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Abstract 

Stochastic mechanistic epidemiological models largely contribute to better understand pathogen 

emergence and spread, and assess control strategies at various scales (from within-host to transnational 

scale). However, developing realistic models which involve multi-disciplinary knowledge integration 25 

faces three major challenges in predictive epidemiology: lack of readability once translated into 

simulation code, low reproducibility and reusability, and long development time compared to outbreak 

time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address 

those issues and help modellers focus on model design rather than programming. EMULSION defines 

a domain-specific language to make all components of an epidemiological model (structure, processes, 30 

parameters...) explicit as a structured text file. This file is readable by scientists from other fields 

(epidemiologists, biologists, economists), who can contribute to validate or revise assumptions at any 

stage of model development. It is then automatically processed by EMULSION generic simulation 

engine, preventing any discrepancy between model description and implementation. The modelling 

language and simulation architecture both rely on the combination of advanced artificial intelligence 35 

methods (knowledge representation and multi-level agent-based simulation), allowing several 

modelling paradigms (from compartment- to individual-based models) at several scales (up to 

metapopulation). The flexibility of EMULSION and its capability to support iterative modelling are 

illustrated here through examples of progressive complexity, including late revisions of core model 

assumptions. EMULSION is also currently used to model the spread of several diseases in real 40 

pathosystems. EMULSION provides a command-line tool for checking models, producing model 

diagrams, running simulations, and plotting outputs.  Written in Python 3, EMULSION runs on Linux, 

MacOS, and Windows. It is released under Apache-2.0 license. A comprehensive documentation with 

installation instructions, a tutorial and many examples are available from: 

 https://sourcesup.renater.fr/www/emulsion-public. 45 

Introduction 

Understanding and predicting the spread of pathogens at several scales (from individuals to 

territories) under various scenarios (control measures, climate, etc.) relies on realistic mechanistic 

models [1–5]. Yet, predictive epidemiology is currently facing key methodological challenges which 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/563791doi: bioRxiv preprint 

https://doi.org/10.1101/563791
http://creativecommons.org/licenses/by-nc-nd/4.0/


could be faced mobilizing Artificial Intelligence (AI) technologies. First, the lack of model readability 50 

often hinders the capability of scientists from life sciences to discuss or revise model assumptions, once 

translated into simulation code, impairing the users’ confidence as well as critical mind towards model 

predictions. Second, epidemiological models highly depend on implementation details, which affects 

reusability in even slightly different contexts. Third, developing mechanistic models for complex 

systems is an iterative process, rendering it difficult to get reliable forecasts in a duration relevant with 55 

regards to on-field needs (e.g. while fighting outbreaks). Fourth, the complexity of realistic models often 

leads to misinterpretations coming from programming biases [6], thus it is difficult to ensure that model 

assumptions are correctly implemented in the simulation code. Fifth, model granularity is likely to 

change throughout the model development process, either to account for increased detail level, or 

conversely to keep only relevant features at a broader scale. Changes in core model assumptions can 60 

also occur late in the modelling process, for instance because a feature first considered negligible must 

finally be accounted for. This requires a capability to move back and forth between modelling paradigms 

(stochastic vs. deterministic, compartments vs. individuals) and between scales (individuals, groups, 

populations, metapopulations) without having to recode large parts of the models.  

 To address such challenges, the implementation of epidemiological models must first gain 65 

transparency, in order to make all assumptions as explicit as possible. Models are a deliberately 

simplified representation of reality, thus it is crucial to present the underlying assumptions and their 

implications, to help understand their benefits and limitations and assess their relevance. Once models 

are translated into simulation code (which is the usual process), scientists without programming skills, 

involved either in the co-design of the model or in a peer-reviewing process, cannot develop a thorough 70 

understanding of the models nor make an informed judgment. Instead, models should be described in a 

readable form. The ODD protocol (Overview, Design concepts, Details) [7] is a substantial effort to 

obtain a comprehensive description of model components within a textual template; however, “the lack 

of real specification” [8] prevents to translate ODD models straight into simulation code. On the other 

hand, enhancing reusability requires reproducibility (the capability for others to recode a model) and 75 

flexibility (the possibility to adapt it). Though necessary, best practices in software engineering [9] 

cannot settle those issues alone: ad hoc codes can be documented, tested, reproducible, and yet wrong 

[10].  
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A first step to reduce development time and errors is to use simulation platforms, which provide 

high-level built-in features. In general-purpose platforms such as GAMA [11], NetLogo [12] or Repast 80 

