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Summary paragraph 
 
The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the           
genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with             
the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of             
the program focus on whole genome sequencing of individuals with rich phenotypic data             
and diverse backgrounds. Here, we describe TOPMed goals and design as well as             
resources and early insights from the sequence data. The resources include a variant             
browser, a genotype imputation panel, and sharing of genomic and phenotypic data via             
dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion          
variants were detected by alignment with the reference genome. Additional novel           
variants are detectable through assembly of unmapped reads and customized analysis in            
highly variable loci. Among the >400 million variants detected, 97% have frequency <1%             
and 46% are singletons. These rare variants provide insights into mutational processes            
and recent human evolutionary history. The nearly complete catalog of genetic variation            
in TOPMed studies provides unique opportunities for exploring the contributions of rare            
and non-coding sequence variants to phenotypic variation. Furthermore, combining         
TOPMed haplotypes with modern imputation methods improves the power and extends           
the reach of nearly all genome-wide association studies to include variants down to             
~0.01% in frequency.  

 
Advancing DNA sequencing technologies and decreasing costs are enabling researchers to           
generate collections of human genetic variation at an unprecedented scale 1,2. For these            
advances to improve understanding of human health and disease, they must be deployed in              
well phenotyped human samples and used to build resources such as variation catalogs2–4,             
control collections5,6 and imputation reference panels7–9 that will enhance all ongoing human            
genetic studies. Here, we describe high-coverage whole genome sequencing (WGS) of 53,831            
TOPMed samples for which data are now available to qualified researchers through dbGaP. 
 
Long-term goals of the TOPMed program include (1) characterizing the genetic architecture of             
phenotypic variation in heart, lung, blood, and sleep (HLBS) disorders and related phenotypes;             
(2) identifying causal genetic variants and assessing how they may interact with environmental             
factors; (3) characterizing the spectrum of disease types; (4) understanding ethnic differences in             
these disorders; and (5) establishing a foundation for personalized interventions for disease            
prediction, prevention, diagnosis, and treatment. We are pursuing these goals through           
generation of whole genome sequence (WGS) and “omics” data for research participants of             
diverse backgrounds and with deep phenotypic characterization through ongoing studies, and           
by developing analytical tools to effectively mine the resulting data.  
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The program currently consists of >80 participating studies10, ~1,000 investigators, and >30            
Working Groups11. Study designs include prospective cohorts, families, population isolates, and           
case-only collections. The studies have measured thousands of phenotypic and related           
environmental risk factors. Some studies focus on heart (38%), lung (33%), blood (8%), or sleep               
phenotypes (1%), while others cover many phenotypic areas (20%) (Supplementary Figure 1).            
High-coverage whole genome sequencing (WGS, mean 38X coverage) is in progress for            
~145,000 participants (with ~135,000 completed), with additional “omics” assays in progress for            
tens of thousands of participants with sequenced genomes. Approximately 82% of participants            
are U.S. residents with diverse ancestry and ethnicity (40% European, 32% African, 16%             
Hispanic/Latino, 10% Asian, and 2% other; Supplementary Figure 2). Supplementary          
Information (section 1.1) provides additional information about TOPMed design features, study           
selection, and participant characteristics. 
 
Here we describe WGS from the first 53,831 TOPMed samples selected from data sets that are                
now available via dbGaP controlled-access (Supplementary Tables 1 and 2); additional data will             
be made available as quality control (QC), variant calling and dbGaP curation are completed.              
Our work identifies and characterizes the rare variants that comprise the majority of human              
genomic variation 7,12–14 and extends previous efforts that relied on genotyping arrays15–17,           
low-coverage WGS7,8, exome sequencing 2,12,18, or analyses of smaller sample collections19–22.          
Since rare variants represent more recent and potentially more deleterious changes that can             
impact protein function, gene expression, or other biologically important elements, their           
discovery and study are crucial for understanding the genetics and biology of human health and               
disease 13,23,24. The TOPMed WGS dataset is the largest collection of human genetic variants             
that is now broadly available to researchers (through the BRAVO browser25) and has             
substantially more ancestral diversity than other whole genome datasets2,26 (Supplementary          
Figure 3). 

TOPMed WGS  
TOPMed WGS data processing is performed periodically to produce genotype data “Freezes”            
that include all samples available at a given time. The Freeze 5 genotype call set was based on                  
65,000 samples, of which ~55,000 have now been curated and released on dbGaP. The 53,831               
samples described here are drawn from this set.  
 
To evaluate the reproducibility of our genotype calls, non-reference allele discordance was            
estimated for 378 samples sequenced in duplicate. For each pair of duplicates, discordances             
were counted as any difference in called genotypes, regardless of read depth. For single              
nucleotide variants (SNVs), the median discordance rate across duplicate pairs was 0.040% for             
passing and 33% for variants failing site-level quality filtering. For indels, the median             
discordance rate was 0.61% for passing and 23% for failing variants. Considering only singleton              
variants in a set of unrelated samples, the median discordance was 0.23% for passing, 34% for                
failing SNVs, 0% for passing indels, and 47% for failing indels. These reproducibility estimates              
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indicate the high quality of the genotype calls, although they may be optimistic because              
members of each duplicate sample pair processed and called jointly. 
 
We also evaluated potential benefits from high coverage WGS relative to exome sequencing             
(depth >30X)18 and low coverage WGS (depth >6X)22 in 430 Framingham Heart Study samples.              
TOPMed WGS identified 23.8 million variants in these samples, compared with 20.5 million             
variants in low coverage sequencing analysis (a 16% increase). Essentially all the newly             
observed variants had minor allele frequency <0.5%. When we restricted the analysis to coding              
regions, TOPMed identified ~17% more coding variants than both low-coverage WGS and            
exome sequencing (Supplementary Table 3). In comparison to exome chip genotypes for these             
samples, TOPMed averaged 0.999 concordance (across all frequencies), compared with a           
concordance of 0.990 to 0.998 for low coverage WGS. These comparisons reflect TOPMed’s             
increased sequencing depth, as well as its joint calling over tens of thousands of samples.  

410 million genetic variants in 53,831 samples 
A total of 7.0×10 15 bases of DNA sequence data were generated, consisting of an average of                
129.6×10 9 bases of sequence distributed across 864.2 million paired reads (each 100-151-bp            
long, average 149.7) per individual. For a typical individual, 99.65% of the bases in the               
reference genome were covered, to a mean read depth of 38.2X. 
 
Sequence analysis identified 410,323,831 genetic variants (381,343,078 SNVs and 28,980,753          
indels), corresponding to an average of one variant per 7 bp throughout the reference genome               
(Table 1). Overall, 78.7% of these variants had not been described in dbSNP build 149 before                
the TOPMed Project (TOPMed variants account for the majority of variants in more recent              
dbSNP releases). Among all variant alleles, 46.0% were observed once across all samples (i.e.              
singletons). Since natural selection removes most deleterious variants from the population           
before they become common, the fraction of singletons closely tracked functional constraints.            
For example, among all 4,973,175 protein coding variants, the proportion of singletons was             
highest for the 113,805 frameshift variants (59.7%), high among the 105,042 putative splice and              
truncation variants (54.1%), intermediate among the 3,172,551 non-synonymous variants         
(48.1%), and lowest among the 1,525,971 synonymous variants (43.0%). Beyond protein coding            
sequences, we found elevated proportions of singletons in promoters (47.7%), 5’ untranslated            
regions (47.2%), regions of open chromatin (46.2%), and 3’ untranslated regions (46.1%)            
(Supplementary Table 4). Conversely, we found lower proportions of singletons in putative            
transcriptional repressor CTCF (45.4%) and transcription factor binding sites (45.7%),          
suggesting these regions are relatively tolerant of variation.  
 
We identified an average of 3.78 million variants in each studied genome. Among these, an               
average of 30,207 were novel (0.8%) and 3,510 were singletons (0.1%). Thus while there are               
vast numbers of rare variants in humans, only a few of these are present in each genome and                  
large numbers of genomes must be studied to draw inferences about their function. Also striking               
is the observation that while, among all variants, we observed 3.17 million non-synonymous and              
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1.53 million synonymous variants (a 2.1:1 ratio), individual genomes contained similar numbers            
of non-synonymous and synonymous variants (11,743 non-synonymous, 11,768 synonymous,         
on average, Table 1). The difference can be explained if more than half of non-synonymous               
variants are removed from the population before they become common and, indeed we             
observed a relative paucity of non-synonymous variants at higher frequencies (56,428           
non-synonymous to 52,889 synonymous at >0.5% frequency; 21,150 non-synonymous to          
22,018 synonymous at >5% frequency).  

Protein loss of function variants 
A particularly interesting class of variants are the 228,966 putative loss of function (pLoF)              
variants, which include premature stop codons, frameshifts, and mutations in splice acceptor            
and donor sites (Table 2). This class includes the highest proportion of singletons among all               
variant classes we examined. An average individual carried 2.5 unique pLoF variants; across all              
individuals, we observed pLoF variants in 18,493 (95.0%) of GENCODE v29 27 genes.            
Significantly, we identified more pLoF variants per individual than in previous surveys based on              
exome sequencing -- an increase that was mainly driven by the identification of additional              
frameshift variants (Supplementary Table 5) and by more uniform and complete coverage of             
protein coding regions (for example, whereas ~88.9% of protein coding bases are covered at              
depth >10X in the Exome Aggregation Consortium2 (ExAC) data, ~98.8% of such bases are              
covered at depth >10X in TOPMed; Supplementary Figures 4 and 5). Our catalog of variants is                
available to researchers at the BRAVO browser28 and through dbSNP. Both are important             
resources for studies of Mendelian disorders, which must find proverbial “needles-in-a-haystack”           
by distinguishing novel, likely deleterious variants from other variants segregating in the            
population.  
 
We searched for gene sets with fewer rare (AF < 0.5%) pLoF variants than expected based on                 
gene size. The gene sets with strong functional constraint included genes encoding DNA and              
RNA binding proteins, spliceosomal complexes, translation initiation machinery, and RNA          
splicing and processing proteins (Supplementary Table 6). Importantly, genes associated with           
human disease in COSMIC29 (31% depletion, p<1x10 -6), GWAS Catalog 30 (8% and 9% depletion             
in downstream and upstream genes correspondingly, p<1x10 -6), OMIM31 (4% fewer than           
expected, p=5x10 -5) and ClinVar32 (4% depletion, p=8x10 -4) also all contained fewer rare pLoF             
variants than expected. 

The distribution of genetic variation 
We examined the distribution of variant sites across the genome by counting variants in 1Mb of                
contiguous sequence ond in 1Mb segments containing ordered concatenations of sequence           
with similar conservation level (indicated by CADD score) or coding versus non-coding status             
(Figure 1). Using 40,772 unrelated samples, we find that the vast majority of human genomic               
variation is rare 12,13 and located in putatively neutral, non-coding regions of the genome (Figure              
1A). While coding regions have lower average levels of both common and rare variation, we find                
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ultra-conserved non-coding regions with even lower levels of genetic variation, consistent with            
previous findings33 (Figure 1A).  
 
After filtering to focus on regions of the genome that are accessible through short read               
sequencing, most contiguous 1 Mb segments show similar levels of common (5,141土1,298            
variants with MAF≥0.5%) and rare variation (120,414土19,862 variants with MAF<0.5%) (Figure           
1B). However, outlier segments with notably high or low levels of variation do exist, and likely                
represent biologically interesting genomic regions that can serve as candidates of interest in             
follow-up analyses. One region of interest on chromosome 8p (GRC 38 positions            
1,000,001-7,000,000 bp) has the highest overall levels of variation (Figure 1B). This region is              
estimated to have the highest mutation rate across the human genome (with the possible              
exception of the Y chromosome)34. Interestingly, high levels of variation in this region are driven               
primarily by non-coding variation.  
 
While levels of common and rare variation within segments are significantly correlated (R2 =              
0.462, p-value ≤ 2x10 -16, Supplementary Figure 6), there are outliers. For example, segments             
overlapping the Major Histocompatibility Complex (MHC) genes have the highest levels of            
common variation across the genome while also having some of the lowest levels of rare               
variation, consistent with the evolutionary consequences of balancing selection 35–37. Segments          
with a high proportion of coding bases are negatively correlated with overall variation, and              
feature a strong depletion in the number of common variants and a more modest depletion in                
rare variants. This is consistent with the expectation that rare variants observed in very large               
samples (such as ours) have not yet been effectively pruned by natural selection             
(Supplementary Figure 7).  

