0.679) and stomach
and esophageal (0.667 vs. 0.601) (Fig. 3B). Moreover,
Kaplan-Meier analyses and log-rank tests revealed that the
signature offered an additional resolution to further separate
similarly-staged tumors: bladder (P<0.0001), pan-kidney
(P<0.0001), clear cell renal cell (P<0.0001), liver (P<0.0001)
and stomach and esophageal (P<0.0001) (Fig. 3A).

Hyperactivation of PPAR signaling is associated with ad-
verse survival outcomes in glioma patients. Glioma samples
are categorized into four histological subtypes: low-grade
gliomas (astrocytoma, oligoastrocytoma, and oligoden-
droglioma) and grade IV glioblastoma multiforme. Kaplan-
Meier analyses confirmed that elevated PPAR signaling was
indeed associated with poor survival outcomes in astrocy-
toma (P=0.0011), oligoastrocytoma (P=0.016) and glioblas-
toma multiforme (P=0.00014) (Fig. 3A). These observations
were independently confirmed by Cox regression analyses
where patients within the 4th quartile had higher mortality
rates: astrocytoma (HR=3.204, P=0.0019), oligoastrocy-
toma (HR=4.232, P=0.027) and glioblastoma multiforme
(HR=2.699, P=0.00023) (Table S3). ROC analyses revealed
that the predictive performance of the signature was the best
in astrocytoma (AUC=0.844), followed by oligoastrocytoma
(AUC=0.833) and glioblastoma multiforme (AUC=0.729)

(Fig. 3B). The signature also performed well when
all histological subtypes (including oligodendroglioma)
were considered as a group (AUC=0.832) (Fig. 3B).

The 18-gene signature reveals aberration in onco-
genic pathways converging on similar down-
stream targets associated with deranged metabolism

Since aberration in PPAR signaling is linked to clinical
outcomes (Fig. 2 and 3), we hypothesized that the function
of driver genes in these cancers might converge on similar
downstream targets. To identify oncogenic targets associated
with PPAR signaling, we performed differential expression
analyses between patients separated into 4th and 1st quartiles
based on their 18-gene scores. The highest number of
differentially expressed genes (DEGs; -1.5 > log2 fold
change > 1.5; P<0.01) was observed in glioma (2,240 genes),
followed by liver (1,578 genes), bladder (1,374 genes),
stomach and esophageal (1,323 genes), pan-kidney (897
genes) and clear cell renal cell (721 genes) (Fig. 4A; Table
S4). Remarkably, we observed overlaps in downstream
transcriptional targets resulting from aberrant PPAR signal-
ing in these cancers despite their distinct pathologies; 23
genes were found to be dysregulated in at least five cohorts,
249 genes in at least four cohorts and 739 genes in at least
three cohorts (Fig. 4A; Table S4). Together, these implied
that PPAR signaling plays a conserved role in driving
oncogenic progression. We performed Gene Ontology
(GO) and KEGG enrichment analyses to further assess the
functional significance of the DEGs (Table S4). All six
cancer cohorts exhibited very similar patterns of enriched
biological processes and oncogenic pathways (Fig. 4B and
4C). Biological functions associated with metabolism, cell
adhesion, and cell-to-cell signaling were among some of
the most enriched processes (Fig. 4B). Moreover, KEGG
analyses showed that numerous metabolic-related pathways
were dysregulated in patients with altered PPAR signaling
(Fig. 4C), which provided an independent confirmation of
the functional significance of the PPAR pathway in lipid and
fatty acid metabolism. Together, these results suggest that
altered PPAR signaling may cause metabolic reprogram-
ming of tumor cells to impact patient survival directly. To
determine which transcription factors (TFs) were upstream
regulators of the DEGs, we mapped the DEGs to ENCODE
and ChEA databases using the Enrichr tool. Interestingly,
DEGs from all six cohorts were enriched for binding tar-
gets of SUZ12 and EZH2, which are important regulators
of cancer stem cells (CSCs) (Fig. 4D). Enrichments of
other TFs implicated in CSC maintenance, RE1 Silencing
Transcription Factor (REST) and SMAD4, were also ob-
served, implying the underappreciated connection between
PPAR signaling and self-renewal mechanisms (Fig. 4D).

