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Abstract

Motivation: Single cell RNA sequencing (scRNA-seq) technologies enable the study of transcriptional heterogeneity at the

resolution of individual cells and have an increasing impact on biomedical research. Specifically, high-throughput approaches

that employ micro-fluidics in combination with unique molecular identifiers (UMIs) are capable of assaying many thousands

of cells per experiment and are rapidly becoming commonplace. However, it is known that these methods sometimes

wrongly consider two or more cells as single cells, and that a number of so-called doublets is present in the output of such

experiments. Treating doublets as single cells in downstream analyses can severely bias a study’s conclusions, and therefore

computational strategies for the identification of doublets are needed. Here we present single cell doublet scoring (scds),

a software tool for the in silico identification of doublets in scRNA-seq data.

Results: With scds, we propose two new and complementary approaches for doublet identification: Co-expression based dou-

blet scoring (cxds) and binary classification based doublet scoring (bcds). The co-expression based approach, cxds, utilizes

binarized (absence/presence) gene expression data and employs a binomial model for the co-expression of pairs of genes

and yields interpretable doublet annotations. bcds, on the other hand, uses a binary classification approach to discriminate

artificial doublets from the original data. We apply our methods and existing doublet identification approaches to four data

sets with experimental doublet annotations and find that our methods perform at least as well as the state of the art, but

at comparably little computational cost. We also find appreciable differences between methods and across data sets, that

no approach dominates all others, and we believe there is room for improvement in computational doublet identification

as more data with experimental annotations becomes available. In the meanwhile, scds presents a scalable, competitive

approach that allows for doublet annotations in thousands of cells in a matter of seconds.

Availability and Implementation: scds is implemented as an R package and freely available at https://github.com/

kostkalab/scds.

Contact: kostka@pitt.edu
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Introduction

Single cell RNA sequencing (scRNA-seq) technologies allow characterization of transcriptomes of indi-

vidual cells, and aid our understanding of tissue and cell-type heterogeneity. New insights, for instance

in the context of development and/or disease ((Li et al., 2017; Segerstolpe et al., 2016); for a re-

view see (Potter, 2018)), have made them increasingly relevant across a diverse range of biomedical

research fields. Specifically, micro-fluidics based approaches utilize unique molecular identifiers (UMIs)

and enable the study of many thousands of cells simultaneously. The availability of user-friendly solu-

tions (like the 10X Chromium platform) has rendered this flavor of UMI-based scRNA-seq the assay

of choice in numerous studies. However, use of scRNA-seq data is not without challenges, and careful

data processing, quality control and analysis is essential (reviewed for instance in (Stegle et al., 2015;

Vallejos et al., 2017; AlJanahi et al., 2018; Kiselev et al., 2019). We focus on one key step of quality

control that is the identification of so-called “doublets/multiplets”. Doublets (or multiplets) arise in

scRNA-seq data when two (or more) cells are mistakenly considered as a single cell, due for instance

to being captured and processed in the same droplet on a micro-fluidics device. This type of error has

the potential to severely confound interpretation of study results, especially in the context of cellular

heterogeneity and identity, where they may appear as spurious novel cell types. However, despite rapid

advances in the field, to our knowledge relatively few approaches exist that address the issue of doublet

detection in scRNA-seq data. In the following, we provide a brief overview of existing experimental and

computational approaches for doublet identification.

Experimental methods for doublet detection: For some approaches doublet detection can be per-

formed as a quality control step to ensure that only single cells are picked at capture sites (e.g. (Proserpio

et al., 2016; Segerstolpe et al., 2016)). Alternatively, barcodes have been used together with mixtures

of cells from different species to get estimates of doublet rates (e.g., (Klein et al., 2015; Alles et al.,

2017)). In their work, (Kang et al., 2018) present a multiplexing strategy that exploits genetic variation

to detect doublets among mixtures of cells from different individuals. In another approach, (Stoeckius

et al., 2018) use oligonucleotide-tagged antibodies against cell surface proteins to uniquely label cells

in a robust multiplexing strategy that allows for doublet detection. In a similar vein, (Gehring et al.,

2018) use chemical labeling for tagging cells from individual samples. Recently, (McGinnis et al., 2018)

proposed a technique called MULTI-seq, which uses lipid-modified oligonucleotides to barcode individual

cells. Thus, development of experimental approaches that improve doublet detection is a field of active

research. However, experimental approaches typically face the limitation that they require specific tech-

nologies or experimental designs, which are often not readily available to researchers (for an overview

of limitations of some of these approaches see (Wolock et al., 2018)). Therefore, it is at the stage of

computational data analysis where approaches are needed to identify doublets.
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Computational methods for doublet detection: There are few computational approaches that ex-

plicitly address the problem of distinguishing doublets from single cells using scRNA-seq expression

data alone. Often, researchers rely on curated marker genes and expert knowledge to identify cells

co-expressing markers of distinct cell types as putative doublets (e.g., (Wang et al., 2016; Ibarra-Soria

et al., 2018; Rosenberg et al., 2018)). Based on the assumption that doublets would have higher total

RNA content, another approach is to use a measure for overall expression signal (total counts, for ex-

ample) as a means for classifying cells as doublets (Bach et al., 2017; Ziegenhain et al., 2017; Krentz et

al., 2018). However, given that marker gene information and expert knowledge is not always available