Insights into mutation processes 
The distribution of singleton variants in large studies such as ours has been only modestly               
shaped by purifying selection and largely reflects underlying mutation processes38. Thus,           
studying singletons and other rare variants in our sample offers opportunities to dissect the              
mutation processes that generate extant human variation. We explored the spatial clustering of             
genetic variants, focusing on 32,058,136 singleton SNVs ascertained in a subset of 2,000             
unrelated individuals (equal numbers of African and European ancestry). We particularly tried to             
dissect multi-nucleotide mutation events where two or more closely-spaced mutations arise           
simultaneously as a result of error-prone replication and repair mechanisms39.  
 
If neighboring singletons were the result of independent mutation events, fewer than 0.07% of              
the singletons in an individual in this sample should be <100bp apart, while in fact, 2% of our                  
singletons meet this criterion. We suspect closely spaced singletons reflect the consequences            
of translesion synthesis, an error-prone replication process in which specialized polymerases           
bypass DNA lesions at stalled replication forks40, often causing multiple mutations within very             
short spans39. 
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To explore the relative importance of different mutation processes and how they influence             
clustering of genetic variants, we modeled the spatial distribution of singletons in each individual              
as a mixture of exponential processes (Supplementary Figure 8). Each component represents a             
distinct mutational process, resulting in unique spacing and mutation patterns. We found clear             
evidence for four classes of clustered singletons, consistent across individuals and ancestries            
(Figure 2A). Class 1 represents singletons occurring an average of ~2 - 8 bp apart accounted                
for ~1.5% of singletons in each sample These appear to arise through translesion synthesis and               
are substantially enriched for A>T and C>A transversions (Figure 2B), consistent with known             
signatures of translesion synthesis errors41,42. Class 2 singletons occurring ~500 - 5,000 bp             
apart accounted for ~12-24% of singletons. Some of these variants likely result from             
hypermutability of single-stranded DNA intermediates during repair of double-strand breaks43,44          
and are enriched for C>G transversions. They show prominent subtelomeric concentrations on            
chromosomes 8p, 9p, 16p, and 16q 43,44 (Figures 2B and 2C, Supplementary Figure 9),             
consistent with evidence that subtelomeric regions are enriched for double-strand breaks in            
eukaryotic genomes45. Class 3 singletons occurring ~30,000 - 50,000 bp apart accounted for             
~43-49% of all singletons. Class 4 singletons occurring ~125,000 - 170,000 bp apart accounted              
for ~31-37% of all singletons. Singletons in classes 3 and 4 show the same mutational spectrum                
as the genomic background, suggesting that these represent independent mutation events           
whose spacing is mainly driven by variation in local ancestry. Since multi-nucleotide mutations             
are uniquely implicated in the genetic architecture of complex diseases46 and the evolutionary             
history of the genome 47, our findings illustrate how the TOPMed sample will facilitate more              
refined and robust approaches to interpreting patterns of genetic diversity.  

Beyond SNVs and Indels 
To evaluate the potential of our data to generate even more comprehensive variation datasets,              
we developed and applied a method based on de novo assembly of unmapped and mismapped               
read pairs, enabling us to assemble sequences present in a sample but absent or improperly               
represented in the reference.  
 
We identified ~200 - 500kb of non-reference hominid sequence per sequenced individual (N50             
length of 954 bp, range: 200bp to 9,330bp). Merging across ~17,000 samples included in this               
analysis, we collapsed this to 1,627 scaffolds containing 1,932 contigs and spanning            
2,179,874bp. From this set, we fully resolved the insertion sequence and precise breakpoint             
locations on the human genome for 737 contigs (totalling 1,160,253bp, of which 548,749 were              
inserted bases; largest contig: 12,488bp) and were able to locate one breakpoint for an              
additional 397 contigs (453,888bp; 323,675 putatively inserted/hanging bases) (Supplementary         
File 1).  
 
In line with prior observations suggesting that the vast majority of human non-reference             
sequence is present in the assembled genomes of non-human primates48,49, we find that our              
assemblies likely represent retained ancestral sequences that have been deleted in some            
human lineages, including on the reference haplotype. Consistent with this, the frequencies of             
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the newly assembled alleles (Supplementary Figure 10) are higher than those observed for             
SNVs and indels, with 78.3% of the events present in >5% of the samples and only 6% having a                   
frequency <0.5%. Comparing our findings to two previous studies on different smaller            
datasets48,49, 243 sequences (164,099bp retained sequence) are wholly novel. Additionally, we           
have resolved length and both breakpoints for 137 events (170,133bp) for which only one              
breakpoint was previously known (Figure 3D). 
 
Overall, retained ancestral sequences appear evenly distributed across the genome (Figure           
3A), occurring at near expected frequencies with respect to genes. Of the 737 fully resolved               
events, 331 are intergenic and 406 overlap with GENCODE v29 27 genes (15 exonic, 370              
intronic, 21 in promoters, Figure 3B). Interestingly, we identified a sequence, present in all              
individuals, that fully contains exons of the UBE2QL1 gene (including the translation start site).              
The sequence is absent from current human annotation but present in Mus musculus and              
Rattus norvegicus, suggesting this common gene is not currently represented in the reference             
genome (Supplementary Figure 11). 
 
On average, African ancestry individuals have both more non-reference sequences (350.4           
sequences/sample vs 297.7 sequences/sample) and greater total assembly size         
(226.2kb/sample vs 171.6kb/sample, respectively) than European-ancestry individuals (Figure        
3C). This is consistent with a loss of genetic variation in the out-of-Africa bottleneck. Overall, 5                
sequences spanning 15,653bp are found only in African samples, whereas no single fully             
resolved sequence is unique to Europeans; we do identify one partially resolved 605bp break              
end in a single European. All these ancestry-specific events are rare (present in <0.5% of               
samples), whereas the overwhelming majority of events are shared by multiple continental            
ancestry groups. 

Variation in CYP2D6 
A complementary approach to de novo genome assembly is to develop approaches that             
combine multiple types of information — including previously observed haplotype variation,           
SNVs, indels, copy number, and homology information — to identify and classify haplotypes in              
interesting regions of the genome. One such region is the CYP2D6 gene locus, which encodes               
an enzyme that metabolizes approximately 25% of drugs and whose activity varies substantially             
among individuals50–52. More than 100 CYP2D6 haplotypes have been described to date, some             
involving a gene conversion with its nearby nonfunctional but highly similar paralog CYP2D7.             
These haplotypes are typically labelled using star alleles (e.g., CYP2D6*1, *2), each defined by              
SNVs, indels, structural variants (SVs), or some combination of these.  
 
We were particularly interested in understanding whether current variation catalogs for CYP2D6            
were complete, especially in non-European individuals. Therefore, we performed CYP2D6          
haplotype analysis for 3,418 African American individuals from the Jackson Heart Study (JHS)             
using the Stargazer program50. We called a total of 56 star alleles (51 known and 5 novel)                 
representing increased function, decreased function, and loss of function (Supplementary Table           
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7). The five novel star alleles were comprised of gene duplications (CYP2D6*29x3, *34x2, and              
*42x2) and multiplications (CYP2D6*1x3 and *2x3). We observed various CYP2D6/CYP2D7          
hybrids and extensive copy number variation ranging from zero to five gene copies             
(Supplementary Figure 12). Based on the CYP2D6 genotypes from 1,923 unrelated JHS            
individuals, we estimated that 26% of these individuals carry SVs, and that 2%, 9%, 83%, 4%,                
and 2% of the individuals are poor, intermediate, normal, ultrarapid, and unknown            
metabolizers53, respectively. 
 

Heterozygosity and rare variant sharing among ancestrally 
diverse sampled individuals 
The TOPMed variation data also present an opportunity to examine expectations about rare             
variation studies — for example, which types of studies share the same rare variants and might                
be expected to provide the most concordant results? Which studies show unique or distinct              
patterns of variation and might be expected to provide unique insights? We grouped TOPMed              
participants by study and by self-reported ancestry and calculated genetically determined           
ancestry components, heterozygosity, number of singletons, and rare variant sharing (Figure 4,            
Supplementary Table 8).  
 
We find that African ancestry studies have the greatest heterozygosity7,54, followed by            
Hispanic/Latino, European, Amish, East Asian, and then Samoan studies -- consistent with a             
gradual loss of heterozygosity tracking recent African origin of modern humans and subsequent             
migration from Africa to the rest of the globe. Interestingly, while the East Asian ancestry studies                
have among the lowest heterozygosity in our sample (even lower than the Amish, a European               
ancestry founder population with notably low heterozygosity55,56), the East Asian ancestry           
studies have the greatest singleton counts (in contrast to the Amish, who have the lowest).               
These observations are consistent with a prolonged bottleneck in East Asian populations            
followed by extreme recent exponential growth, but could also reflect a more modest sampling              
of East Asian variation in TOPMed. The Amish on the other hand have a more recent bottleneck                 
and have not experienced as great a growth since founding 55,56 (see Supplementary Information             
section 1.5). 
 
Using rare variation, we are also able to distinguish fine-scale patterns of population structure              
(Figure 4, Supplementary Figure 13 ; Supplementary Information section 1.6). Broadly, we           
observe sharing between studies with shared continental ancestry (whether African, European,           
Asian, or Hispanic/Latino). Nevertheless, additional patterns emerge. The Amish are unique           
among the included studies: they exhibit little rare variant sharing with outside groups and also               
the greatest rare variant sharing within study - consistent with a marked founder effect. Further,               
we observe ~4x greater rare variant sharing between African ancestry studies than between             
European ancestry studies, even after correcting for sample size differences (Supplementary           
Figure 14). We also observe that the MESA and GALAII Hispanic/Latino studies share ~2x more               
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rare variants with the African ancestry studies than the SAFS and WHI Hispanic/Latino studies,              
consistent with ADMIXTURE analysis results and the expectation that these studies contain            
individuals from populations with greater African admixture (Figure 4, Supplementary Figure 13). 

Haplotype sharing 
A corollary to rare variant sharing is rare haplotype sharing through segments inherited from a               
recent common ancestor. These identical-by-descent (IBD) segments show similar patterns of           
within and between study sharing to the rare variants (Supplementary Figures 15 and 16). The               
Amish study shows the greatest average within study IBD sharing levels (Supplementary Figure             
15), consistent with a founder event 14 generations ago and a subsequently closed society56,57.              
In the Amish and other samples, the distribution of IBD segments allows estimates of effective               
population sizes over the last 300 generations (Figure 5). The demographic histories are             
broadly similar between ancestry groups, with the exception of the Amish, who experienced a              
more extreme bottleneck when moving to the New World, and the Samoans, who have had a                
smaller effective population size than the East Asian populations from which they separated             
~5000 years ago 58,59. Both non-Amish European ancestry and African ancestry populations           
appear to have experienced a bottleneck ~5-10 generations ago, consistent with moving to the              
New World, whether through colonization or forced migration.  

Large sample sizes alleviate impact of selection at linked sites 
The relative numbers of singletons, doubletons and other very rare variants contained at neutral              
sites can be used to infer human demographic history13,60,61. While most demographic inference             
is currently based on fourfold degenerate sites in protein sequences, these sites evolve under              
the influence of strong selection at nearby linked protein coding sites62,63, which can affect the               
inferred timing and magnitude of population size changes. WGS enabled us to access             
intergenic regions of the genome that are minimally affected by selection and complement the              
analyses of fourfold degenerate sites in protein coding regions. In addition, the recent expansion              
of the human population has led to an increase in the number of rare mutations in the human                  
genome 12,64 that may not have had time to be influenced by selection at linked sites64. While                
these recent mutations will dominate rare variant portions of the site frequency spectrum (SFS)              
and may lessen differences caused by selection at linked sites, they can only be identified with                
extremely large sample sizes. We measured how the site frequency spectrum and demographic             
inference changes as a function of sample size and an index of selection at linked sites                
(McVicker’s B statistic65). Increasing the sample size demonstrated a more limited impact of             
selection at linked sites on singleton and doubleton bins of the SFS (Figure 6A; Supplementary               
Figure 17). Estimates of European effective population size based on the 1% of the genome               
with the weakest effect of selection at linked sites consistently yielded ~1.1M million individuals.              
In contrast, inference at fourfold degenerate synonymous sites was sensitive to sample size             
until >3,000 chromosomes were included in the analysis, at which point estimates using the two               
datasets converged (Figure 6B; Supplementary Figure 18; Supplementary Table 9). These           
results suggest demographic inference of recent human history will be facilitated by large             
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sample size and the ability to focus on regions of the genome least affected by selection at                 
linked sites.  