Tumor hypoxia worsen survival outcomes
in patients with impaired PPAR signaling

Hypoxia is a universal feature in almost all solid ma-
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Fig. 3. The 18-gene signature is independent of tumor stage. (A) Kaplan-Meier analyses of patients stratified by tumor stage or in the case of glioma by histological subtype,
and the 18-gene signature. For histological subtypes of glioma, log-rank tests are used to compare patients within the 1st and 4th survival quartiles. For the other cancers,
patients are first stratified according to tumor, node, and metastasis (TNM) staging followed by median-stratification into low- and high-score groups using the 18-gene
signature. P values are obtained from log-rank tests. (B) Predictive performance of the signature is determined using receiver operating characteristic analyses. ROC curves
generated using the signature are compared to those generated using a combined model uniting the signature and TNM staging. For glioma patients, the area under the
curves (AUCs) for astrocytoma, oligoastrocytoma, glioblastoma multiforme and all glioma samples as a whole are shown.

lignancies due to the formation of aberrant tumor
microvasculature(31–34). As an adaptation strategy to
hypoxic environments, tumor cells need to reprogram their
metabolic requirements to survive(35). Since PPARs are
critical metabolic regulators, we predict that tumor hypoxia
would influence the behavior of PPAR pathway genes and
consequently patient prognosis. To evaluate the contribution
of tumor hypoxia on PPAR signaling, we assessed the levels
of hypoxia in each patient using a hypoxia gene signature
where hypoxia scores were calculated from the mean ex-
pression values of 52 hypoxia-responsive genes(21). PPAR
scores were significantly positively correlated with hypoxia
scores in glioma (rho=0.64, P<0.0001) and pan-kidney
(rho=0.24, P<0.0001) cohorts (Fig. 5A). However, this trend

was reversed in liver (rho= -0.47, P<0.0001) and stomach
and esophageal cancers (rho= -0.20, P<0.0001) (Fig. 5A).
Patients were grouped into four categories based on their
median PPAR and hypoxia scores for survival analyses.
Intriguingly, the joint relationship between hypoxia and
PPAR signaling allowed further delineation of risk groups
that influenced survival outcomes: glioma (full cohort;
P<0.0001), astrocytoma (P<0.0001), oligoastrocytoma
(P=0.001), pan-kidney (P<0.0001), liver (P=0.0007) and
stomach and esophageal (P=0.039) (Fig. 5B). According
to analyses in the previous section, high 18-gene PPAR
scores can either be associated with poor or good outcomes
depending on the cancer type (Fig. 2). In cancers where
a high PPAR score is associated with poor outcomes, a
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Fig. 4. Dysregulated PPAR signaling converges on transcriptional targets implicated in diverse metabolic processes. Differential expression analyses are performed between
4th and 1st quartile patients stratified by the 18-gene signature in six cancer cohorts. (A) The Venn diagram shows the number of overlapping differentially expressed genes
(DEGs) in the six cohorts. DEG numbers are shown in parentheses. Functional enrichment analyses are performed by mapping DEGs to the (B) Gene Ontology, (C) KEGG
and (D) ENCODE and ChEA databases. Enriched transcription factor binding associated with DEGs are shown in (D).

high hypoxia score would further exacerbate disease phe-
notypes in these patients: glioma (full cohort; HR=7.938,
P<0.0001), astrocytoma (HR=7.380, P<0.0001), oligoastro-
cytoma (HR=14.179, P=0.011) and stomach and esophageal
(HR=1.748, P=0.0058) (Fig. 5C). On the other hand, high
PPAR score is a good prognostic factor in renal and liver can-
cers. Hence, patients with both low PPAR and high hypoxia
scores would have the highest mortality rates: pan-kidney
(HR=3.187, P<0.0001) and liver (HR=2.849, P=0.00014)
(Fig. 5C). These results suggest a model whereby PPAR
signaling may influence transcriptional targets of hypoxia.