(and not always objective), and that doublets may not necessarily have high total counts, in the last

year a number of computational doublet detection/annotation methods have been proposed that do not

rely on markers or total counts alone (Lun et al., 2016; Shor and Gayoso, 2019; Wolock et al., 2018;

McGinnis et al., 2018; DePasquale et al., 2018), see Table 4. In the following we briefly summarize each

of them:

scrublet: In their approach scrublet, (Wolock et al., 2018) simulate artificial doublets from the

original data coordinates of the normalized and filtered data in a reduced-dimensional representation

obtained by principal component analysis (PCA). A doublet score is then created by considering the

fraction of artificial doublets in the neighborhood of each barcode using k-nearest-neighbor (kNN) graph

based on Euclidean distances. To determine the fraction of doublets in an experiment, a doublet score

threshold is set visually by comparing the distributions of the doublet scores of original barcodes and

artificial doublets. scrublet is available as a python module.

dblFinder: In a similar vein, DoubletFinder (McGinnis et al., 2018) also uses artificial doublets, and

the fraction of artificial doublets in the neighborhood of each barcode, to calculate a metric (“pANN”),

akin to the doublet score discussed above. Artificial doublets are created by averaging raw counts

of randomly paired barcodes, then the data is normalized, PCA is performed, and pANN scores are

computed. The authors provide a heuristic to automatically choose parameters (like the number of

neighbors considered), and finally thresholding pANN based on the expected doublet rate (or base on

an adjusted rate that accounts for homotypic doublets (doublets formed by cells of the same type))

yields final doublet annotations. dblFinder is available as an R package.

dblCells: In the vignette of their R package simpleSingleCell Lun et al. 2016 discuss two ap-

proaches, doubletClusters and doubletCells, implemented as part of the R package scran (Lun

2016). The first prescribes an approach to identify clusters of cells that have intermediate expression

profiles to “parent” clusters based on differentially expressed genes, library size and number of cells in

a cluster (Bach et al. 2017). Of relevance to us is the second approach doubletCells, whereby thou-

sands of artificial doublets are generated by combining randomly chosen pairs of barcodes and projecting

them into a reduced-dimensional space. A doublet score is formalized by assessing neighborhoods of
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simulated doublets and original barcodes.

dblDetection: This approach (JonathanShor/DoubletDetection) also relies on artificially generated

doublets, but, in contrast to previous methods, performs cell clustering on the augmented data set.

Briefly, augmented data with artificial doublets is generated from one of two possible sampling schemes,

projected into a lower-dimensional representation using PCA, and then clustering is performed with pheno-

graph (Levine et al., 2015; JonathanShor/PhenoGraph). Next, hypergeometric p-values are assigned to

clusters and their cells based on the number of artificial doublets they contain. This procedure (including

artificial doublet generation) is performed multiple times, and then doublet calls and scores are derived

from annotated p-values across runs/iterations. dblDetection is available as a python module.

dblDecon: Making use of an initial user-provided clustering, the method of (DePasquale et al., 2018),

DoubletDecon, relies on deconvolution as implemented in the R package DeconRNASeq (Gong and

Szustakowski, 2013) to identify doublets. First, distinct reference profiles are constructed from the

initial clustering, and then artificial doublets are generated and their deconvolution profiles are computed.

Next, barcodes with deconvolution profiles closest (by Pearson correlation) to those of a synthetic doublet

are initially predicted to be a doublet . Finally, to reduce penalizing cells with gene expression profiles

possibly corresponding to transitional cell states, the authors implement a “Rescue” step whereby

predicted doublets with unique gene expression patterns are re-labeled as single cells. dblDecon is

available as an R package.

We note that most of these approaches are recent, based on similar strategies, and to our knowledge have

not been assessed together across multiple data sets in a systematic way. In the following we present two

new and complementary methods for computational doublet annotation: Co-expression based doublet

scoring (cxds) and binary classification based doublet scoring (bcds). We show that they can accurately

annotate doublets, and we perform a comparison of these approaches and the methods discussed above

on four publicly available data sets with experimental doublet annotations (see Table 1). We show that

our methods perform well compared with existing approaches (at comparably little computational cost),

and we demonstrate heterogeneity in results and performance of computational doublet annotation

between different methods and across different data sets.

Materials and methods

Co-expression based doublet scoring

Co-expression based doublet scoring (cxds ) is motivated by the assumption that heterotypic doublets

(i.e., doublets comprised of cells from different cell types), co-express ”marker” genes that are not usually

active in the same cell. In contrast to approaches that leverage expert knowledge and assess expression
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patterns of curated sets of marker genes manually, cxds uses the available data to first assess gene pairs

and then derive an overall doublet score for each barcode1, based on gene-gene co-expression.