[13], a substantial programming effort is still required as algorithms involved in epidemiological models 

are not provided as platform features. Simulation libraries and platforms dedicated to epidemiological 

issues are rising, e.g. SimInf [14], a R library for data-driven compartment-based models; MicroSim 

[15], an agent-based platform for several kinds of diseases; or GLEaMviz [16], a metapopulation-

oriented platform. To our knowledge, the most advanced approach in terms of diversity of modelling 85 

paradigms is Broadwick [17], a Java framework for compartment- and individual-based models with 

interaction networks, which nevertheless still requires writing large portions of code to derive specific 

classes and carry out simulations on practical cases.  

 Artificial intelligence (AI) can help going further, as demonstrated in a promising approach, 

KENDRICK [18], which defines a domain-specific language (DSL, [19]), which allows to describe 90 

models as text files rather than executable code, enforces a clear separation of concerns (infection, 

demography, etc.) to facilitate model assessment by scientists from several domains, and is used to 

generate an optimized simulation code, which guarantees that model features are translated without bias 

into the program. Yet, KENDRICK is designed for compartment-based models only. 

To the best of our knowledge, none of existing solutions address those methodological 95 

challenges simultaneously, the most advanced approaches providing either a flexibility in modelling 

paradigms at the expense of software development efforts, or an enhanced readability through a DSL 

limited to a specific modelling paradigm. 

This article introduces EMULSION, an AI-based framework which tackles those challenges in 

an integrated approach. EMULSION intends to help modellers develop mechanistic stochastic models 100 

of complex systems in epidemiology at several scales using multiple paradigms, and to facilitate the co-

construction and assessment of model components (biological assumptions, model structure, 

parameters, scenarios, etc.) with epidemiologists or scientists from other relevant fields, throughout 

model development. This makes our software an outstanding contribution towards reliable, reactive and 

transparent predictive epidemiology. 105 
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Design and implementation 

To address the challenges presented above, EMULSION combines two AI methods [20]. The 

first one is a DSL designed for the description of all components of an epidemiological model, to make 

them explicit in a human-readable form as a structured text file, so that scientists from different fields 

can better interact with modellers throughout the modelling process, and discuss, assess or revise model 110 

structure, assumptions, parameters at any moment without having to read or write any line of simulation 

code. The second one is the use of a generic simulation engine, whose core architecture relies upon a 

multi-level agent-based system [21]. This allows several scales (individuals, groups, populations, 

metapopulations) and modelling paradigms (compartment- or individual-based models) to be 

encompassed within a homogeneous software interface, as agents act as wrappers which can be 115 

dynamically combined regardless of what they have to compute and the scale at which they operate.  To 

run an experiment, the simulation engine reads the DSL file containing the model description, assembles 

the agents required for a particular type of model and a specific scale, initializes parameters, functions, 

processes specified in the DSL file, and make them interact to produce simulation outputs (Fig. 1).  

Representing processes: from flow diagrams to state machines 120 

Processes occurring in the pathosystem (infection, demography, migrations…) are a core 

component of epidemiological models, often described by flow diagrams [22,23] with nodes denoting 

state variables (amount of individuals in each state), and transitions labelled with rates. Though flow 

diagrams can be easily derived into ordinary differential equations or into stochastic difference 

equations, they often mix several concerns in a unique, monolithic representation, involve implicit 125 

computational assumptions (e.g. an exponential distribution of durations in states), and cannot capture 

additional information (e.g. conditions, actions) which have to be introduced later at implementation. 

EMULSION relies upon a formalism close to flow diagrams but more accurate: finite state machines 

[24], classically used in computer science.  
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 130 

Fig 1. Approach enforced in the EMULSION framework. A generic simulation engine is coupled to a domain-

specific modelling language (DSL), reinforcing interactions between modellers and scientists from other fields. 

Knowledge involved in epidemiological models is kept explicit, understandable and revisable as a structured text 

file. A few specific software add-ons can be written to complement the simulation engine if needed. 