Immuno-oncogenic properties of PPAR
driver genes in patients with glioma.

It was reported recently that focal amplification and over-
expression of PPARγ inhibits the secretion of inflammatory
cytokines and reduces cytotoxic CD8+ T-cell infiltration(36).
PPARγ and RXRA activities promote resistance to immune
checkpoint blockade to create an environment that favors
tumor growth(36). In order to evaluate the role of PPAR
signaling in modulating tumor immunity, we first needed

to identify genes that are associated with immunosup-
pression. We retrieved four regulatory T cell (Treg) gene
signatures(22–25) and looked for genes that were common in
all four signatures. We identified 31 genes that were present
in all four signatures to yield a more representative Treg gene
set that is not specific to single tumor type. We calculated
Treg scores for each patient based on the average expression
of the 31 genes. A strong positive correlation between
Treg and PPAR 18-gene scores (rho=0.65, P<0.0001) was
observed in glioma patients, suggesting that tumor cells
with elevated PPAR signaling were hypoimmunogenic
(Fig. 6A). Patients were stratified into four categories
based on median PPAR and Treg scores for survival anal-
yses. Intriguingly, high expression of Treg genes would
further promote disease aggression in glioma tumors with
hyperactive PPAR signaling (HR=7.356, P<0.0001) (Fig.
6B and 6C). This observation was repeated in glioma
histological subtypes: astrocytoma (HR=3.699, P<0.0001)
and oligoastrocytoma (HR=3.227, P=0.038) (Fig. 6B and
6C). Taken together, metabolic reprogramming of the tumor
microenvironment through PPAR signaling may influence
anti-tumor immunity and consequently immunotherapeutic
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Fig. 5. Prognostic relevance of the crosstalk between PPAR signaling and tumor
hypoxia. (A) Scatter plots show significant positive or negative correlations between
18-gene and hypoxia scores. Patients are grouped into four categories based on
median 18-gene and hypoxia scores. Density plots at the x- and y-axes show the
distribution of 18-gene and hypoxia scores. (B) Kaplan-Meier analyses are per-
formed on the four patient groups to determine the ability of the combined PPAR-
hypoxia model in determining overall survival in multiple cancers including glioma
histological subtypes. P values are obtained from log-rank tests. (C) Table inset
shows univariate Cox proportional hazards analyses of the relationship between
PPAR signaling and hypoxia. Significant P values are highlighted in bold. CI =
confidence interval.

outcomes in clinical settings. Indeed, we observed that
PPAR signaling is significantly positively correlated with
the expression profiles of canonical immune checkpoint
markers, suggesting that pharmacological inhibition of
PPAR could reinvigorate immunosurveillance in glioma
patients; PD1 (rho=0.41, P<0.0001), PDL1 (rho=0.49,
P<0.0001), PDL2 (rho=0.62, P<0.0001), CTLA4 (rho=0.38,
P<0.0001) and CD276 (rho=0.36, P<0.0001) (Fig. 7C).

Discussion
In an integrated analysis involving multidimensional datasets
from TCGA, we examined molecular characteristics of the
PPAR pathway comprising of 74 genes across 18,484 pa-
tients representing 21 cancer types. We started by cataloging
driver genes with significant SCNA patterns linked to tran-
scriptional dysregulation. We uncovered tissue-specific and
universal mutation profiles that resulted in gene upregulation
or silencing, which highlight novel oncogenic mechanisms
of PPAR signaling that has been previously underappreci-
ated. We identified a set of highly correlated genes (18-gene
signature) that were consistently associated with survival
outcomes across six cancer cohorts. In-depth analysis
of differential PPAR signaling uncovered transcriptional
perturbations of numerous signal-transduction pathways that
were conserved among cancer types. Pathways associated
with metabolic processes were among the most enriched on-
tologies; an observation that independently validates the role
of PPARs in lipid transport, fatty acid oxidation, fatty acid
catabolism and crosstalk with other lipogenic pathways(37).