Specifically, let X ∈ Rm×n be a genes x cells count matrix for m genes and n cells, and B its thresholded

binarized version, where Bij denotes whether gene i is expressed in cell j (absence/presence). The row

means of B, {pk}mk=1 , are the fraction of cells expressing each gene, and the symmetric matrix BBT

contains for each gene pair the number of cells co-expressing the two genes. If we denote the matrix

where the entries in B have been flipped by B (Bij = 1−Bij), then we can write the number of cells

that express exactly one of two genes as (BBT + BBT ) and, assuming independence between genes,

arrive at the following binomial model:

(BBT +BBT )ij ∼ Bin(n, pi(1− pj) + pj(1− pi)) ,

where (ij) now denotes a pair of genes. Let a “score matrix” S ∈ Rm×m hold negative (upper tail)

log p-values under the above model. Scores for gene pairs that co-express across cells less often than

expected (given their marginal frequencies) are high, while scores for pairs that co-express normally (or

more often than expected) are low. We now use S to derive cell-specific doublet scores by summing, for

each cell, negative log p-values of co-expressed gene pairs, so that we get for cell i a doublet score cxds

via:

cxds(i) =
∑

k

∑
j
BkiBjiSkj = diag

(
BTSB

)
i
. (1)

We then rank cells in the order of decreasing scores, with high scores denoting doublet cells/barcodes.

We note that B, for UMI data, is typically sparse (often more than 95% zeros), so that the matrix

products BBT and BTSB above are not prohibitive, even for tens of thousands of cells. On the

contrary, our run times are comparable with the fastest current approaches (see Results section).

As mentioned above, a motivation for this score is a (simplified) concept of marker genes that are

expressed in specific cell types only. Gene pairs containing marker genes for the same cell type will

receive low scores (they are co-expressed more often than expected), while gene pairs with marker genes

for different cell types would receive high scores (they are co-expressed less often than expected, because

they do not co-express in non-doublet cells). In our cell-specific scores {cxds(i)}ni=1 we then aggregate

information across gene pairs.

Gene pair scoring: Because the doublet score cxds(·) in Equation (1) directly sums up contributions

of individual gene pairs, we can rank pairs based on their cumulative impact on doublet prediction in

1We use the terms ”cell” and ”barcode” interchangeably, and sometimes use ”doublet cells” to refer to barcodes coding
for two or more cells.
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the data set at hand, weighted by the doublet score for each cell. For the “importance” of a pair formed

by genes k and j we define

imp(k, j) =
∑

i
cxds(i)BkiBjiSkj =

(
(BDBT ) ∗ S

)
kj
, (2)

where D is a diagonal matrix containing doublet scores and ∗ denotes the element-wise product of

matrices. This approach prioritizes gene pairs that substantially contribute to the annotation of cells

with high doublet scores, and it can be used to study the pairs of genes that most drive doublet

prediction. Further on, to prioritize gene pairs that drive doublet predictions in a particular cell we can

omit the sum in Equation (2); or, to focus on a group of cells (forming a cluster, for instance), we can

restrict the sum to group members.

Implementation: We implemented cxds using the R programming language (R Core Team, 2018), and

in practice add two heuristics: Given a count matrix X of an scRNA-seq experiment, we first binarize

expression based on a threshold binThresh, such that B contains genes with more than binThresh

counts. In all our studies here we set binThresh to zero, but other values can be reasonable. Next, we

focus on highly variable genes by ranking genes with respect to their Binomial variance (i.e., npj(1−pj)

for gene j) then keeping only the ntop most variable ones. We choose ntop=500 as default.

Binary classification based doublet scoring

Binary classification based doublet scoring (bcds) employs artificial doublets, similar to other strategies

(see the Introduction for an overview). However, it does not rely on dimension reduction or nearest

neighbor approaches to calculate a doublet score. Briefly, given a genes-by-cells matrix of expression

counts we create artificial doublets by adding random pairs of columns. We then log-transform, normalize,

and select variable genes before using a binary classification algorithm to discriminate artificial doublets

from original input data. Finally, for each input barcode we then take the estimated probability of

belonging to the artificial doublet class as the doublet score we annotate.

Implementation: We implemented bcds using the R programming language (R Core Team, 2018), with

the following specifics. We simulate artificial doublets by randomly selecting pairs of cells and adding

their counts, followed by mean-normalization of log-counts of all cells (artificial doublets and input cells)

and thereby generate an augmented dataset containing input data and simulated doublets. We then

train gradient boosted decision trees (Chen and Guestrin, 2016) using the xgboost R package (Chen

et al., 2019) with default parameters for artificial doublet classification. We employ two heuristics for

establishing the number of training rounds: (i) We use 5-fold cross-validation approach in combination
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with the “one-standard-error-rule” (Hastie et al., 2001) to determine the number of rounds to train on

the complete data set. (ii) We set the number of training rounds to seven. In both cases we stop training

in case the misclassification error does not decrease for two consecutive rounds. All results reported in

this manuscript use heuristic (i), except for Table 3, where we report running times; there we also report

heuristic (ii), termed bcds 7 (supplemental Table 7 compares the performance of the two heuristics

across data sets). We report the class probability for the artificial doublet class given by the model

trained on the complete data set as doublet scores. Also, like with cxds, we select ntop variable genes

before simulating doublets and training the classifier. Here, we log-transform and mean-normalize count

values before calculating the variance of each gene. The ntop most variable genes are then included for

further analysis, and we choose ntop=500 for all results reported.

Hybrid doublet scoring

We also combine both approaches, cxds and bcds, into a version generating annotations as follows.

After running each method we simply normalize the scores to fall between zero and one (by subtracting

the minimum and subsequently dividing by the maximum) before adding them. We denote these

annotation scores as hybrid.