Human adaptations 
When adaptive mutations occur their frequencies quickly rise, bringing surrounding linked           
variation to higher frequencies as well. If selection is strong enough, we expect to see regions of                 
low diversity haplotypes flanking these events. We used the Integrated Haplotype Score 66 (iHS)             
to search for regions where positive selection occurred or is ongoing. Overall, we find three               
regions with strong evidence of selection in all ancestry groups: one on chromosome 3 and two                
on chromosome 4. These regions center on three protein coding genes: PIGG 67, SLC30A968,             
and STXBP5L69 (Supplementary Figure 19, Supplementary Table 10). 

TOPMed imputation resource 
In addition to enabling detailed analysis of the combined genomic and health data for              
sequenced samples, TOPMed can enhance analyses of any genotyped samples. We           
constructed a TOPMed-based imputation reference panel of 60,039 individuals, including          
239,756,147 SNVs and indels (see Supplementary Table 11 for breakdown by frequency). It is              
the first imputation reference panel based exclusively on deep WGS in diverse samples and              
greatly exceeds prior alternatives such as the Haplotype Reference Consortium (HRC)8           
(39,635,008 autosomal SNVs) and the 1000 Genomes Project7 phase 3 (49,143,605 SNVs and             
indels) in resolution and accuracy (Supplementary Figure 21). For example, the average            
imputation quality for variants with frequency 0.001 increased from ~0.15 (1000 Genomes,            
HRC) to 0.91 (TOPMed) in African ancestry genomes and from 0.26 (1000 Genomes) and 0.59               
(HRC) to 0.92 (TOPMed) for European ancestry genomes. Similar improvements were           
observable in other ancestries we considered except South Asians, which would be expected to              
improve in a future version of the panel that has more representation from this group. The                
minimum allele frequency at which variants could be well-imputed (r2>0.3) decreased from            
~0.13-0.21% (1000 Genomes, European or African ancestry) to 0.05% (HRC, Europeans only)            
to ~0.004 - 0.006% (TOPMed, European or African ancestry) (Supplementary Figure 20). This             
means that 93% of the ~84,000 rare variants with minor allele frequency < 0.5% in an average                 
African ancestry genome can be recovered through genotype imputation using the TOPMed            
panel (in comparison to 47% using the 1000G panel). Similarly, 95% of the ~69,000 variants               
with frequency <0.5% in an average European ancestry genome can be imputed using the              
TOPMed panel (in comparison to 49% using 1000G and 72% using HRC), enabling many              
human genetic studies to approximate the benefits of WGS for a modest investment in array               
genotyping and computation.  
 
To illustrate the possibilities, we imputed TOPMed variants in 409,694 White British UK Biobank              
participants1, and performed association analyses for >1,400 binary phenotypes, defined as           
composites of ICD-10 billing codes70. We focused an initial analysis on 49,892 rare (frequency              
≤0.5%) pLoF variants that were imputed (compared with 17,727 pLoF variants available from             
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HRC imputation and 3,759 pLoF variants examined by Emdin et al.71). Among other findings,              
our analysis enabled several rare variant associations with breast cancer to be observed: we              
found a frameshift variant in CHEK2 (chr22:28695868:AG:A; OR=2.04; P=6.98x10 -22; minor          
allele count=2,111) and a stop gain variant in PALB2 (chr16:23621362:C:T; OR=4.48;           
P=6.92x10 -14; minor allele count=316) to be associated with breast cancer (12,636 cases and             
200,417 controls). In addition to these two individual rare variants, we also found that a burden                
of rare pLoF variants in BRCA2 (comprised of 23 rare pLoF variants; P=2x10 -8; cumulative allele               
frequency cases vs. controls= 0.11% vs. 0.05%), the well-established risk gene for breast             
cancer, was significantly associated. Variants in these three genes are present in the ClinVar32              
database as potentially pathogenic for familial breast cancer, but this is the first time these               
variants have been identified through a population of generally healthy adults not ascertained             
for cancer (Supplementary Table 12). In addition, identifying variant carriers in this sample of              
500,000 well-characterized adults will help carefully dissect and understand the natural history            
and consequences of these variants. Other examples of rare variant association signals            
included associations with the burden of rare pLoF variants in USH2A and retinal dystrophies              
(83 cases; 34 rare pLoF variants; P=4x10 -8; cumulative allele frequency cases vs. controls= 4%              
vs. 0.2%) and IFT140 and acquired kidney cysts (1,257 cases; 15 rare pLoF variants; P=3x10 -8;               
cumulative allele frequency cases vs. controls= 0.6% vs. 0.1%). These are all examples of              
signals that could previously only be studied through direct sequencing.  

Conclusion and future prospects 
The first set of 53,831 sequenced genomes from TOPMed is now available to the community.               
The samples are deeply phenotyped and enable discovery of important biology72–76 for heart,             
lung, blood, and sleep disorders. In addition, they provide a rich resource for developing and               
testing methods for surveying human variation, for inference of human demography, and for             
exploring functional constraint in the genome. Beyond these uses, we expect TOPMed data will              
improve nearly all ongoing studies of common and rare disorders by providing both a deep               
catalog of variation in healthy individuals and an imputation resource that enables array-based             
studies to achieve completeness previously only attainable through direct sequencing.  
 
The WGS and phenotypic resources for TOPMed studies are currently being enriched by             
applying transcriptomic, epigenomic, metabolomic, and proteomic assays to tens of thousands           
of samples selected through an open, peer-reviewed process77. Investigators affiliated with           
TOPMed studies share data and collaborate on cross-study analyses in Working Groups, from             
which many abstracts78 and publications79 are emerging. Members of the broader scientific            
community are using TOPMed resources through the WGS data available on dbGaP, the             
BRAVO variant server, and soon as an imputation reference panel on the Michigan Imputation              
Server. 
 
Full utilization of the program’s resources by the scientific community will require new             
approaches to deal with the large size of the “omics” data (petabytes for read alignments,               
terabytes for genotype call sets); the diversity of phenotypic data types and structures; and the               
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need for data sharing in an environment that supports privacy of participant data and respect for                
consent. These issues are currently being addressed in partnerships with the NIH Data             
Commons80 and NHLBI Data STAGE81 cloud-computing programs, which have both selected           
TOPMed as an initial data resource to be used for developing infrastructure and applications.              
Through these partnerships, investigators will be able to access the full range of TOPMed              
datasets, search and retrieve specific data types, and perform integrated analyses within a             
secure cloud environment that also supports data sharing among investigators within           
collaborative working groups. 

Methods 

DNA samples 
Whole genome sequencing (WGS) for the 53,831 samples reported here was performed on             
samples previously collected and consented from research participants in 33 NHLBI funded            
research projects. All sequencing was done from DNA extracted from whole blood, with the              
exception of 17 Framingham samples (cell lines), and HapMap samples NA12878 and            
NA19238 (cell line) used periodically as sequencing controls. 

Whole genome sequencing 
WGS targeting a mean depth of at least 30X (paired end, 150-bp reads) using Illumina HiSeq X                 
Ten instruments occurred over several years at six sequencing centers (Supplementary Table            
13). All sequencing used PCR-free library preparation kits purchased from KAPA Biosystems,            
equivalent to the protocol in the Illumina TruSeq PCR-Free Sample Preparation Guide (Illumina             
cat# FC-121-2001). Center-specific details are available from the TOPMed website 82. In           
addition, 30X coverage WGS for 1,606 samples from four contributing studies were sequenced             
prior to the start of the TOPMed sequencing project and are included in this data set. These                 
were sequenced at Illumina using HiSeq 2000 or 2500 instruments, have 2 x 100 bp or 2 x 125                   
bp paired end reads and sometimes used PCR amplification. 

Sequence data processing and variant calling 
Sequence data processing was performed periodically to produce genotype data “Freezes” that            
include all samples available at a given time. All sequence was remapped using BWA-MEM83 to               
the hs38DH 1000 Genomes build 38 human genome reference including decoy sequences,            
following the protocol 84 published by Regier et al. 2018 85. Variant discovery and genotype calling              
was performed jointly, across TOPMed Parent studies, for all samples in a given Freeze using               
the GotCloud 86 pipeline. This procedure results in a single, multi-study, genotype call set. A              
support vector machine (SVM) quality filter for variant sites was trained using a large set of site                 
specific quality metrics and known variants from arrays and the 1000 Genomes Project as              
positive controls and variants with Mendelian inconsistencies in multiple families as negative            
controls (see online documentation 87 for more details). After removing all sites with minor allele              
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count less than 2, the genotypes with minimal depth >10X (minDP10) were phased using Eagle               
2.4 88. Sample-level quality control included checks for pedigree errors, discrepancies between           
self-reported and genetic sex, and concordance with prior genotyping array data. Any errors             
detected were addressed prior to dbGaP submission. Details regarding WGS data acquisition,            
processing, and quality control vary among the TOPMed data Freezes. Freeze-specific methods            
are described on the TOPMed website 89 and in documents included in each TOPMed accession              
released on dbGaP (e.g., see document phd007493.2 90 in phs000956.v3.p1 ) . 

Sample sets 
Several sample sets derived from three different WGS data Freezes were used in the analyses               
presented here: Freeze 3 (GRCh37 alignment, ~18,000 samples jointly called in 2016), Freeze             
5 (GRCh38 alignment, ~65,000 samples jointly called in 2017), and Freeze 6 (GRCh38             
alignment, ~107,000 samples jointly called in 2018). Supplementary Table 14 indicates which            
TOPMed study-consent groups were used in each of several different types of analyses             
described in this paper. Most analyses were performed on a set of 53,831 samples derived               
from Freeze 5 (column “General variant analyses” in Supplementary Table 14) or on a subset               
thereof approved for population genetic studies (column “Population genetics”). The set of            
53,831 was selected from Freeze 5 by samples eligible for dbGaP sharing at the time of                
analysis, excluding (a) duplicate samples from the same participant (b) one member of each              
monozygotic twin pair; (c) samples with questionable identity or low read depth (<98% of variant               
sites at depth ≥10X); and (d) samples with consent types inconsistent with analyses presented              
here. The “unrelated” sample set consisting of 40,273 samples refers to a subset of the 53,831                
samples who are unrelated with a threshold of third degree (less related than first cousins),               
identified using the PC-AiR method 91. 

Identifying putative loss of function variants 
Putative loss of function (pLoF) variants were identified using Loss Of Function Transcript Effect              
Estimator (LOFTEE) v0.3-beta 92 and Variant Effect Predictor (VEP) v94 93. The genomic           
coordinates of coding elements were based on GENCODE v29 27. Only stop-gained, frameshift,            
and splice site disturbing variants annotated as high-confidence (HC) pLoF were used in the              
analysis. The pLoF variants with AF > 0.5% or within regions masked due to poor accessibility                
(Supplementary Information 1.2). 
 
We evaluated enrichment and depletion of pLoF variants (AF < 0.5%) in gene sets (i.e. terms)                
from Gene Ontology (GO)94,95. For each gene annotated with a particular GO term we computed               
number of pLoF variants per protein coding base pair, L, and proportion of singletons, S. Then,                
we tested for lower/higher average L and S in a GO term using bootstrapping (1,000,000               
samples) with adjustment for protein-coding gene length (CDS): (1) sort all genes by their CDS               
length in ascending order and divide them into equal-size bins (1,000 genes each); (2) count               
how many genes from a GO term are in each bin; (3) from each bin, sample with replacement                  
same number of genes and compute average L and S; (4) count how many times sampled L                 
and S were lower/higher than observed values. The p-values were computed as the proportion              
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of bootstrap samples exceeding observed values. The fold change of average L and S was               
computed as a ratio of observed values to the average of sampled values. We tested 12,563                
GO terms, those which included >1 gene. The p-value significance threshold was thus ~2x10 -6.              
The enrichment and depletion of pLoF variants in public gene databases was tested in a similar                
way. 