Compared to flow diagrams, state machines describe the evolution of one individual instead of 135 

a population, and one state machine represents one single process, so that a complex flow diagram may 

be split into several simpler state machines. Besides, states can be endowed with additional properties, 

such as a duration distribution specifying how long an individual is expected to stay in the current state, 

and actions performed by individuals when entering, being in, or leaving the state. Transitions are 

labelled with either a rate, a probability or an absolute amount (rates are automatically converted into 140 

probabilities). They can also specify: 1) calendar conditions to indicate time periods when transitions 

are available; 2) escape conditions allowing to free from state duration constraints; 3) individual 

conditions to filter which agents are allowed to cross the transition; 4) actions performed by individuals 

crossing the transition, i.e. after leaving their current state and before entering their new one (Fig 2). 
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 145 

Fig 2. Structure of a transition between two states in state machines. Individuals can be given a duration and 

actions when entering, staying in, or leaving the state. Transitions feature a rate, probability, or amount, and can 

be associated with actions performed on crossing, time-dependent ("calendar") conditions, or individual conditions 

restricting the capability to cross the transition, and escape conditions allowing individuals to leave their state 

before the nominal duration. 150 

A multi-level agent-based simulation architecture to encompass paradigms and scales 

Multi-agent systems are composed of autonomous entities (agents) endowed with a behaviour 

and interacting in a shared environment. In the last decade, multi-level agent-based systems emerged 

using agents to explicitly represent intermediary abstraction levels (groups, sub-populations, 

organizations…) with behaviours of their own, between individuals and the whole system [25–28]. 155 

Recent advances in this field [21] led to design patterns, i.e. systematic solutions for recurrent modelling 

issues. Those patterns were used in EMULSION to build the architecture of the generic simulation 

engine, in which nested agents are in charge of implementing a specific modelling paradigm at a given 

scale. Agents currently defined in EMULSION allow to implement the main paradigms used in 

epidemiological models: 1) compartment-based models [29], where state variables represent aggregate 160 

amounts of individuals which only differ by few key variables, such as health state or age group; and 2) 

individual-based models [30] necessary for finer grained representations. Besides, EMULSION 

provides a hybrid approach which combines the capability of representing detailed information through 

individuals, with an adaptive grouping of individuals based on their state, to optimize computation 

(Fig 3, and S1 Appendix, Table 1). The same approach allows to wrap different scales within agents to 165 

build either groups, populations, or metapopulations [31,32] which can handle region-wide models at a 

moderate computational cost (focusing only on relevant populations endowed with a contact structure). 

Scales and paradigms can be chosen independently: hence, a metapopulation at regional scale can rely 
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at the local scale upon compartment-based, individual-based or hybrid models, depending on the 

required detail level. In this modular architecture, simulations are run in discrete time to better cope with 170 

the potential complexity of interactions between agents from all scales. 

 

Fig 3. Diversity of modelling paradigms in EMULSION models. EMULSION allows to represent within a 

same formalism (nested agents) several modelling paradigms, from the finest grained (individuals) to aggregations 

(compartments), including intermediary representations as a trade-off between computation time and preservation 175 

of individual details. The chosen modelling paradigm is associated with the appropriate combinations of agents.  

A domain-specific language for epidemiological models 

The main benefits of the DSL defined in EMULSION are a modular decomposition of the model, 

which reduces dependencies between model components and facilitates further extensions, and a high 

readability by non-modeller scientists. When EMULSION simulation engine reads the DSL, it selects 180 

the agent classes corresponding to the chosen paradigm and scales, instantiate agents depending on 

initial conditions, transforms expressions into Python functions (using SymPy, a library for symbolic 

computation), builds the state machines, and runs the simulations. Hence, the execution of simulations 

based on an EMULSION model is univocal, all required information being directly usable (yet human-

readable) by the simulation engine.  185 

EMULSION comes with several built-in actions (changing the values of variables, creating new 

individuals, etc.) which can be used in states and transitions. When the user defines levels, groups, or 

states, EMULSION automatically provides associated variables (e.g. population counts, individual tests 

for each state) to make model description as self-sufficient as possible in model files. In very specific 

cases, processes or actions may require the definition of small code add-ons, as demonstrated below for 190 

data-driven events in a metapopulation. But in the majority of situations, no additional code is required. 
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An EMULSION model is a text file based on the YAML format [33], which is mainly based on 

nested lists or key-value pairs, ending with strings, numbers or booleans (yes/no). Each model is 

composed of several first-level keys (called “sections” in what follows) to provide information by topic: 

model name, modelling paradigms and scales, processes occurring at each level, structure of state 195 

machines, list of parameters and expressions, individual actions, initial conditions, outputs. Section and 

subsection names are chosen to be as self-evident as possible, and a substantial part of the documentation 

is dedicated to explaining the syntax of the DSL in detail, with comprehensive examples and tutorials. 