Data description, retrieval and processing

We evaluated our aproach and compared performance with other methods on four publicly available data

sets with experimentally annotated doublets. Table 1 lists the data sets, in the following we describe

how we retrieved and processed each of them:

hg-mm : This data set contains a 1:1 mixture of freshly frozen human HEK293T cells and mouse

NIH3T3 cells. We downloaded data from the 10X genomics website (10X Genomics) and processed

as follows: Barcodes were filtered to include those with experimental doublet annotations. For genes,

human-mouse 1:1 orthologs were identified using the Ensemble database (v95, (Zerbino et al., 2018))

with the getLDS function provided by the biomaRt R software package (Durinck et al., 2009), and

corresponding counts were added. Removing features with no counts resulted in gene expression data

of 14,437 orthologs across 12,820 barcodes.

ch pbmc: This data set contains peripheral blood mononuclear cells (PBMCs) from eight donors, with

cells from each donor uniquely labeled using the cell hashing approach of (Stoeckius et al., 2018). Data

files were downloaded from Dropbox (url) and processed according to the vignette of the Seurat R

package (Butler et al., 2018) entitled “Demultiplexing with hashtag oligos (HTOs)” (url). This resulted

in a gene expression matrix of 21,606 genes across 15,583 barcodes.
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ch cell-lines: This data set contains a mixture of four human cell lines, HEK, K562, KG1 and

THP1. Each cell line was labeled using the cell hashing approach of (Stoeckius et al., 2018). Data files

were downloaded from the same location as for ch pbmc and processed according to the same vignette,

resulting in a gene expression matrix with 25,241 genes across 8,191 barcodes.

demuxlet: This data set contains a uniform mixture of PBMCs from eight lupus patients, and doublets

have been annotated based on genetic information using demuxlet (Kang et al., 2018). Data files

for gene expression counts were downloaded from GEO (GSM2560248) and doublet annotations were

trieved from the demuxlet github repository (url). This resulted in data comprising of expression

counts for 17,662 genes across 14,619 barcodes.

We note that for all gene counts above, and for the sparsity calculations in Table 1, we included genes

expressed with at least one count in one barcode.

Annotation of doublets with existing methods

We annotated doublets with five existing tools (Table 4), and in the following we describe how we

applied each of them:

dblCells: Data was processed per the vignette of the R package simpleSingleCell(Lun et al. 2016).

Briefly, raw counts were normalized using size factors computed using scran (Lun 2016) with the igraph

clustering method and a min.mean value of 0.1. Technical noise was removed using the denoisePCA

function of scran with approximate singular value decomposition performed (approximate = TRUE).

Finally, doublet scores were retrieved using the doubletCells function run with default options except

again with approximate = TRUE to allow fast approximate PCA.

dblDecon: Raw counts were fully processed using Seurat (Butler et al., 2018) (i.e. normalization, scaling

with nUMI regressed out, finding variable genes, dimension reduction (with PCA) and clustering were

performed). Additionally, marker genes were calculated with default settings using the FindAllMarkers

function and top 50 markers used. The Main Doublet Decon function was run with input files created

using the Seurat Pre Process function and default settings except for species which was set to hsa,

and using centroids as references for deconvolution (centroids = TRUE).

dblDetection: The python module (JonathanShor/DoubletDetection) was used in the R programming

language using the reticulate package (Allaire et al., 2018), and run with default parameters on the

count data. For each cell, negative log p-values were averaged across runs/iterations to derive an

aggregate doublet score per cell.

dblFinder: Fully processed Seurat (Butler et al., 2018) object was created, where normalization, scaling

(with nUMI regressed out), finding variable genes (with arguments as per their github example code),
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dimension reduction (PCA and TSNE) and clustering were performed with dims.use = 10 and all other

Seurat settings set to default. For dblFinder, the value for pk was selected following the best practices

outlined on their github page (McGinnis, 2018) , as the one at which the mean-variance normalized

bimodality coefficient (BCmvn) is maximized. The function DoubletFinder was run with the expected

doublet rate of 7.5% assuming Poisson statistics, as per the example code on github (McGinnis, 2018).

scrublet: The python module (AllonKleinLab/scrublet) was used in the R programming language using

the reticulate package (Allaire et al., 2018), and run with default parameters on raw count data.

Doublet scores were used as reported by the software.

Data visualization and calculation of performance metrics

Low dimensional representation for visualization of data in our figures were calculated as follows: For

each data set, log counts were calculated and random projection PCA was performed on the 500 most

variable genes using the rsvd R package (Erichson et al., 2016); finally the first ten principal components

were projected into two dimensions for visualization using the Rtsne package (Krijthe, 2015) with default

parameters.

For performance evaluation we calculated the area under the ROC curve using the pROC R package (Robin

et al., 2011), including partial areas under the ROC curve (pAUC) at 90%, 95% and 97.5% specificity.

For the partial areas, the option partial.auc.correct was set to TRUE, such that the maximal pAUC

is one and a pAUC of 0.5 is non-discriminant. Areas under the precision-recall curves (AUPRCs) were

calculated using the PRROC package (Keilwagen et al., 2014) and we report the smoothed area under

the curve according to (Davis and Goadrich, 2006) by selecting the appropriate option. We used all cells

present in each data set (see above) to calculate performance metrics. We note that dblDetection

would occasionally not score a small subset of cells (between zero and eleven), which we then excluded

for this method’s metrics.