Sequencing depth at protein-coding regions 
We compared sequencing depth at protein-coding regions in TOPMed WGS and ExAC WES.             
The ExAC WES depth at each sequenced base pair on human genome build GRCh37 was               
downloaded from the ExAC browser website 96. When sequencing depth summary statistics for a             
base pair was missing, we assumed depth <10X for this base pair. Only protein-coding CCDS               
genes were analyzed and the protein-coding regions (CDS) were extracted from GENCODE            
v29. When analyzing ExAC sequencing depth, we used GENCODE v29 lifted to human genome              
build GRCh37. When comparing sequencing depth for each gene individually in TOPMed and             
ExAC, we used only genes present in both GRCh38 and GRCh37 versions of GENCODE v29. 

Low coverage WGS and high coverage WES in Framingham Heart Study 
Investigators in the Framingham Heart Study (FHS) evaluated WGS from TOPMed in            
comparison with sequencing data from CHARGE Consortium WGS and Whole Exome           
Sequencing (WES). Supplementary Table 15 provides the counts and depth of each            
sequencing effort. The overlap of these three groups is 430 FHS study participants, on whom               
we report here. We use a subset of 263 unrelated study participants to calculate the numbers of                 
singletons and doubletons, minor allele frequency (MAF), heterozygosity, and all rates, to avoid             
bias from the family structure. Supplementary Information section 1.3 provides detailed           
description of the comparison results. 

Identification of CYP2D6 alleles using Stargazer’s genotyping pipeline 
Details of the Stargazer genotyping pipeline were described previously50. Briefly, SNVs and            
indels in CYP2D6 were assessed from a VCF file generated using GATK-HaplotypeCaller97.            
The VCF file was phased using the program Beagle 98 and the 1000 Genomes Project haplotype               
reference panel. Phased SNVs and indels were then matched to star alleles. In parallel, read               
depth was calculated from BAM files using GATK-DepthOfCoverage 97. Read depth was           
converted to copy number by performing intra-sample normalization 50. Following normalization,          
SVs were assessed by testing all possible pairwise combinations of pre-defined copy number             
profiles against the sample’s observed copy number profile. For novel SVs, breakpoints were             
statistically inferred using changepoint99. Information regarding novel SVs was stored and used            
to identify subsequent SVs in copy number profiles. Output data included individual diplotypes,             
copy number plots, and a VCF of SNVs and indels that were not used to define star alleles. 
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Novel genetic variants in unmapped reads 
Analysis of unmapped reads was performed using ~18,000 samples from TOPMed data Freeze             
3. From each sample, we extracted and filtered all read-pairs with at least one umapped mate                
and used them to discover human sequences absent from the reference. The pipeline included              
four steps: (i) per-sample de novo assembly of unmapped reads and selection of hominid              
contigs using the Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo abelii genome             
references; (ii) hominid-reference-based merging and scaffolding of sequences pooled together          
from all samples; (iii) reference placement and breakpoint calling; and (iv) variant calling. The              
detailed description of each step is provided in Supplementary Information section 1.4. 

Genome-wide distribution of genetic variation 

Contiguous segment analysis 
We excluded indels and multi-allelic variants, and categorized remaining variants as common            
(AF≥0.005) or rare (AF<0.005), and as coding or noncoding based on protein coding exons from               
Ensembl 94 100. Variant counts were analyzed across 2,739 non-empty (i.e. with at least one              
variant) contiguous 1 Mbp chromosomal segments, and counts in segments at the end of              
chromosomes with length L<10 6 bp were scaled up proportionally by the factor 10 6 x L-1. For                
each segment, the coding proportion, C, was calculated as the proportion of bases overlapping              
protein coding exons. The distribution of C is fairly narrow, with 80% of segments having C≤                
0.0195, 99% of segments have C≤0.067, and only 3 segments having C≥0.10. Due to the               
significant negative correlation between C and the number of variants in a segment, and              
potential mapping effects, we use linear regression to adjust the variant counts per segment              
according to the model count = ß x C + A + count_adj, where A is the proportion of segment                    
bases overlapping accessibility mask (Supplementary Information 1.2). Unless otherwise noted,          
we present analyses and results that use these adjusted count values. 

Concatenated segment analysis 
Distinct base classifications were defined by both coding and noncoding annotation (based on             
Ensembl 94 100) and CADD in silico prediction scores101 (downloaded from the CADD server for              
all possible SNVs). For each base we used maximum possible CADD score (when using the               
minimum CADD score, results were qualitatively the same). Bases beyond the final base with a               
CADD score per chromosome were excluded. This resulted in six distinct types of concatenated              
segments: high (CADD≥20), intermediate (10≤CADD<20), and low (CADD<10) CADD scores          
for coding and similarly for non-coding. Common (AF≥0.005) and rare (AF<0.005) variant            
counts were then calculated across these concatenated segments. Multi-allelic variants and           
those in regions masked due to accessibility were excluded. Counts in segments at the end of                
chromosomes were scaled up as in the contiguous analysis. 

21 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

https://paperpile.com/c/Ss0srl/HKD5x
https://paperpile.com/c/Ss0srl/HKD5x
https://paperpile.com/c/Ss0srl/v2Lrh
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

Multi-nucleotide mutations 

Data 
From the TOPMed Freeze 5 dataset, we selected a subset of 1,000 unrelated individuals of               
African ancestry and 1,000 unrelated individuals of European ancestry, based on the global             
ancestry proportions inferred using RFMIX102. In each sample of 1,000 individuals, we            
recalculated the allele counts of each SNV and extracted SNVs that were singletons within that               
sample. Note that a singleton defined here is not necessarily a singleton in the entire TOPMed                
freeze 5 dataset. We chose to limit the size of each sample to N=1,000 for two reasons: first, to                   
ensure each subsample shared homogenous ancestry, and second, to limit the incidence of             
recurrent mutations at hypermutable sites, which can alter the underlying mutational spectrum            
of singleton SNVs in large samples103. 

Mixture model parameter estimation 
For each individual , we collected the set of singletons unique to that individual (with   i       S        
singleton status determined relative to other individuals from the same population subsample).            
Assuming singletons occur independently at a constant rate , we can model the probability of         ϕi        
observing  singletons in individual  as a Poisson variable with mean ,S i G  ϕi  
 (s ) (ϕ G) /S !  f i = e−ϕ Gi i

Si
i   

where  is the size in bp of the mappable autosomal regions.G  
 
Then, for singleton , let be the distance in base pairs to its nearest neighboring singleton in   j   d 

i,j  
            

individual . These distances thus follow an exponential distribution with rate :i /ϕ  θi = 1 i  
(d ) ef i = θi −θ di i  

Now suppose the set of singletons are generated by independent Poisson processes,     Si      K > 1     
each with a different rate. Then the distribution of inter-singleton distances across all             Si  
singletons is parameterized as a mixture of  exponential component distributions, given by:K  

(d ; , θ )  f (d ; )f i λi  i = ∑
K

k=1
λi,k k i θi,k   

where and is the proportion of singletons resulting from process ..θi,1 < θi,2 < . < θi,K   /Sλi,k = Si,k i          

, such that .k ∑
K

k=1
λi,k = 1  

We estimate the parameters of this mixture ( ) using the       , .., , , ..,λi,1 . λi,K θi,1 . θi,K    
expectation-maximization (EM) algorithm as implemented in the mixtools R package 104. To           
identify an optimal number of mixture components, we iteratively fit mixture models for             
increasing values of K and calculated the log-likelihood of observed data D given the parameter               
estimates ( , stopping at K components if the p-value of the likelihood ratio , .., , , .., )λ

︿

i,1 . λ
︿

i,K θ
︿

i,1 . θ
︿

i,K             
test between K-1 and K components was >0.01 (chi-squared test with 2 degrees of freedom).               
The goodness-of-fit plateaued at four components for the majority of individuals, so we used the               
4-component parameter estimates from each individual in all subsequent analyses. 
 
Now let indicate which of the four processes generated singleton in individual . We  ki,j         j    i   
calculated the probability of being generated by process  as:k  
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(k  | d ; k 1, .., })p i,j = k  
i,j  ∈ { . 4 = p(d ) i

p(d ,k) 
i =

λ  f (d ;θ )i,k k i i,k

 f (d ;θ )∑
4

k=1
λi,k k i i,k

 

Where we then classified the process-of-origin for each singleton per the following optimal             
decision rule: 

p(k | d )k
︿

i,j = arg maxk∈{1,...,4}
 
i,j  

 
Identification of cluster class 2 hotspots 
After assigning singletons to the most likely cluster class, we counted the frequencies in              
non-overlapping 1Mb windows throughout the genome, and defined hotspots as the top 5% of              
1Mb bins containing the most singletons within each ancestry group. 

Simulations 
To quantify the effects of external branch length heterogeneity on singleton clustering patterns,             
we simulated singletons under the following model. First, we can assume the number of             N i   
singletons in individual i follow a Poisson( ) distribution, where (here, G indicates the       ϕi   ϕi = G

N i     
total number of mutable bases in the mappable autosomal regions of the reference genome).              
Consequently, the distances between successive singletons in individual i are expected to            
follow an exponential distribution with rate . For each individual i, we randomly drew      /ϕ  θi = 1 i         N i  
inter-singleton distances from the corresponding  probability distribution.)exp(θi  
 
We used msprime 105 to simulate 2,000 European chromosomes (100Mbp in length) using a             
demographic model with parameter estimates reported by Fu et al. 2013 12. We performed             
simulations using a per-site, per-generation mutation rate ranging from 1x10 -8 to 2x10 -8.            
Because our aim was to compare these simulated singletons to unphased singletons in the              
TOPMed data, we randomly assigned each of the 2,000 haploid samples into one of 1,000               
diploid pairs, and recalculated the inter-singleton distances per diploid sample, ignoring the            
chromosome on which each simulated singleton originated.  

Evolutionary genetics of diverse ancestry individuals 

Rare variant sharing 
We used 39,722 unrelated individuals that had consent for population genetics research. Each             
individual was grouped into their TOPMed study, except for individuals from the AFGen project,              
which were treated as one study (Supplementary Tables 1 and 2). FHS and ARIC individuals,               
which overlapped with the AFGen project, remained in their respective studies and were not              
grouped into the AFGen project. Individuals for whom self-described ancestry was either            
missing or “other” were removed from the analysis. We then removed all indels, multi-allelic              
variants, and singletons from the remaining 39,168 individuals. Each study was then split by              
self-described ancestry. We excluded studies that had <19 samples from the analysis, however             
all 39,168 samples were used to define singleton filtering. We used the Jaccard Index106, J, to                
determine the intersection of rare variants (2 ≤ sample count ≤ 100) between two individuals               
divided by the union of that pairs’ rare variants, where sample count are the number of                
individuals with either heterozygote or homozygote. We then determined the average J value             
between and within each study. 
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To confirm that J is not biased by sample size, we randomly sampled 500 individuals from each                 
of two European (AFGen, FHS) and two African (COPDGene, JHS) ancestry studies in             
TOPMed data Freeze 3, without replacement. We then recalculated J between and within these              
randomly sampled studies from AC = 2 to 100, with AC calculated from these 2,000 individuals. 

Identity-by-descent sharing 
We used the RefinedIBD program107 to call segments of IBD having length ≥2 cM on the                
autosomes using passing SNVs with MAF>5%. All 53,831 samples were included in this             
analysis, and we used genotype data which had been phased with Eagle2 88. Since IBD LOD               
scores are often deflated in populations with strong founding bottlenecks, such as the Amish,              
we used a LOD score threshold of 1.0 instead of the default 3.0. To account for possible                 
phasing and genotyping errors, we filled gaps between IBD segments for the same pair of               
individuals if the gap had length at most 0.5 cM and at most one discordant genotype. As a                  
result of the lower LOD threshold, regions with low variant density can have an excess of                
apparent IBD segments. We therefore identified regions with highly elevated levels of detected             
IBD using the procedure of Browning and Browning (2015)108, and removed any IBD segments              
falling wholly within these regions. 
 