EMULSION models can be built by adapting existing examples (changing only a few sections) 

rather than starting from scratch. Especially, the main part of a model consists in section 200 

“state_machines”, which defines the state machines underlying the processes occurring in the 

pathosystem, and section “parameters”, which provides a comprehensive, commented list of parameters, 

distributions and functions used in the calculations. Almost all items have to be accompanied by a textual 

description of their meaning and role. A full example of SIR model implemented with hybrid modelling 

paradigm is provided in S1 Text. Also, in S1 Appendix, the three modelling paradigms provided by 205 

EMULSION (compartment, hybrid and individual-based) are compared on two SIR models (one with 

constant population, one with birth and death processes): differences in model files are presented side-

by-side to highlight how to transform one paradigm into the other; simulation outcomes are shown for 

the three paradigms in each model implemented with EMULSION and for the equivalent compartment-

based model implemented with the R library SimInf [14]. 210 

Results 

Incremental design of complex epidemiological models 

EMULSION enables to build non-trivial models incrementally. We illustrate this below with an 

example from within-population to between-population scales, and demonstrate how easy it is to operate 

late changes in core model assumptions.  215 

First, a classical SIR model is developed (S: susceptible, I: infectious, R: resistant), assuming a 

frequency-dependent force of infection. In this example, we use the hybrid modelling paradigm, where 

individuals are grouped according to similar health states. Transitions (infection and recovery) are 

driven by a state machine (“health_state”) which is associated with a way of grouping individuals (all 
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individuals of similar health states are grouped). The corresponding YAML file with full description is 220 

provided in S1 Text.  

Second, we introduce demography and two age groups: juveniles (J) and adults (A). We assume 

that juveniles become adults at rate “maturation”, that adults produce juveniles at rate “birth” and that 

both die at rate “mortality”. An additional process is required in the model, hence a new state machine 

(called “age_group”), also associated to a grouping. The differences introduced compared to the first 225 

case are highlighted in S2 Text. 

Third, the population model is upscaled at the metapopulation scale, assuming that pathogens 

spread among populations due to a contact network, which is described by observed data. This part 

involves two code add-ons: one for reading a CSV file which gives the dates, age groups, quantity, 

source and destination for each move, another to perform the relevant migrations at each time step. The 230 

differences introduced in the previous model are highlighted in S3 Text, and Python code add-ons 

required to handle data are provided in S4 Text. 

After being used to better understand pathogens spread in a population, epidemiological models 

are often extended to assess control strategies. Let now assume that the user wants to assess the effect 

of targeted vaccination, e.g. of juveniles in spring. This obviously involves substantial changes in the 235 

infection process, to incorporate a vaccinated state and associated transitions. The modularity of 

EMULSION allows modellers to change the “health_state” state machine without any impact on the 

metapopulation structure. First, a new health state “vaccinated” (V) must be added. A calendar is 

introduced in the “time_info” section to define when “spring” occurs. Then, the transition from “S” to 

“V” has to specify that it can only be used during spring (“when: spring”) and that it concerns only 240 

juveniles (“cond: is_J”). The differences introduced in the previous model are highlighted in S5 Text. 

Application to real diseases 

EMULSION is currently used to understand pathogen spread within structured populations and 

metapopulations, and to assess control strategies. A first study was conducted on Q fever, a zoonosis 

caused by the bacteria Coxiella burnetii and affecting mainly domestic ruminants. To better understand 245 

the interplay between within- and between-herd levels in bovine dairy herds, and identify the 

contributions of transmission pathways at regional scale, two existing models (respectively a within- 

[34] and a between-herd [35] model) were re-implemented using EMULSION. Assumptions of the 
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within-herd model were simplified, keeping relevant assumptions and removing those less crucial in the 

perspective of the between-herd dynamics [36], which was easily tackled due to EMULSION 250 

modularity. EMULSION was also used to assess strategies for the control of Bovine Respiratory 

Diseases in young bulls at fattening. In a perspective to reduce antibiotic use, metaphylaxis (collective 

treatment triggered after first cases are detected) was compared to early detection methods, based on 

sensors measuring hyperthermia durations. Three tightly coupled processes were modelled: infection, 

hyperthermia, and treatment, and scenarios combining metaphylaxis policies with detection methods 255 

were assessed with regards to reduction of antibiotics doses, infection duration, and false positives [37].   