Running times were calculated in R using the reticulate package (Allaire et al., 2018) for python

modules, and the median (middle) value of three timings is reported. For timings, methods were run

on the same sub-samples of cells of the demu data, and two cores of an Intel(R) Xeon(R) E5-2667 v4

CPU cpu were made available for computing.

Results

We report two computational methods for in silico doublet prediction: co-expression based doublet scor-

ing (cxds) and binary classification based doublet scoring (bcds). Co-expression based doublet scoring
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identifies doublets from thresholded expression data essentially using a Binomial model (see Meth-

ods section), based on the reasoning that marker genes for different cell types do not co-express in

(non-doublet) barcodes. Pairs are scored exhaustively, and no prior knowledge about marker genes in

a specific context is needed. Further on, doublet annotations for cells are interpretable in the sense

that they are based on the co-expression of pairs of genes, and cxds allows users to view gene pairs

ordered with respect to their contribution to doublet predictions across a data set (see Methods sec-

tion). Figure 1 shows the five top gene pairs driving doublet prediction for cxds across the four data

sets (Table 1), illustrating how co-expression of genes in each pair identifies doublet cells.

Binary classification based doublet scoring, on the other hand, combines generation of artificial doublets

from existing data with binary classification. Barcodes in the original data that are difficult to discrimi-

nate from artificial doublets receive high doublet scores using bcds. We use gradient boosted decision

trees (Chen and Guestrin, 2016) to classify (see Methods section), but in principle the approach is

generic and other classification algorithms could be explored. In the following, we apply our methods

to four data sets with experimental doublet annotations (Table 1), provide evidence that combining

the cxds and bcds into a “hybrid” score (see Methods section) improves performance, and compare

our approaches and other computational methods for doublet annotation (Table 4).

Doublet scoring with scds accurately recapitulates experimental doublet annotations

We performed computational doublet annotation on four scRNA-seq data sets (Tables 1 and 2) using

several current methods (Table 4), together with library size (libsize) and number of expressed

genes (termed features; together both are referred to as “baseline” methods from here onwards).

Results are summarized in Table 5, where columns are performance metrics (the area under the receiver

operating characteristic curve (ROC curve), the area under the precision-recall curve (PR curve), and

partial areas under the ROC curve focusing on 90%, 95% and 97.5% specificity), while rows correspond

to computational doublet annotation approaches. For each data set, rows are sorted with respect to

their performance in terms of the area under the ROC curve (AUROC), with ties being broken by

the performance in terms of the area under the PR curve (AUPRC). Baseline methods are marked

with gray bullets, current methods with blue bullets, and our proposed approaches with red bullets.

We find that all the methods we propose (cxds, bcds and hybrid) perform well across data sets,

consistently outperforming baseline approaches and at least one ranking in the top three best performing

methods. The one exception is the ch pbmc data set, where annotating doublets based on the number

of features achieves an area under the ROC curve of 79%. Our weakest-performing approach on this

data, cxds, performs slightly worse (78%), but does much better in terms of area under the PR curve

(AUPRC of 54% vs 45%, respectively). We also note that two other computational doublet annotation

methods, dblCells and scrublet, perform worse than the number of features in terms of AUROC on
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this dataset. On average, our hybrid method does best of the three methods we propose, significantly

outperforming baseline approaches on all four data sets.

Co-expression based doublet scoring highlights informative gene pairs

One of the features of cxds is its ability to provide gene pairs that drive doublet annotations of cells

in a specific data set (see Methods). As an illustration, Figure 1 shows the top five gene pairs (that

span a unique set of ten genes so that no gene appears twice) driving cxds doublet annotation in each

of the data sets we analyzed. For each data set (panels A - D), the first row shows a two-dimensional

representation of all cells (left), the subset of experimentally annotated doublets (middle) and the

subset of doublets predicted by cxds (right). The next five rows depict gene pairs: Binarized expression

(presence/absence) of one gene alone on the left, of the second gene in the pair in the middle, and

co-expression of both genes in the same cell on the right (also absence/presence). We see that cxds

finds genes with complementary expression patterns that mark coherent groups of cells, and how co-

expression of these genes contributes to doublet predictions. We note that while no clustering has been

performed, genes included in high-scoring pairs by cxds often look like they mark different cell types,

or combinations thereof, that may be present in the data.

Comparison of computational doublet scoring methods

We compared computational doublet annotation methods across four data sets, and results are shown

in Table 5, and average performance across data sets is summarized in Table 2. We find that compu-

tational doublet prediction performs best on the hg-mm data set, followed by demuxlet and ch pbmc,

while it is most challenging for the ch cell-lines data. Within each data set there is appreciable

spread of performance between the different methods, with most methods consistently outperforming

baseline approaches. From Table 2 we see that, on average, dblFinder performs best, followed by

our hybrid approach and dblDetection. However, this order varies between data sets; for example on

the ch cell-lines data set, bcds performs better than hybrid (Table 5). On the ch pbmc data set,

the baseline classifiers do better than on other data sets, outperforming cxds, scrublet and dblCells.