We divided the data by study and by self-identified ancestry within study. In the analyses of IBD                 
sharing levels and recent effective size, we did not include studies without appropriate consent              
or ancestry groups with <80 individuals within a study. We calculated the total length of IBD                
segments for each pair of individuals, and we averaged these totals within each ancestry group               
in a study and between each pair of ancestry-by-study groups. We also estimated recent              
effective population size for each group using IBDNe 108.  

Demographic estimation under selection at linked sites 
We selected 2,416 samples from the TOPMed data Freeze 3 which (a) had a high percentage                
of European ancestry; (b) were unrelated; and (c) gave consent for performing population             
genetics research. More detailed information about ancestry estimation and filters is provided in             
Supplementary Information 1.7. 
 
We also performed several steps to filter the genome for high-quality neutral sites, which were               
based off of the ascertainment scheme used by Torres et al. 2018 109 (Supplementary             
Information 1.7). After filtering, positions in the genome were annotated for how strongly             
affected they are by selection at linked sites by using the background selection (BGS)              
coefficient McVicker’s B statistic65. We used all sites annotated with a B value for performing               
general analyses. However, when performing demographic inference, we limited our analyses           
to regions of the genome within the top 1% of the genome-wide distribution of B (B >= 0.994).                  
These sites correspond to regions of the genome inferred to be under the weakest amount of                
BGS (i.e., under the weakest effects of selection at linked sites). Sites in the genome were also                 
polarized to ancestral and derived states using ancestral annotations called with           
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high-confidence from the GRCh37 e71 ancestral sequence. After keeping only polymorphic           
di-allelic sites, we had 20,324,704 sites, 191,631 with B >= 0.994. We also identified 91,177               
fourfold degenerate synonymous sites that were polymorphic (di-allelic) and had          
high-confidence ancestral/derived states. 
 
We performed demographic inference with the moments110 program by fitting a model of             
exponential growth with three parameters (NEur0, NEur, TEur) to the site-frequency spectrum (SFS).             
This included two free parameters: the starting time of exponential growth (TEur) and the ending               
population size after growth (NEur). The ancestral size parameter (i.e, the population size when              
growth begins), NEur0, was kept constant in our model such that the relative starting size of the                 
population was always 1. We applied the inference procedure to either fourfold degenerate sites              
or sites with B >= 0.994. The SFS used for inference was unfolded and based on the                 
polarization step described above. The inference procedure was fit using sample sizes (2N) of              
1,000, 2,000, 3,000, 4,000, and 4,832 chromosomes. To convert the scaled genetic parameters             
output by the inference procedure to physical units, we used the resulting theta (also inferred by                
moments) and a mutation rate of 1.66 x 10 -8 111 to generate corresponding effective population               
sizes (Ne). To convert generations to years, we assumed a generation time of 25 years. 95%                
confidence intervals were generated by resampling the SFS 1,000 times and using the             
Godambe Information Matrix to generate parameter uncertainties112. A more detailed description           
is available in Supplementary Information 1.7. 

Selection 
We used 8,377 unrelated individuals selected from the TOPMed data Freeze 3 for which we               
had consent for population genetic analyses (Supplementary Table 16). We assigned each            
individual to one of six population labels using k-means clustering on the first 7 PCs as                
described in Supplementary Information 1.8. Then, we analyzed each population separately.           
Only bi-allelic sites with unambiguous ancestral state, inferred using WGSA pipeline, were used.             
Sites near chromosome boundaries and with minor allele frequency <0.05 were also excluded             
(Supplementary Table 17). We used the program selscan 113 to perform all iHS scans66 in each               
population using default parameters. Then we normalized raw iHS scores within 20 frequency             
bins. We followed Voight et al. 2006 66 to find regions with the largest proportion of extreme iHS                 
scores -- putatively selected regions (Supplementary Information 1.8). A full list of genes found              
in significant regions, and the populations in which they were found significant, is given in               
Supplementary File 2. A full list of regions identified as significant in each population can be                
found in Supplementary Files 3-8. 

TOPMed Imputation Panel 

Construction 
We divided each autosomal chromosome and the X chromosome into overlapping chunks (with             
chunk size 1Mb each and with 0.1Mb overlap between consecutive chunks), and then phased              
each of the chunks using Eagle v2.4 88. We removed all singleton sites and compressed the               
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haplotype chunks into m3vcf format114. Afterwards, we ligated the compressed haplotype           
chunks for each chromosome to generate the final reference panel. 

Evaluation of imputation accuracy 
For all TOPMed individuals, genetic ancestries were estimated using the top four principal             
components (PCs) projected onto the PC space of 938 Human Genome Diversity Project             
(HGDP) individuals using verifyBamID2 115. For each TOPMed individual, we identified the 20            
closest individuals from 2,504 individuals from the 1000 Genomes Project Phase 3 (1000G)             
based on Euclidean distances in the PC space estimated by verifyBamID2. If all of the 20                
closest 1000G individuals belonged to the same super-population - among African (AFR),            
Admixed American (AMR), East Asian (EAS), European (EUR), South Asian (SAS) - we             
estimated that the TOPMed individual also belongs to that super-population. Among the 60,039             
reference panel individuals, 55,365 (92%) were assigned to a super-population, with the            
following breakdown: AFR=14,764, AMR=4,347, EUR=31,686, EAS=4,429, SAS=139. Of 5,504         
additionally sequenced individuals for the BioMe study but not included in the TOPMed             
reference panel, 4,725 were assigned to a single super-population using this method. We             
randomly selected 100 individuals from each super-population, and selected markers on           
chromosome 20 present on the Illumina HumanOmniExpress (8v1-2_A) array. The selected           
genotypes were phased with Eagle 2.4.1 88, using the 1000G (n=2,504), Haplotype Reference            
Consortium (HRC, n=32,470)8, and TOPMed (n=60,039) reference panels. The phased          
genotypes were imputed using Minimac4 116 from each reference panel, and the imputation            
accuracy was estimated as the squared correlation coefficient (r2) between the imputed dosages             
and the genotypes calls from the sequence data. The allele frequencies were estimated among              
all TOPMed individuals estimated to belong to the same super-population, and the r2 values              
were averaged across variants in each MAF category. Variants present in 100 sequenced             
individuals but absent from the reference panels were assumed to have r2=0 for the purposes of                
computing the average r2. The minimum MAF to achieve r2>0.3 was calculated from the average               
r2 in each MAF category by finding the MAF that crosses r2=0.3 using linear interpolation. The                
average number of rare variants (MAF<0.5%) and the fraction of imputable rare variants (r2>0.3)              
were calculated based on the number of non-reference alleles in imputed samples above and              
below the minimum MAF, assuming HWE. 

Imputation of the UK Biobank to the TOPMed panel and association analyses 
After phasing the UK Biobank genetic data (carried out on 81 chromosomal chunks using Eagle               
v2.4.), the phased data were converted from GRCh37 to GRCh38 using LiftOver117. Imputation             
was performed using Minimac4 116. 
 
We tested single putative loss of function (pLoF) nonsense, frameshift or essential splice site              
variants (determined as described previously) for association with 1,403 traits: PheCodes           
constructed from composites of ICD-10 codes to define cases and controls. Construction of the              
PheCodes has been previously described 70. To perform the association analyses, we used a             
logistic mixed model test implemented in SAIGE70 with birth year and the top four PCs               
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(computed from the White British subset) as covariates. For the pLoF burden tests, for each               
gene with at least two rare pLoF variants (N=8,636 genes) a burden variable was created in                
which dosages of rare pLoF variants were summed for each individual. This sum of dosages               
was tested for association with the 1,403 traits using SAIGE. The same covariates used in the                
single-variant tests were included. For both the single-variant and the burden tests we used              
5.0x10 -8 as the genome-wide significance threshold. 

References 

1. Bycroft, C. et al.  The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203–209 (2018). 

2. Lek, M. et al.  Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 

285–291 (2016). 

3. ExAC Browser. Available at: http://exac.broadinstitute.org. (Accessed: 12th December 

2018) 

4. gnomad. Available at: http://gnomad.broadinstitute.org. (Accessed: 12th December 2018) 

5. Bodea, C. A. et al.  A Method to Exploit the Structure of Genetic Ancestry Space to Enhance 

Case-Control Studies. Am. J. Hum. Genet. 98, 857–868 (2016). 

6. Guo, M. H., Plummer, L., Chan, Y.-M., Hirschhorn, J. N. & Lippincott, M. F. Burden Testing 

of Rare Variants Identified through Exome Sequencing via Publicly Available Control Data. 

Am. J. Hum. Genet.  103, 522–534 (2018). 

7. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. 

Nature 526, 68–74 (2015). 

8. McCarthy, S. et al.  A reference panel of 64,976 haplotypes for genotype imputation. Nat. 

Genet. 48, 1279–1283 (2016). 

9. Das, S., Abecasis, G. R. & Browning, B. L. Genotype Imputation from Large Reference 

Panels. Annu. Rev. Genomics Hum. Genet. 19, 73–96 (2018). 

10. NHLBI Trans-Omics for Precision Medicine. TOPMed Projects and their Parent Studies. 

27 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/gXS7
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/szBr
http://paperpile.com/b/Ss0srl/wh0T6
http://exac.broadinstitute.org./
http://paperpile.com/b/Ss0srl/wh0T6
http://paperpile.com/b/Ss0srl/wh0T6
http://paperpile.com/b/Ss0srl/OC8xE
http://gnomad.broadinstitute.org./
http://paperpile.com/b/Ss0srl/OC8xE
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/0kkIO
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/Loez0
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/OWs46
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/UCBXY
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/KiOGw
http://paperpile.com/b/Ss0srl/iy1a
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

Available at: https://www.nhlbiwgs.org/group/project-studies. 

11. NHLBI Trans-Omics for Precision Medicine. Working Groups. Available at: 

https://www.nhlbiwgs.org/working-groups-public. 

12. Fu, W. et al.  Analysis of 6,515 exomes reveals the recent origin of most human 

protein-coding variants. Nature 493, 216–220 (2013). 

13. Tennessen, J. A. et al.  Evolution and Functional Impact of Rare Coding Variation from 

Deep Sequencing of Human Exomes. Science 337, 64–69 (2012). 

14. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 

human genomes. Nature 491, 56–65 (2012). 

15. The International HapMap Consortium. A haplotype map of the human genome. Nature 

437, 1299–1320 (2005). 

16. International HapMap Consortium et al. A second generation human haplotype map of over 

3.1 million SNPs. Nature 449, 851–861 (2007). 

17. Visscher, P. M. et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. Am. 

J. Hum. Genet.  101, 5–22 (2017). 

18. Schick, U. M. et al.  Association of exome sequences with plasma C-reactive protein levels 

in >9000 participants. Hum. Mol. Genet. 24, 559–571 (2015). 

19. Telenti, A. et al.  Deep sequencing of 10,000 human genomes. Proc. Natl. Acad. Sci. U. S. 

A. 113, 11901–11906 (2016). 

20. Guo, X. et al.  Use of deep whole-genome sequencing data to identify structure risk variants 

in breast cancer susceptibility genes. Hum. Mol. Genet. 27, 853–859 (2018). 

21. Gilly, A. et al.  Cohort-wide deep whole genome sequencing and the allelic architecture of 

complex traits. Nat. Commun. 9 , 4674 (2018). 

22. Huang, Z. et al. A hybrid computational strategy to address WGS variant analysis in >5000 

28 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/iy1a
https://www.nhlbiwgs.org/group/project-studies.
http://paperpile.com/b/Ss0srl/kLb5
https://www.nhlbiwgs.org/working-groups-public.
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/nn3Ak
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/Ytkp
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/ysCFl
http://paperpile.com/b/Ss0srl/G0HBt
http://paperpile.com/b/Ss0srl/G0HBt
http://paperpile.com/b/Ss0srl/G0HBt
http://paperpile.com/b/Ss0srl/G0HBt
http://paperpile.com/b/Ss0srl/G0HBt
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/tVvM
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/jABbC
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/IMEOV
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/jdBwo
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/514aS
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/eQCPJ
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

samples. BMC Bioinformatics 17, 361 (2016). 