   Being developed at INRA (French National Institute for Agricultural Research), real disease 

applications mainly come from veterinary epidemiology, but human and plant diseases can also be 

addressed. As an example, three published non trivial models were reimplemented with EMULSION 

(S2 Appendix), addressing real diseases in each field and tackling different issues: the multi-year 260 

seasonality of measles outbreaks [22], the spread of a vector-borne zoonosis, the Rift Valley fever [38], 

and the spatial spread and control of Bahia Bark Scaling of Citrus [39]. Beside reproducing published 

results in human, animal and plant epidemiology, this shows how EMULSION DSL can help represent 

complex modelling features in a flexible and explicit way, and how to extend EMULSION through a 

Python code add-on to incorporate functionalities which are not provided by EMULSION generic 265 

simulation engine (here, a dispersal kernel for the spatially explicit model).   

Addressing challenges in disease transmission modelling 

The DSL and architecture of EMULSION, both modular and flexible, provide powerful methods 

to address several challenges in epidemiological modelling [40–44]. First, model transparency, through 

the DSL, helps engage dialogue across disciplines and communicate with stakeholders and health 270 

managers, also contributing to a collaborative design and a long-term maintenance of models. The DSL, 

making all model components explicit, also fosters comparison and simplification, to address complex 

systems with relevant models as simple as possible. Second, the separation of concerns allows modellers 

to design processes (infection, demography, detection, control, etc.) and scales (individuals, populations, 

metapopulations) independently and at the relevant detail level, which helps handle multiple hosts, 275 

pathogen diversity, and realistic detection methods and control measures. Third, multi-scale and multi-
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paradigm modelling capabilities natively provided by EMULSION help model within-host 

heterogeneity and unify multiple scales of transmission. 

Availability and future directions 

The EMULSION package documentation, with installation instructions (either from PyPI or by 280 

cloning the GIT source repository), tutorial and examples, can be found on SourceSup (a forge dedicated 

to French public research institutes) at: https://sourcesup.renater.fr/www/emulsion-

public. The package comes with 32 examples to illustrate features of EMULSION modelling 

language, from very simple SIR models declined in compartmental, individual-based, or hybrid 

approaches, to epidemiological models in structured populations mixing infectious process, 285 

demography, seasonality, forcing external variables, and non-exponential distributions of state 

durations. Examples also demonstrate how to move from within- to between-population models using 

data-driven movements. Updates will be released regularly based on the integration on new modelling 

features or code optimizations. 

As demonstrated, EMULSION is flexible enough to cover a broad diversity of stochastic and 290 

mechanistic epidemiological models at several scales. Current version of the software is fully usable by 

modellers and currently deployed to develop models for real diseases assuming various propagation 

pathways (direct contacts, environment contamination, airborne or vector-borne transmission, vertical 

transmission), demographic and herd management processes, detection methods (observation of clinical 

signs, sensors, tests), and control measures (vaccination, antibiotics, tests at purchase, selective culling). 295 

Specific features in those epidemiological models, requiring for now dedicated add-ons, will be 

incorporated to the DSL and to the simulation engine as generic modules if recurrent enough among 

models, to help encompass a broad range of mechanisms within EMULSION.  

We identified three priorities for future work to be carried out in the short term. First, we aim at 

better automating data integration. Models rely on observed commercial, meteorological, and 300 

epidemiological data, either to define parameter values or to confront model predictions with 

observations. The DSL should thus allow to specify how to inform parameter values from data and how 

to define data-driven processes. Second, we will address spatially explicit models. For now, discrete 

metapopulations are possible, relevant for network contact representation but less for proximity contacts 
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(airborne transmission, neighbourhood contacts, vector-borne transmission, etc.).  Third, we plan to 305 

allow a model to combine several modelling paradigms, e.g. using compartments for vectors and 

individuals for hosts in a vector-borne disease model. In the longer term, we plan to use the DSL for 

optimized code generation (e.g. in C/C++). The choice of Python for implementing EMULSION 

simulation engine was well adapted to facilitate the modular and incremental development of the 

software, and its portability on various operating systems and environments. Genericity was also 310 

achieved through introspection capabilities of the language, but which came with an additional 

computational cost. This constitutes a limit of the software when tackling multi-scale models with 

numerous components (e.g. large number of interacting populations), models which analysis is based 

mainly on massive simulations. Such models written using EMULSION’s DSL then would benefit from 

being automatically translated into simulation codes generated from templates, allowing for higher 315 

computational performances. 