In general, library size and number of features identify doublets reasonably well (AUCs ≥ 78%, with the

exception of the ch cell-lines data set), which motivated us to further explore the effect of library

size on the performance of computational doublet annotation.

Doublet annotation performance stratified by library size. For each data set, we divided cells into

equal-sized bins according to library size, so that the first bin contains cells with library sizes between
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the 0% and 10% quantile, the second bin cells between the 10% and 20% quantile, and so on. We then

assessed annotation performance for all computational methods in each bin for each data set separately.

Results are summarized in Figure 2. Major columns correspond to data sets, and for each data set two

panels are shown (rows). The first row depicts performance in terms of the area under the ROC curve

(AUROC), the second row in terms of the area under the PR curve (AUPRC). For each performance

comparison, columns correspond to library size bins, and rows to annotation methods.

We see that all approaches (baseline methods included) perform best on cells with high library size (quan-

tile bins 5 and up), and that this trend is more pronounced for performance in terms of AUPRC, compared

with AUROC. We also find that this trend applies broadly, with notable exceptions being: The hg-mm

data set, where most methods perform well in terms of AUROC across bins, and dblDetection

and cxds both also perform consistently across a wide range of bins in terms of AUPRC. The second

exception is the demuxlet data set, where hybrid and cxds perform unusually well in terms of AUROC

for cells with small library sizes (first quantile bin).

Comparison of doublet annotations between methods. We also assessed similarities and differences

between doublet predictions of each method. To do so, we determined the fraction of barcodes exper-

imentally annotated as doublets and then compared the same number of doublet predictions for each

method. Results are summarized in Figure 3, where we looked at overlapping and non-overlapping

doublet annotations in the form of upset plots (Conway et al., 2017) for each data set. Vertical bars

indicate the number of cells in each intersection class described in the lower portion of the plot. Set

sizes are the number of experimentally annotated doublets (i.e., they are identical across methods).

Gray bars correspond to intersections containing barcodes not annotated as doublet (i.e., false positives

(FP)), whereas black bars correspond to barcodes annotated as doublets (i.e., true positives (TP)). The

twenty largest intersection sets are shown for each data set.

We find that in each data set (except hg-mm) there is a substantial number of annotated doublet cells that

none of the computational annotation approaches recovers (black bars corresponding to the “annotation

only” intersection). The cxds, scrublet, and dblCells methods often have a fairly large amount of FP

predictions that are unique to the respective methods, as do libsize and/or features. While we note

these differences, we also see that TP predictions are typically shared by many methods. In fact, with

the exception of the scrublet-specific TP predictions in the ch cell-lines data, all TP intersections

have consistent predictions from at least four methods. That is, we observe better agreement between

methods in terms of TP predictions as compared with FP predictions.

Further on, we compared the library size of cells, stratified by their annotations classes (TP, true negative

(TN), FP, and false negative (FN) predictions) for each method and data set. Results are summarized

in Figure 4. We see that for a few methods (cxds, bcds, hybrid, dblDetection, dblFinder) FP

predictions tend to have higher library size compared with FN predictions, often comparable to TP
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predictions. Similar to what (McGinnis et al., 2018) observe for dblFinder. We also find that this

trend can vary for the same method between data sets (for example, cxds has this trend in all data sets

except ch pbmc, and dblFinder has it in all data sets except hg-mm).

Finally, the ch cell-lines data set contains experimental annotation about whether a doublet is

homotypic (from the same cell line) versus heterotypic. We used this to quantify the enrichment of TP

predictions for heterotypic doublets across methods. Results are summarized in Table 6. We see that all

methods (except dblCells) are significantly enriched for heterotypic doublets, with enrichment being

most extreme forcxds and bcds. Next, we visually compared doublet annotations across methods and

data sets.

Visual comparison of annotated doublets. We compared doublet predictions of each method for each

data set in Figure 5. Rows correspond to computational annotation methods, and each major column

represents a data set and is further sub-divided into four minor columns. The first minor column shows

doublet scores with darker colors representing higher scores (i.e., more doublet-like barcodes). The

second column shows TP predictions in the same coordinates, whereas the third and fourth columns

show FP and FN predictions, respectively. The relative density for each type of prediction is indicated

in color (TP: green, FP: red, FN: blue). As before, we choose cutoffs such that each method’s number

of predicted doublets matches the number of experimentally annotated doublets.

For the hg-mm data, where computational annotations are mostly correct (Table 5), we see that TP and

FN predictions are highly concentrated. However, we can still make out interesting differences between

the methods in terms of where their FP predictions fall. dblDetection, features and libsize have