23. UK10K Consortium et al. The UK10K project identifies rare variants in health and disease. 

Nature 526, 82–90 (2015). 

24. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease 

through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010). 

25. Bravo. Available at: http://bravo.sph.umich.edu/. (Accessed: 8th February 2019) 

26. gnomad. Available at: http://gnomad.broadinstitute.org. (Accessed: 12th December 2018) 

27. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. 

Nucleic Acids Res. 47, D766–D773 (2019). 

28. Bravo. Available at: http://bravo.sph.umich.edu/. (Accessed: 8th February 2019) 

29. Forbes, S. A. et al.  COSMIC: exploring the world’s knowledge of somatic mutations in 

human cancer. Nucleic Acids Res. 43, D805–D811 (2014). 

30. Welter, D. et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. 

Nucleic Acids Res. 42, D1001–6 (2014). 

31. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online 

Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic 

disorders. Nucleic Acids Res. 33, D514–D517 (2005). 

32. Landrum, M. J. et al.  ClinVar: improving access to variant interpretations and supporting 

evidence. Nucleic Acids Res. 46, D1062–D1067 (2018). 

33. Katzman, S. et al.  Human genome ultraconserved elements are ultraselected. Science 317, 

915 (2007). 

34. Nusbaum, C. et al. DNA sequence and analysis of human chromosome 8. Nature 439, 

331–335 (2006). 

35. Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility 

29 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/IbwZG
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/UTxT
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/cvEW
http://paperpile.com/b/Ss0srl/QYao
http://bravo.sph.umich.edu/
http://paperpile.com/b/Ss0srl/QYao
http://paperpile.com/b/Ss0srl/csZV0
http://gnomad.broadinstitute.org./
http://paperpile.com/b/Ss0srl/csZV0
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/05GLl
http://paperpile.com/b/Ss0srl/1zq6
http://bravo.sph.umich.edu/
http://paperpile.com/b/Ss0srl/1zq6
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/0ljYR
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/fJVdN
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/D9GLn
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/V9nxG
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/9m0R3
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/YTtaq
http://paperpile.com/b/Ss0srl/ba3xb
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

complex. Heredity  96, 7–21 (2005). 

36. Bernatchez, L. & Landry, C. MHC studies in nonmodel vertebrates: what have we learned 

about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003). 

37. Black, F. L. & Hedrick, P. W. Strong balancing selection at HLA loci: evidence from 

segregation in South Amerindian families. Proc. Natl. Acad. Sci. U. S. A. 94, 12452–12456 

(1997). 

38. Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation rate 

heterogeneity in humans. Nat. Commun. 9 , 3753 (2018). 

39. Chan, K. & Gordenin, D. A. Clusters of Multiple Mutations: Incidence and Molecular 

Mechanisms. Annu. Rev. Genet. 49, 243–267 (2015). 

40. Waters, L. S. et al.  Eukaryotic translesion polymerases and their roles and regulation in 

DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009). 

41. Besenbacher, S. et al. Multi-nucleotide de novo Mutations in Humans. PLoS Genet. 12, 

e1006315 (2016). 

42. Harris, K. & Nielsen, R. Error-prone polymerase activity causes multinucleotide mutations in 

humans. Genome Res. 24, 1445–1454 (2014). 

43. Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios 

from Iceland. Nature 1 , 16027 (2017). 

44. Goldmann, J. M. et al.  Germline de novo mutation clusters arise during oocyte aging in 

genomic regions with high double-strand-break incidence. Nat. Genet. (2018). 

doi:10.1038/s41588-018-0071-6 

45. Murnane, J. P. Telomere dysfunction and chromosome instability. Mutat. Res. 730, 28–36 

(2012). 

46. Kaplanis, J. et al. Mutational origins and pathogenic consequences of multinucleotide 

30 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/ba3xb
http://paperpile.com/b/Ss0srl/ba3xb
http://paperpile.com/b/Ss0srl/ba3xb
http://paperpile.com/b/Ss0srl/ba3xb
http://paperpile.com/b/Ss0srl/ba3xb
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/orEY0
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/wqa7x
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/Hba1r
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/CUTSx
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/DpovT
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/PkN6i
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/nLdDG
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/5upHv
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://paperpile.com/b/Ss0srl/2WSQY
http://dx.doi.org/10.1038/s41588-018-0071-6
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/zcQ4c
http://paperpile.com/b/Ss0srl/Fma7v
http://paperpile.com/b/Ss0srl/Fma7v
http://paperpile.com/b/Ss0srl/Fma7v
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

mutations in 6,688 trios with developmental disorders. bioRxiv 258723 (2018). 

doi:10.1101/258723 

47. Schrider, D. R., Hourmozdi, J. N. & Hahn, M. W. Pervasive multinucleotide mutational 

events in eukaryotes. Curr. Biol. 21, 1051–1054 (2011). 

48. Sherman, R. M. et al.  Assembly of a pan-genome from deep sequencing of 910 humans of 

African descent. Nat. Genet. (2018). doi:10.1038/s41588-018-0273-y 

49. Kehr, B. et al.  Diversity in non-repetitive human sequences not found in the reference 

genome. Nat. Genet. 49, 588–593 (2017). 

50. Lee, S.-B. et al.  Stargazer: a software tool for calling star alleles from next-generation 

sequencing data using CYP2D6 as a model. Genet. Med. (2018). 

doi:10.1038/s41436-018-0054-0 

51. Zhou, S.-F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: 

Part I. Clin. Pharmacokinet. 48, 689–723 (2009). 

52. Crews, K. R. et al.  Clinical Pharmacogenetics Implementation Consortium guidelines for 

cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin. Pharmacol. Ther. 

95, 376–382 (2014). 

53. Caudle, K. E. et al. Standardizing terms for clinical pharmacogenetic test results: 

consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). 

Genet. Med. 19, 215–223 (2017). 

54. Ramachandran, S. et al. Support from the relationship of genetic and geographic distance 

in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. 

U. S. A.  102, 15942–15947 (2005). 

55. McKusick, V. A. Medical genetic studies of the Amish: selected papers. (Johns Hopkins 

University Press, 1978). 

31 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/Fma7v
http://paperpile.com/b/Ss0srl/Fma7v
http://paperpile.com/b/Ss0srl/Fma7v
http://paperpile.com/b/Ss0srl/Fma7v
http://dx.doi.org/10.1101/258723
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/SfJQR
http://paperpile.com/b/Ss0srl/ky8Ct
http://paperpile.com/b/Ss0srl/ky8Ct
http://paperpile.com/b/Ss0srl/ky8Ct
http://paperpile.com/b/Ss0srl/ky8Ct
http://paperpile.com/b/Ss0srl/ky8Ct
http://paperpile.com/b/Ss0srl/ky8Ct
http://dx.doi.org/10.1038/s41588-018-0273-y
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/PJtod
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://paperpile.com/b/Ss0srl/LBxrt
http://dx.doi.org/10.1038/s41436-018-0054-0
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/n4D5C
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/GZlwU
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/12fI
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/NWc0Q
http://paperpile.com/b/Ss0srl/G0R99
http://paperpile.com/b/Ss0srl/G0R99
http://paperpile.com/b/Ss0srl/G0R99
http://paperpile.com/b/Ss0srl/G0R99
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

56. Beiler, K. Fisher family history. Eby’s Quality Publishing (1988). 

57. Lee, W.-J., Pollin, T. I., O’Connell, J. R., Agarwala, R. & Schäffer, A. A. PedHunter 2.0 and 

its usage to characterize the founder structure of the Old Order Amish of Lancaster County. 

BMC Med. Genet. 11, 68 (2010). 

58. Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. 

Biol. 20, 1983–1992 (2010). 

59. Lipson, M. et al. Population Turnover in Remote Oceania Shortly after Initial Settlement. 

Curr. Biol. 28, 1157–1165.e7 (2018). 

60. Gravel, S. et al.  Demographic history and rare allele sharing among human populations. 

Proc. Natl. Acad. Sci. U. S. A.  108, 11983–11988 (2011). 

61. Gao, F. & Keinan, A. Inference of Super-exponential Human Population Growth via Efficient 

Computation of the Site Frequency Spectrum for Generalized Models. Genetics 202, 

235–245 (2016). 

62. Schrider, D. R., Shanku, A. G. & Kern, A. D. Effects of Linked Selective Sweeps on 

Demographic Inference and Model Selection. Genetics 204, 1207–1223 (2016). 

63. Ewing, G. B. & Jensen, J. D. The consequences of not accounting for background selection 

in demographic inference. Mol. Ecol. 25, 135–141 (2015). 

64. Maher, M. C., Cyrus Maher, M., Uricchio, L. H., Torgerson, D. G. & Hernandez, R. D. 

Population Genetics of Rare Variants and Complex Diseases. Hum. Hered. 74, 118–128 

(2012). 

65. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural 

selection in hominid evolution. PLoS Genet. 5 , e1000471 (2009). 

66. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection 

in the human genome. PLoS Biol. 4 , e72 (2006). 

32 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/I2fcl
http://paperpile.com/b/Ss0srl/I2fcl
http://paperpile.com/b/Ss0srl/I2fcl
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/wP9PW
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/Ih9pb
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/QP1gw
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/DA9xV
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/NXc0o
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/WKvry
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/ANekA
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/wYdfV
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/7jmcy
http://paperpile.com/b/Ss0srl/cJoVA
http://paperpile.com/b/Ss0srl/cJoVA
http://paperpile.com/b/Ss0srl/cJoVA
http://paperpile.com/b/Ss0srl/cJoVA
http://paperpile.com/b/Ss0srl/cJoVA
http://paperpile.com/b/Ss0srl/cJoVA
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

67. Shishioh, N. et al. GPI7 is the second partner of PIG-F and involved in modification of 

glycosylphosphatidylinositol. J. Biol. Chem. 280, 9728–9734 (2005). 

68. Sim, D. L. & Chow, V. T. The novel human HUEL (C4orf1) gene maps to chromosome 

4p12-p13 and encodes a nuclear protein containing the nuclear receptor interaction motif. 

Genomics 59, 224–233 (1999). 

69. Kumar, R. et al. Homozygous mutation of STXBP5L explains an autosomal recessive 

infantile-onset neurodegenerative disorder. Hum. Mol. Genet. 24, 2000–2010 (2015). 

70. Zhou, W. et al.  Efficiently controlling for case-control imbalance and sample relatedness in 

large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018). 

71. Emdin, C. A. et al.  Analysis of predicted loss-of-function variants in UK Biobank identifies 

variants protective for disease. Nat. Commun. 9 , 1613 (2018). 

72. Keramati, A. R. Genome Sequencing Unveils A New Regulatory Landscape of Platelet 

Reactivity. Nature (submitted) 

73. Montasser, M. E. A missense variant in B4GALT1 reduces low-density lipoprotein 

cholesterol and fibrinogen. Nature (submitted) 

74. Choi, S. H. et al.  Association Between Titin Loss-of-Function Variants and Early-Onset 

Atrial Fibrillation. JAMA 320, 2354–2364 (2018). 

75. Raffield, L. M. et al.  Common α-globin variants modify hematologic and other clinical 

phenotypes in sickle cell trait and disease. PLoS Genet. 14, e1007293 (2018). 

76. Zekavat, S. M. et al.  Deep coverage whole genome sequences and plasma lipoprotein(a) in 

individuals of European and African ancestries. Nat. Commun. 9 , 2606 (2018). 

77. PAR-16-021: NHLBI TOPMed: Omics Phenotypes of Heart, Lung, and Blood Disorders 

(X01). Available at: https://grants.nih.gov/grants/guide/pa-files/PAr-16-021.html. (Accessed: 

25th February 2019) 

33 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/u6X5h
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/5u8Nn
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/jzozD
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/cjksS
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/dvrlN
http://paperpile.com/b/Ss0srl/2juvw
http://paperpile.com/b/Ss0srl/2juvw
http://paperpile.com/b/Ss0srl/2juvw
http://paperpile.com/b/Ss0srl/gGdHu
http://paperpile.com/b/Ss0srl/gGdHu
http://paperpile.com/b/Ss0srl/gGdHu
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/YQkc
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/wcak
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/DM9H
http://paperpile.com/b/Ss0srl/fCQA
http://paperpile.com/b/Ss0srl/fCQA
https://grants.nih.gov/grants/guide/pa-files/PAr-16-021.html.
http://paperpile.com/b/Ss0srl/fCQA
http://paperpile.com/b/Ss0srl/fCQA
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

78. NHLBI Trans-Omics for Precision Medicine. Abstract Viewer. Available at: 

https://www.nhlbiwgs.org/abstract-viewer-public. 