The generic modelling approach we promote in EMULSION both has advantages and 

drawbacks. The gathering of various model features within a homogeneous software tool, which can be 

picked up and combined according to the modeller’s needs with little or even no additional code, reduces 

development time, ensures that model assumptions and processes are well implemented, and allows 320 

optimized code generation as a mid-term perspective. As a common software limitation, potential bugs 

in the generic engine could impact all models developed with EMULSION: but its diffusion as an open-

source software among a broad community of users is the best way to get feedback on potential 

malfunctions, identify their origin and correct them rapidly.  

To our knowledge, EMULSION is currently the only software which addresses all major 325 

computing issues in the design of mechanistic models in epidemiology. It helps modellers focus on 

model assumptions and structure rather than coding, ensures more reliable models, provides classical 

modelling paradigms at multiple scales, and makes models explicit and readable, so that they can be 

assessed by other scientists and shared in reproducible publications. As a result, the whole model design 

process is accelerated, which substantially enhances the reactiveness of epidemiologists against 330 

emerging outbreaks. 
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Supporting information 

S1 Text. EMULSION model file for a simple SIR model with hybrid modelling paradigm. This file 

(“hybrid_SIR.yaml”) contains all model sections required to describe a classical stochastic SIR model. The hybrid 

modelling paradigm mixes an individual-based approach (individuals are created in the model) and the 335 

compartment-based approach (individuals are grouped automatically depending on their similarities), which 

renders the hybrid model performance almost as high as for a compartment-based model while enabling individual 

features. 

S1 Appendix. Comparison of simple SIR models (with constant population and with birth/death processes) 

implemented with compartments in R using library SimInf, and in EMULSION with compartment-based, 340 

hybrid and individual-based modelling paradigms. For each model, simulation outcomes for 500 stochastic 

repetitions are shown and compared with the deterministic version. We also provide an indication on calculation 

time for each model and paradigm. A state machine diagram describes the states and transitions involved in the 

model. Finally, differences between respective EMULSION files are presented side-by-side and highlighted.   

S2 Text. Changes to introduce age groups and demography in the hybrid SIR model. Differences between 345 

original and modified models (resp. “hybrid_SIR.yaml” and “hybrid_SIR_ages.yaml”) are presented side-by-side 

and highlighted (in bold; red: parts removed, green: parts added; yellow: parts modified; dashes: similar parts not 

shown). 

S3 Text. Changes to upscale the previous SIR model with demography to the metapopulation level, with 

data-driven migrations. Differences between original and modified models (resp. “hybrid_SIR_ages.yaml” and 350 

“hybrid_SIR_ages _metapop.yaml”) are presented side-by-side and highlighted (in bold; red: parts removed, 

green: parts added; yellow: parts modified; dashes: similar parts not shown). 

S4 Text. Python code for add-ons associated with the metapopulation. This file (“metapop_movements.py”) 

is required to connect the model described in the YAML file to data used on trade movements. It is composed of 

two functions: one for reading the CSV file, the other for moving individuals from one population to another 355 

according to data. 

S5 Text. Changes to previous model (metapopulation) to introduce vaccination for a targeted group and a 

specific period of the year. Differences between original and modified models (resp. “hybrid_SIR_ages 

_metapop.yaml” and “hybrid_VSIR_ages_metapop.yaml”) are presented side-by-side and highlighted (in bold; 

red: parts removed, green: parts added; yellow: parts modified; dashes: similar parts not shown). 360 
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S2 Appendix. Case studies in human, animal and plant epidemiology. This document demonstrates how to re-

implement with EMULSION three published non-trivial models, making their assumptions and structure explicit: 

1) a term-timed forced model of measles exhibiting multi-annual outbreaks, and the impact of a vaccination 

measure; 2) a model of a vector-borne zoonosis, Rift Valley fever; 3) a spatially explicit individual-based model 

of the spread and control of a plant disease, the Bahia Bark Scaling of Citrus.   365 

S6 Text. Installation procedure, tests and help page for EMULSION. Please refer to EMULSION 

documentation for the latest version: https://sourcesup.renater.fr/www/emulsion-public 

S1 File. Zip file containing all example files mentioned in the software paper. File “README.md” provides 

description and usage for each of them. 

S2 File. Zip file containing EMULSION source files. This zip file is a clone of EMULSION public Git 370 

repository. To install from this file rather than from PyPI, go to EMULSION documentation page: 

https://sourcesup.renater.fr/www/emulsion-public/pages/Install.html and follow 

Git-based installation instructions. 
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