FP predictions in similar areas for one type of cells pretty much exclusively, scrublet and dblFinder

predict false positives more predominantly in the other cell type, while hybrid and bcds have FP

predictions in both types of cells. For the ch cell-lines data set, TP and FN predictions appear similar

amongst non-baseline methods, while FP predictions appear distinct. For example, for dblDetection

the FP density is highest in two of the four cell types (somewhat similar to the baseline methods),

while for other methods FP predictions appear more broadly distributed. For the ch pbmc data set

we observe the biggest difference in terms of FP density between the two baseline methods and the

rest, while for demuxlet we observe clearly visible differences in terms of TP, FP and FN density

for all methods. For instance, FN predictions are more heterogeneous for the first four rows and

more concentrated in the other methods. This coincides with higher FP concentration for the baseline

methods and cxds, but not for dblCells and scrublet. Overall, we observe appreciable variability

between doublet prediction methods, including the top three performers in Table 2, dblFinder, hybrid

and dblDetection. This may suggest that none of the methods are close to optimal, and that an

approach combining their respective strengths might further improve doublet annotation.
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Running time comparison. We measured running times of the different methods we compare, and Ta-

ble 3 summarizes the results. We find that cxds, bcds 7 (where we do not perform cross validation,

see Methods) and bcds are able to annotate 10k cells in tens of seconds or on the order of a minute,

while other methods take significantly longer. There is a distinct gap between “fast methods”, compris-

ing the tools we propose and scrublet, and the rest. We note that computational doublet annotation

can be performed for each chip/batch separately, and therefore we did not assess larger numbers of

barcodes.

Comparison with dblDecon. SincedblDecon (DePasquale et al., 2018) does not provide a doublet

score, we could not include it in the previous analyses. To be able to still include it in our study, we

applied it to all four data sets and and generated doublet predictions. For the hg-mm and demuxlet data

sets, dblDecon did not annotate any doublets, and therefore we excluded them from this analysis. For

the three remaining data sets and other tools in the comparison, we then generated the same number of

annotated doublets as dblDecon by choosing appropriate score thresholds . Table 8 summarizes results,

with rows ordered by average precision across data sets. Surprisingly, we find that dblDecon does not

perform well in this comparison, even though it determined the number of positive doublet calls for all

methods. We also see a wide range of precision and sensitivity values across methods, while specificities

are high due to the large amount of true negatives in all data sets.

Discussion

We have introduced single cell doublet scoring, scds, encompassing three methods (cxds, bcds,

and hybrid) for the in silico annotation of doublets in scRNA seq data. We have applied them to four

data sets with experimental doublet annotations, and they all outperform baseline approaches. cxds

is based on co-expression of gene pairs, and it is quite different from current approaches, because it

does not utilize artificially generated doublets, and it works on a binarized absence/presence version

of the RNA expression data. It features fast running times and provides users the opportunity to in-

vestigate pairs of genes driving doublet predictions (see Methods and Results). Binary classification

based doublet scoring, bcds, is more similar to established methods and utilizes artificially generated

doublets. However, in contrast to other tools (see Introduction for short descriptions), it does not

make use of dimension reduction techniques, nor does it employ nearest neighbors for doublet scoring.

Finally, hybrid is a combination ofcxds and bcds that performs better than either method alone. In

summary, our approaches are complementary to existing tools and work well for annotating doublets in

scRNA-seq data.

We note that we do not estimate the number of doublets in a data set, but rather score cells/barcodes
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and rank them from most doublet-like to least doublet-like. Therefore, our annotations are most useful

when an estimate about the expected doublet rate is available (for instance, 10X Genomics provides

them in their “User Guide for Chromium Single Cell 3’ Reagent Kits”, based on the number of cells

loaded on a chip), or when researchers wish to include a doublet score as only one of many factors in their

decision about which cells may be excluded prior to downstream analyses. Our approaches share some

conceptual limitations with other methods, which have been discussed in the literature (e.g, (Wolock et

al., 2018)). Specifically, successful doublet identifications require that doublets are rare, that mixtures

of more than two cells are even more rare, and that single cell instances of cell types in doublets are

present in the data at appreciable frequency. Further on, our approaches are more sensitive towards

identifying heterotypic doublets as compared with doublets comprised of two cells of the same type (also

see Table 6).

We also compared our methods and four existing tools that provide doublet scores across four data

sets, and we find appreciable heterogeneity between computational doublet annotation methods. No

tool consistently outperforms all others, and performance varies between data sets. Our tools perform

well, especially if running time is a consideration. Averaged across data sets, dblDetection, hybrid

and dblFinder are the top performing methods (Table 2). Investigating doublet predictions of each

method in more detail, we find that (i) for most data sets there is a sizable fraction of experimentally

annotated doublets that is consistently missed by all methods, (ii) many correctly annotated doublets

share the consensus of most methods, and (iii) methods differ mostly in terms of their false positive

annotations, and these tend to be method-specific (i.e., typically not shared between methods). This

implies that while methods differ in their doublet annotations (appreciable variability in terms of false

positives), no method is yet able to recover a sizable fraction of annotated doublets (false negatives

shared by all approaches). Therefore, we believe there is room to further improve computational doublet

annotation. Specifically, we note that for bcds we used default parameters and did not really engage in

parameter tuning, which could in principle lead to substantial improvements. The reason is that with

only four doublet data sets available, we believe that there is some danger of inadvertent “information

leak”, and therefore optimizing parameters may lead to overfitting. But this concern will decrease as

more (and more diverse) data with experimental doublet annotations become available.