79. NHLBI Trans-Omics for Precision Medicine. Publications. Available at: 

https://www.nhlbiwgs.org/publications. 

80. Data Commons. NIH Common Fund. Available at: https://commonfund.nih.gov/commons. 

81. Data STAGE. Storage, Toolspace, Access and analytics for biG data Empowerment. 

Available at: https://www.nhlbidatastage.org. 

82. NHLBI Trans-Omics for Precision Medicine WGS-TOPMed Whole Genome Sequencing 

Project - Freeze 5b, Phases 1 and 2. Available at: 

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-a

nd-2. (Accessed: 8th February 2019) 

83. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

arXiv [q-bio.GN] (2013). 

84. CCDG. CCDG/Pipeline-Standardization. GitHub Available at: 

https://github.com/CCDG/Pipeline-Standardization. (Accessed: 8th February 2019) 

85. Regier, A. A. et al.  Functional equivalence of genome sequencing analysis pipelines 

enables harmonized variant calling across human genetics projects. Nat. Commun. 9 , 4038 

(2018). 

86. GotCloud - Genome Analysis Wiki. Available at: 

https://genome.sph.umich.edu/wiki/GotCloud. 

87. statgen. statgen/topmed_variant_calling. GitHub Available at: 

https://github.com/statgen/topmed_variant_calling. (Accessed: 8th February 2019) 

88. Loh, P.-R. et al.  Reference-based phasing using the Haplotype Reference Consortium 

panel. Nat. Genet. 48, 1443–1448 (2016). 

34 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/efFGM
https://www.nhlbiwgs.org/abstract-viewer-public.
http://paperpile.com/b/Ss0srl/if8KD
https://www.nhlbiwgs.org/publications.
http://paperpile.com/b/Ss0srl/RJ0jv
https://commonfund.nih.gov/commons.
http://paperpile.com/b/Ss0srl/8cYxu
http://paperpile.com/b/Ss0srl/8cYxu
https://www.nhlbidatastage.org./
http://paperpile.com/b/Ss0srl/J1ig0
http://paperpile.com/b/Ss0srl/J1ig0
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2.
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2.
http://paperpile.com/b/Ss0srl/J1ig0
http://paperpile.com/b/Ss0srl/uDo2Q
http://paperpile.com/b/Ss0srl/uDo2Q
http://paperpile.com/b/Ss0srl/uDo2Q
http://paperpile.com/b/Ss0srl/PTZ10
http://paperpile.com/b/Ss0srl/PTZ10
http://paperpile.com/b/Ss0srl/PTZ10
https://github.com/CCDG/Pipeline-Standardization.
http://paperpile.com/b/Ss0srl/PTZ10
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/LpW6V
http://paperpile.com/b/Ss0srl/KD5CX
https://genome.sph.umich.edu/wiki/GotCloud.
http://paperpile.com/b/Ss0srl/QaZ9N
http://paperpile.com/b/Ss0srl/QaZ9N
http://paperpile.com/b/Ss0srl/QaZ9N
https://github.com/statgen/topmed_variant_calling.
http://paperpile.com/b/Ss0srl/QaZ9N
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
http://paperpile.com/b/Ss0srl/wej5O
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

89. NHLBI Trans-Omics for Precision Medicine. Data Sets. Available at: 

https://www.nhlbiwgs.org/data-sets. 

90. TOPMed Whole Genome Sequencing Project - Freeze 5b, Phases 1 and 2 (dbGaP ID: 

phd007493). Available at: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000956.v3.p1

&phv=252986&phd=7493&pha=&pht=5002&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=

&temp=1. 

91. Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for 

ancestry prediction and correction of stratification in the presence of relatedness. Genet. 

Epidemiol. 39, 276–293 (2015). 

92. konradjk. konradjk/loftee. GitHub Available at: https://github.com/konradjk/loftee. 

(Accessed: 10th December 2018) 

93. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 

94. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology 

Consortium. Nat. Genet. 25, 25–29 (2000). 

95. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and 

resources. Nucleic Acids Res. 45, D331–D338 (2017). 

96. ExAC Browser. Available at: http://exac.broadinstitute.org. (Accessed: 8th February 2019) 

97. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing 

next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). 

98. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data 

inference for whole-genome association studies by use of localized haplotype clustering. 

Am. J. Hum. Genet.  81, 1084–1097 (2007). 

99. Killick, R. & Eckley, I. A. changepoint: AnRPackage for Changepoint Analysis. J. Stat. 

35 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/Jk6BO
https://www.nhlbiwgs.org/data-sets.
http://paperpile.com/b/Ss0srl/rGkIq
http://paperpile.com/b/Ss0srl/rGkIq
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000956.v3.p1&phv=252986&phd=7493&pha=&pht=5002&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1.
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000956.v3.p1&phv=252986&phd=7493&pha=&pht=5002&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1.
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000956.v3.p1&phv=252986&phd=7493&pha=&pht=5002&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1.
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/k26Km
http://paperpile.com/b/Ss0srl/nNypc
http://paperpile.com/b/Ss0srl/nNypc
http://paperpile.com/b/Ss0srl/nNypc
https://github.com/konradjk/loftee.
http://paperpile.com/b/Ss0srl/nNypc
http://paperpile.com/b/Ss0srl/nNypc
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/eYpEb
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/QSKvI
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/OSI67
http://paperpile.com/b/Ss0srl/IgtGH
http://exac.broadinstitute.org./
http://paperpile.com/b/Ss0srl/IgtGH
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/WWj2F
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/Df7ri
http://paperpile.com/b/Ss0srl/OLnmC
http://paperpile.com/b/Ss0srl/OLnmC
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

Softw. 58, (2014). 

100.Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018). 

101.Kircher, M. et al. A general framework for estimating the relative pathogenicity of human 

genetic variants. Nat. Genet. 46, 310–315 (2014). 

102.Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative 

modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 

278–288 (2013). 

103.Harpak, A., Bhaskar, A. & Pritchard, J. K. Mutation Rate Variation is a Primary Determinant 

of the Distribution of Allele Frequencies in Humans. PLoS Genet. 12, e1006489 (2016). 

104.Benaglia, T., Chauveau, D., Hunter, D. & Young, D. mixtools: An R Package for Analyzing 

Mixture Models. Journal of Statistical Software, Articles 32, 1–29 (2009). 

105.Kelleher, J., Etheridge, A. M. & McVean, G. Efficient Coalescent Simulation and 

Genealogical Analysis for Large Sample Sizes. PLoS Comput. Biol. 12, e1004842 (2016). 

106.Prokopenko, D. et al. Utilizing the Jaccard index to reveal population stratification in 

sequencing data: a simulation study and an application to the 1000 Genomes Project. 

Bioinformatics 32, 1366–1372 (2016). 

107.Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of 

identity-by-descent detection in population data. Genetics 194, 459–471 (2013). 

108.Browning, S. R. & Browning, B. L. Accurate Non-parametric Estimation of Recent Effective 

Population Size from Segments of Identity by Descent. Am. J. Hum. Genet. 97, 404–418 

(2015). 

109.Torres, R., Szpiech, Z. A. & Hernandez, R. D. Human demographic history has amplified 

the effects of background selection across the genome. PLoS Genet. 14, e1007387 (2018). 

110.Jouganous, J., Long, W., Ragsdale, A. P. & Gravel, S. Inferring the Joint Demographic 

36 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/OLnmC
http://paperpile.com/b/Ss0srl/OLnmC
http://paperpile.com/b/Ss0srl/OLnmC
http://paperpile.com/b/Ss0srl/OLnmC
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/HKD5x
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/v2Lrh
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/8jRhi
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/7BogB
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/6PpWm
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/i8AlJ
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/9T0un
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/ZqIOG
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/C9KBA
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/aVOVv
http://paperpile.com/b/Ss0srl/44vEu
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

History of Multiple Populations: Beyond the Diffusion Approximation. Genetics 206, 

1549–1567 (2017). 

111.Palamara, P. F. et al.  Leveraging Distant Relatedness to Quantify Human Mutation and 

Gene-Conversion Rates. Am. J. Hum. Genet. 97, 775–789 (2015). 

112.Coffman, A. J., Hsieh, P. H., Gravel, S. & Gutenkunst, R. N. Computationally Efficient 

Composite Likelihood Statistics for Demographic Inference. Mol. Biol. Evol. 33, 591–593 

(2016). 

113.Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform 

EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014). 

114.Das, S. et al.  Next-generation genotype imputation service and methods. Nat. Genet. 48, 

1284–1287 (2016). 

115.Zhang, F. et al.  Ancestry-agnostic estimation of DNA sample contamination from sequence 

reads. (2018). doi:10.1101/466268 

116.Minimac4 - Genome Analysis Wiki. Available at: 

https://genome.sph.umich.edu/wiki/Minimac4. (Accessed: 20th December 2018) 

117.Casper, J. et al. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res. 

46, D762–D769 (2018). 

 

Acknowledgements 
Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed)           
program was supported by the National Heart, Lung and Blood Institute (NHLBI). Specific             
funding sources for each study and genomic center are given in Supplementary Table 18.              
Centralized read mapping and genotype calling, along with variant quality metrics and filtering             
were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1).         
Phenotype harmonization, data management, sample-identity QC, and general study         
coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1).          
We gratefully acknowledge the studies and participants who provided biological samples and            

37 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/44vEu
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/2HgOH
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/meoma
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/W8ecJ
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/cx9Fw
http://paperpile.com/b/Ss0srl/KXK4p
http://paperpile.com/b/Ss0srl/KXK4p
http://paperpile.com/b/Ss0srl/KXK4p
http://paperpile.com/b/Ss0srl/KXK4p
http://dx.doi.org/10.1101/466268
http://paperpile.com/b/Ss0srl/UUTtr
https://genome.sph.umich.edu/wiki/Minimac4.
http://paperpile.com/b/Ss0srl/UUTtr
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
http://paperpile.com/b/Ss0srl/4WpAo
https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

data for TOPMed. The full study specific acknowledgments are detailed in Supplementary            
Information section 2. 
 
The UK Biobank analyses were conducted using the UK Biobank Resource under application             
number 24460. 
 
Other acknowledgments are detailed in Supplementary Information section 3. 
 
The views expressed in this manuscript are those of the authors and do not necessarily               
represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of               
Health; or the U.S. Department of Health and Human Services. 