Studies have demonstrated opposing effects of PPARs,
whereby they could either promote or inhibit tumor growth.
PPARδ, allows breast cancer cells to persist in severe
metabolic environments; its expression level is negatively
correlated with survival outcomes and increased metastatic
ability of tumor cells in mice(38). In pancreatic cancer,
PPARδ represents a hub gene of a transcriptome-derived
angiogenic network(39). Suppression of PPARδ inhibits
tumor growth and angiogenesis since its expression is
positively correlated with tumor aggression, recurrent and
metastasis(39). ANGPTL4 is a well-established PPARδ
target gene. It promotes cell migration in colon cancer
cells(40), lung metastasis in breast cancer(41) and venous
invasion in colorectal and gastric cancers(42, 43). More-
over, inhibition of ANGPTL4, a downstream target of
PPARδ, abrogates its pro-oncogenic effects and suppresses
breast cancer cell invasion(44). In our study, we identified
ANGPTL4 as one of the PPAR pathway driver genes. We
found that the expression level of ANGPTL4 is positively
correlated with poor survival outcomes in glioma, stomach
and esophageal, lung, colon and renal cancers and good
survival outcomes in liver cancer (Fig. 2A; Fig. 7A). PPARs
are highly pleiotropic since they also possess anti-tumor
functions. PPARγ induces apoptosis and inhibits tumor
growth in colon cancer cells(45). PPARγ ligands impair
gastric cancer cell proliferation in a dose-dependent manner
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Fig. 6. PPAR signaling is associated with immunosuppressive phenotypes. (A)
Scatter plot depicts a significant positive correlation between 18-gene and regula-
tory T cell (Treg) scores in glioma patients. Patients are grouped into four categories
based on median 18-gene and Treg scores. Density plots at the x- and y-axes show
the distribution of 18-gene and Treg scores. (B) Kaplan-Meier analyses are per-
formed on the four patient groups to determine the ability of the combined PPAR-
Treg model in determining overall survival in glioma histological subtypes. P values
are obtained from log-rank tests. (C) Table inset shows univariate Cox proportional
hazards analyses of the relationship between PPAR signaling and tumor immunity
in glioma. Significant P values are highlighted in bold. CI = confidence interval.

due to the upregulation of p53 and downregulation of cyclin
E1 and tumor burden in mice was reduced after treatment
with a PPARγ agonist rosiglitazone(46). Moreover, over-
expression of PPARγ inhibits the metastatic potential of
gastric cancer cells through attenuation of Wnt/β-Catenin
signaling and TERT expression(47). Our results demonstrate
that elevated expression of PPARγ is associated with better
survival outcomes in renal and bladder cancers, but poor
survival outcomes in glioma (Fig. 2A; Fig. 7A). These
striking cancer type-dependent patterns further reinforce
the benefit of our study, which investigates PPAR pathway
alterations in a larger pan-cancer context to expose diverse
molecular complexities and cancer-specific vulnerabilities.

Metabolic signals in the tumor microenvironment may
regulate the behavior of immune cells and affect patient
response to immunotherapies. Immune cells possess unique
metabolic qualities and bioenergetic requirements(48). Thus,
alteration of the microenvironmental metabolic landscape
could have a direct impact on anti- or pro-tumor effects(48).
As lipid-sensitive nuclear receptors, it is therefore not sur-
prising that PPARs could modulate metabolic homeostasis
of immune cells. Indeed, multiple studies have shed light
on the defining roles of PPARs in regulating innate and
adaptive immunity responses(49). PPARγ activation in
macrophages stimulates lung cancer metastasis(50), while
PPARδ activation promotes apoptotic cell clearance(51).
PPARδ activation in myeloid cells promotes tumor inva-
sion through the activation of interleukin 10(52). Also,
dysregulated lipid metabolism and accumulation of fatty
acids in non-alcoholic fatty liver disease patients lead to
increased oxidative damage, the loss of CD4+ T helper cells
and impaired anti-tumor immunity in liver cancer(53). A
majority of patients with muscle-invasive bladder cancer
(MIBC) do not respond to immunotherapy. Korpal et al.
found that immune evasion in MIBC patients is caused by
PPARγ/RXRA overexpression, which inhibits inflammatory
cytokine release(36). Cytokine expression is restored
through pharmacological inhibition of PPARγ(36). More-
over, activation of LXRs (another member of the nuclear
receptor superfamily involved in lipid homeostasis) inhibits
neutrophil and dendritic cell migration into tumors contribut-
ing to tumor immunotolerance(54). Our study may help
prioritize PPAR candidates for future functional studies to
pave the way for successful immunotherapeutic approaches.

Oxygen deprivation or hypoxia within the tumor microen-
vironment contributes to additional metabolic stress where
hypoxia could drive the reprogramming of metabolic
genes as an adaptation strategy for tumor survival(35).
We found that PPAR signaling can either be positively or
negatively correlated with tumor hypoxia depending on
cellular context (Fig. 7B). PPARγ expression and activity
levels are downregulated under hypoxic conditions in human
pulmonary artery smooth muscle cells leading to pulmonary
hypertension(55). PPARs could, in turn, regulate HIF-1a
signaling in breast and ovarian cancer cell lines; treatment of
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Fig. 7. Pan-cancer model of PPAR dysregulation and proposed crosstalk with tumor hypoxia immunity. (A) The pathway diagram represents the relationship between each
of the 18 signature genes. Genes that confer good prognosis are colored in blue while genes that confer poor prognosis are colored in red. Color intensities represent the
number of cancer cohorts in which a given gene is prognostic. Only six cohorts, as shown in figures 2D, 3 and 4, are considered in this diagram. (B) As determined in
figure 5, PPAR signaling is positively or negatively correlated with tumor hypoxia depending on cellular context. (C) PPAR signaling promotes immune evasion in glioma. The
circular heatmap in the center represents 18-gene scores in glioma sorted in descending order with each spoke representing an individual patient. Circular heatmaps of five
immune checkpoint genes are plotted with patients sorted in descending order of 18-gene scores. Spearman’s correlation coefficients between 18-gene scores and immune
checkpoint gene expression values are shown in the center of the heatmap.

these cells with a PPAR agonist before hypoxia incubation
promotes HIF-1a degradation and suppresses VEGF secre-
tion resulting in anti-tumor effects(56). Curiously, another
study reported that hypoxia elicited the downregulation of
PPARα in intestinal epithelial cells(57) and since PPARα
inhibits HIF-1a signaling, the absence of PPARα may be
crucial for cells to mount an appropriate hypoxic response.
We recently demonstrated that hypoxia also promotes the
expression of Tregs and contributes to the impairment of anti-
tumor surveillance to directly impact patient prognosis(26).
Hypoxia modulates angiogenic processes through regulat-
ing the function of immune cells. In natural killer cells,
HIF-1a accumulation promotes tumor growth by inhibiting
non-productive angiogenesis(58). Hypoxia also promotes
the angiogenic and immunosuppressive features of tumor-
associated macrophages leading to tumor metastasis(59).
Immunosuppressive myeloid-derived suppressor cells are
recruited to hypoxic liver tumors and are blocked by HIF
inhibitors to reestablish immune surveillance(60). Fur-
ther interrogation of the metabolism-hypoxia-immunity

axis would provide a framework for combination thera-
peutic initiatives to simultaneously target these pathways.

Conclusion

In summary, we present a comprehensive catalog of ge-
netic variants associated with PPAR signaling in over
18,000 tumor samples, including clinically actionable
driver genes, which may serve as important foundations
for understanding the wide-ranging effects of PPARs in
tumorigenesis. Our study reveals candidate driver genes
that may be used for personalized cancer treatment utilizing
small molecule inhibitors or agonists targeting the PPAR
pathway. Furthermore, the 18-gene signature could be
used for patient stratification in cancer therapy involv-
ing hypoxia inhibitors and/or immune checkpoint blockade.
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