Author Contributions 
T.W.B., Q.W., F.A., K.G.A., P.L.A., R.G.B., R.L.B., J.Bl., M.B., E.G.B., J.F.C., Y.I.C., M.H.C.,             
A.Co., J.E.C., D.L.D., P.T.E., M.F., N.F., S.M.F., D.J.G., M.E.H., J.H., S.R.H., M.R.I., A.D.J.,             
S.K., D.P.K., C.K., A.K., L.A.L., J.La., D.L., C.L., K.L.L., A.M., A.K.M., R.A.M., S.T.M., J.B.M.,              
J.L.M., M.A.M., B.M., M.E.M., C.M., A.C.M., J.M.M., P.N., K.E.N., N.P., G.M.P., W.S.P., B.M.P.,             
D.C.R., S.R., A.P.R., J.I.R., I.R., C.S., S.Se., V.A.S., N.L.S., N.S., K.D.T., R.S.V., S.V., D.E.W.,              
B.S.W., S.T.W., C.J.W., D.K.A., A.E.A., K.C.B., E.B., S.Ga., R.Gi., K.M.R., S.S.R., E.S., P.Q.,             
W.G., G.J.P., D.A.N., S.Z., J.G.W., L.A.C., C.C.L., C.E.J., R.D.H., T.D.O., and G.R.A.            
contributed to the conception or design of the TOPMed program and its operations. A.A., S.A.,               
L.C.B., E.J.B., L.F.B., J.Bl., D.W.B., E.G.B., B.E.C., B.Ch., Y.I.C., M.K.C., A.Co., J.E.C., B.Cu.,             
D.D., M.D., P.T.E., D.F., M.T.G., X.G., J.H., N.L.H., S.R.H., J.M.J., S.L.R.K., S.K., E.E.K.,             
D.P.K., B.A.K., C.K., L.A.L., J.La., R.J.F.L., L.G., R.Ge., S.A.L., K.L.L., A.C.Y.M., R.A.M.,            
D.D.M., S.T.M., D.A.M., B.M., S.M., C.M., A.N., N.D.P., P.A.P., W.S.P., B.M.P., D.C.R., S.R.,             
J.I.R., S.Se., V.A.S., J.A.S., K.D.T., M.T., D.J.V.D.B., R.S.V., D.E.W., S.T.W., Y.Z., D.K.A.,            
A.E.A., K.C.B., E.B., S.S.R., E.S., J.G.W., L.A.C., R.D.H. provided phenotypic data and/or            
biosamples. F.A., K.G.A., L.C.B., J.Bl., B.E.C., C.B.C., J.E.C., S.K.D., P.T.E., S.Ge., X.G., D.L.,             
R.J.F.L., S.T.M., J.I.R., J.S., K.D.T., D.J.V.D.B., D.E.W., A.E.A., K.C.B., E.B., S.Ga., R.Gi.,            
G.J.P., D.A.N. acquired WGS and/or other omics data. D.T., D.N.H., M.D.K., J.C., Z.A.S., R.T.,              
S.A.G.T., A.Co., S.M.G., H.M.K., A.N.P., J.Le., S.L., X.T., B.L.B., S.D., A.E., W.E.C., D.P.L.,             
A.C.S., T.W.B., Q.W., L.S.E., L.F., C.F., S.Ge., X.L., K.L., S.C.N., S.Sc., A.M.S., X.Z., E.B., and               
D.A.N. created software, processed, and/or analyzed WGS or other data for data summaries in              
this paper. D.T., D.N.H., M.D.K., J.C., Z.A.S., R.T., S.A.G.T., A.Co., S.D., S.Ge., S.R.B., L.A.C.,              
C.C.L., C.E.J., R.D.H., T.D.O., G.R.A. drafted the manuscript and revised according to            
co-author suggestions. All authors critically reviewed the manuscript, suggested revisions as           
needed, and approved the final version. 

Author Information 
Competing Interests 

38 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

S.D. holds equity in 23andMe, Inc. S.A. holds equity in 23andMe, Inc. R.G.B. has funding from                
NIH, the COPD Foundation and Alpha1 Foundation. J.F.C. is an inventor on a patent licensed to                
ImmunArray. M.H.C. has received grant support from GSK. D.L.D. has received personal fees             
from Novartis. P.T.E. is supported by a grant from Bayer AG to the Broad Institute focused on                 
the genetics and therapeutics of cardiovascular diseases. P.T.E. has also served on advisory             
boards or consulted for Quest Diagnostics and Novartis. M.T.G. is a co-inventor of pending              
patent applications and planned patents directed to the use of recombinant neuroglobin and             
heme-based molecules as antidotes for CO poisoning, which have been licensed by Globin             
Solutions, Inc. Globin Solutions, Inc. also has an option to a potential therapeutic for CO               
poisoning from VCU, hydroxycobalamin. M.T.G. is a shareholder, advisor, and director in Globin             
Solutions, Inc. M.T.G. is also co-inventor on patents directed to the use of nitrite salts in                
cardiovascular diseases, which were previously licensed to United Therapeutics and Hope           
Pharmaceuticals, and is now licensed to Globin Solutions. Additionally, M.T.G. is a            
co-investigator in a research collaboration with Bayer Pharmaceuticals to evaluate riociguate as            
a treatment for patients with SCD. M.T.G. has served as a consultant for Epizyme, Inc., Actelion                
Clinical Research, Inc., Acceleron Pharma, Inc., Catalyst Biosciences, Inc., Modus          
Therapeutics, Sujana Biotech, LLC, and United Therapeutics Corporation. M.T.G. is also on            
Bayer HealthCare LLC’s Heart and Vascular Disease Research Advisory Board. K.L. holds            
equity in 23andMe, Inc. S.A.L. receives sponsored research support from Bristol Myers Squibb /              
Pfizer, Bayer HealthCare, and Boehringer Ingelheim, and has consulted for Abbott, Quest            
Diagnostics, Bristol Myers Squibb / Pfizer. S.T.M. is an inventor on a U.S. patent application               
number, 15/752,687, covering aspects of Samoan adiposity that has been filed with the US              
Patent and Trademark Office. J.B.M. is an Academic Associate for Quest Diagnostics Inc. For              
B.M.: the Amish Research Program receives partial support from Regeneron Pharmaceuticals.           
M.E.M. is an inventor on a patent that was published by the United States Patent and                
Trademark Office on December 6, 2018 under Publication Number US 2018-0346888, and            
international patent application that was published on December 13, 2018 under Publication            
Number WO-2018/226560 regarding B4GALT1 Variants And Uses Thereof. P.N. reports grants           
from Amgen and Boston Scientific, and consulting income from Apple. B.M.P. serves on the              
DSMB of a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering               
Committee of the Yale Open Data Access Project funded by Johnson & Johnson. J.S. serves as                
the chairman of Macrogen. D.E.W. is an inventor on a U.S. patent application number,              
15/752,687, covering aspects of Samoan adiposity that has been filed with the US Patent and               
Trademark Office. S.T.W. is paid royalties by UpToDate. R.Gi. is an employee of Baylor College               
of Medicine, that receives revenue from Genetic Testing. In the past three years, E.S. received               
honoraria and consulting fees from Merck, grant support and consulting fees from            
GlaxoSmithKline, and honoraria and travel support from Novartis. L.A.C. spends part of her time              
consulting for Dyslipidemia Foundation, a non-profit company, as a statistical consultant. G.R.A.            
is an employee of Regeneron Pharmaceuticals. He owns stock and stock options for Regeneron              
Pharmaceuticals. 
 
  

39 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/563866doi: bioRxiv preprint 

https://doi.org/10.1101/563866
http://creativecommons.org/licenses/by/4.0/


 

 

Tables 
 
Table 1. Coverage, sequencing depth and number of variants. 
 
 Total Singletons (%) Per Individual 

Average 5th 

Percentile 
Median 95th 

Percentile 
Bases (Gb) 6,973,670 - 130 107 128 157 
Depth (x) - - 38 31 38 46
Genome Covered (%) - - 98.5 96.2 99.2 99.9
  Depth >10x  - - 97.9 95.4 98.7 99.6
Total Variants 410,323,831 188,947,391 (46) 3,776,362 3,515,416 3,567,439 4,364,075 
  SNVs 381,343,078 175,419,690 (46) 3,579,423 3,334,782 3,383,710 4,129,868 
  Indels 28,980,753 13,527,701 (47) 196,940 180,567 183,759 234,245 
Novel* Variants  323,113,479 178,243,307 (55) 30,207 20,363 26,347 44,379
  SNVs 298,028,808 165,082,153 (55) 25,861 17,568 22,909 36,897
  Indels 25,084,671 13,161,154 (52) 4,345 2,752 3,378 7,392 
Coding Variation 
   Synonymous 1,525,971 656,746 (43) 11,743 10,840 11,073 13,693
   Non-synonymous 3,172,551 1,527,247 (48) 11,468 10,633 10,875 13,237
   Stop/Essential Splice 105,042 56,801 (54) 478 426 456 568 
   Indels 
      Frameshift 113,805 67,903 (60) 133 112 127 167 
      Inframe 55,806 27,118 (49) 103 85 99 129 

* Variant was not present in dbSNP b149, the most recent dbSNP version without TOPMed submissions 

 
 

Table 2. Putative loss of function (pLoF) variants. 

Total Singletons (%) Per Individual 
Average 5th 

Percentile 
Median 95th 

Percentile 
pLoF 228,966 58.5 209 182 202 251 
     Stop gained 79,766 55.6 72 60 72 87
     Frameshift 100,393 60.3 92 77 90 115 
     Splice 48,807 59.6 44 34 43 57
pLoF (AF<0.5%)  217,795 58.8 20.7 10 19 35
     Stop gained (AF<0.5%)  75,904  55.8 7.9 3 7 15
     Frameshift (AF<0.5%)  95,064 60.6 8.3 3 8 15
     Splice (AF<0.5%)  46,827 59.9 4.5 1 4 9 
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Figures 

 

Figure 1. Distribution of genetic variants across the genome. A. Common (allele frequency ≥              
0.5%) and rare (allele frequency < 0.5%) variant counts are shown above and below the x-axis,                
respectively, and each 1MB concatenated segment is sorted based on their number of rare variants.               
Non-coding regions of the genome with CADD scores below 10 (lower predicted function) have the               
largest levels of common and rare variation (dark and light blue, respectively), followed by low CADD                
coding regions (black and grey). Overall, the vast majority of human genomic variation is comprised of                
rare variation. B. Levels of variation are shown across the genome for common coding variants (panel                
1), rare coding variants (panel 2), common noncoding variants (panel 3), and rare noncoding variants               
(panel 4). Variation levels are represented on the Z-score (X-mean/SD) of the adjusted variant counts               
per 1MB contiguous segment for each variant category.  
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Figure 2. A. Parameter estimates for exponential mixture models of singleton density. Each point              
represents one of the four components in one of the 2,000 individuals in the sample, colored by the                  
majority ancestry of that individual. The rate parameters of each component are shown across the               
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x-axis, and the lambda parameters (i.e., the proportion that component contributes to the mixture) on               
the y-axis (on a log-log scale). Marginal histograms show the distribution of the lambda and rate                
parameters for each component. B. Mutational spectra of singletons assigned to each of the four               
cluster classes, separated by population. C. Density of cluster class 2 singletons in 1 Mbp windows on                 
chromosomes 2, 8, 9, and 16. Windows with class 2 singleton counts above the 95th percentile                
(calculated genome-wide) are classified as hotspots and are represented with a darker shade. 

 

 
Figure 3. Retained ancestral sequences (>=100bp) discovered from unmapped reads. A) Cohort            
population frequency plotted over genomic location. Size of dot indicates insertion size, color indicates              
GENCODE annotation. B) Insertion length distribution. C) Number of insertion events vs. number of              
inserted bases, per individual by ancestry. D) Venn diagram showing positional concordance with             
insertions (small circles: one-ended breakends) identified in previous studies on different datasets48,49 . 
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Figure 4. Ancestry, genetic diversity and rare variant genetic relatedness across the TOPMed             
studies. Each study label is shaded based on their self-described ancestry. From the outside moving               
inwards each track represents: the unrelated sample size of each study used in these calculations,               
average ADMIXTURE values, average number of heterozygous sites in each individual’s genome,            
average number of singleton variants in each individual’s genome, and the average within study rare               
variant sharing (RV Sharing). The links depict the 75th percentile of between study rare variant sharing.                
All between study rare variant sharing comparisons can be found in Supplementary Figure 13. The               
sample size, heterozygosity, and singleton average values can be found in Supplementary Table 8. 
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Figure 5. Estimates of recent effective population size by ancestry. Each line represents the              
estimate from a single study, considering only individuals self-reporting the given ancestry. The             
included studies are the same as those in Supplementary Figure 15. The Amish and Samoan results                
are individually identified in the plots due to their distinct recent population size trajectories. N e indicates                
effective population size. 
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Figure 6. Relative increase in singletons and doubletons of the SFS across McVicker’s B and               
the population size inferred from demographic inference using various sample sizes . A) The             
relative increase in the singleton and doubleton bins of the SFS for decreasing percentile bins of                
McVicker’s B compared with the highest percentile bin of B (higher percentiles of B indicate weaker                
effects of selection at linked sites [SaLS]). These relative increases are plotted for different sample               
sizes (see legend). B) The population size inferred in the last generation of an exponential growth                
model for Europeans. Demographic inference was conducted with different sample sizes and by using              
different parts of the genome (see legend). Whiskers show 95% confidence intervals (see             
Supplementary Table 9 for parameter values). 
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