We note that results of our method comparisons necessarily depend on the data sets we used, and

how they were processed. We attempted to minimize processing steps as much as possible, and we

did not filter cells in addition to the original publications. We used published/provided experimental

annotations, and for cell hashing (Stoeckius et al., 2018) we followed the annotation strategy prescribed

by the authors (see Methods). However, we are cognizant that alternative data processing strategies

are equally reasonable and may have the potential to impact results. Further on, many analysis steps

include random sampling in some way, thereby inducing a certain amount of stochasticity. Therefore

we have made the code for our analyses available (https://github.com/kostkalab/scds manuscript) and

provide a docker container (https://hub.docker.com/r/kostkalab/scds) for other researchers. Finally,
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in our study we used experimentally annotated doublets as gold standard ignoring shortcomings of the

respective experimental approaches, for example that some are not able to identify identically barcoded

doublets (McGinnis et al., 2018). However, in the absence of better experimental data we feel there are

little alternatives to this approach.

In summary, in silico doublet annotation enriches single cell RNA sequencing data and can guard against

over interpretation of results. From our comparison we find that current approaches (including ours)

are able to annotate doublets more accurately than baseline methods, but also that there appears

to be room for improvement as more data sets with experimental annotations become available. We

introduced new light-weight methods for computational doublet annotation, which perform well in

comparison to the status quo. They all feature comparably short running times, and co-expression based

doublet scoring produces biologically interpretable results. Therefore, we provide researchers with new

and useful tools to study and increase the value of their single cell RNA sequencing data.
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Tables and Figures

Data set Cells Sparsity # Genes Annotation type Reference

hgmm 12,820 79% 3,068.5 cross species cell line mixture (10X Genomics)
ch pbmc 15,583 98% 321 cell hashing (Stoeckius et al., 2018)
ch cell-lines 8,191 92% 2,086 cell hashing (Stoeckius et al., 2018)
demuxlet 14,619 97% 520 genetic variation (Kang et al., 2018)

Table 1: Data sets with experimental doublet annotation. The ”# Genes” column shows the median
across cells of the number of expressed genes

AUROC pAUC90 pAUC95 pAUC97.5 AUPRC

• dblCells 0.75 0.69 0.66 0.63 0.47
• libsize 0.76 0.60 0.56 0.53 0.30
• features 0.78 0.62 0.57 0.54 0.33
• cxds 0.83 0.74 0.71 0.68 0.56
• scrublet 0.83 0.76 0.72 0.69 0.59
• bcds 0.84 0.76 0.70 0.64 0.57
• dblDetection 0.84 0.80 0.75 0.71 0.65
• hybrid 0.85 0.77 0.72 0.67 0.62
• dblFinder 0.86 0.80 0.76 0.72 0.68

Table 2: Performance of doublet annotation methods, averaged across data sets. Gray bullets mark
baseline methods, blue bullets mark current methods for doublet annotation, and red bullets mark
proposed methods.

1,000 2,000 4,000 8,000 12,000

bcds 7 5 2 4 11 9
cxds 1 1 3 9 21
scrublet 5 6 10 16 21
bcds 12 9 14 74 41
dblCells 52 29 170 276 ×
dblFinder 93 136 269 × ×
dblDetection × × × × ×

Table 3: Running time for doublet detection methods in seconds. Missing values indicate running
times longer than 300 seconds (5 minutes).
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Method name Language Reference

scrublet Python (Wolock et al., 2018)
dblDetection Python (Shor and Gayoso, 2019)
dblFinder R (McGinnis et al., 2018)
dblCells R (Lun et al., 2016)
dblDecon R (DePasquale et al., 2018)

Table 4: Computational methods for doublet annotation summarized in Introduction.

Figure 1: Gene pairs driving doublet prediction in cxds. For four data sets (panels A-D) the first
row shows all cells in blue (left), the annotated doublets in red (center) and cxds-predicted doublets
(right), also in red. The following five rows depicts the five gene pairs that contribute most to the cxds
classifier (see Methods). For each pair (i.e., for each row), the left plot depicts the expression of one
gene (darker = higher expression), the middle plot the expression of the other gene, while the right plot
the average expression in cells that co-express both genes. We see that each gene in a pair is expressed
in distinct groups of cells, and that their co-expression highlights annotated and predicted doublets.
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AUC pAUC90 pAUC95 pAUC97.5 AUPRC

ch cell-lines
• libsize 0.60 0.54 0.53 0.52 0.17
• features 0.60 0.55 0.54 0.53 0.19
• dblCells 0.64 0.62 0.61 0.60 0.37
• cxds 0.65 0.59 0.57 0.55 0.26
• dblDetection 0.66 0.66 0.65 0.65 0.44
• scrublet 0.69 0.65 0.64 0.63 0.41
• dblFinder 0.69 0.66 0.65 0.65 0.45
• hybrid 0.70 0.64 0.63 0.61 0.40
• bcds 0.70 0.66 0.64 0.62 0.43

ch pbmc
• dblCells 0.63 0.57 0.56 0.54 0.31
• libsize 0.78 0.63 0.57 0.54 0.44
• scrublet 0.78 0.67 0.63 0.59 0.52
• cxds 0.78 0.69 0.65 0.61 0.54
• features 0.79 0.62 0.57 0.54 0.45
• bcds 0.81 0.71 0.66 0.60 0.58
• hybrid 0.82 0.73 0.67 0.62 0.61
• dblDetection 0.82 0.75 0.69 0.62 0.63
• dblFinder 0.84 0.74 0.68 0.62 0.64

demuxlet
• dblCells 0.79 0.70 0.65 0.60 0.46
• libsize 0.81 0.58 0.55 0.53 0.30
• features 0.85 0.62 0.57 0.55 0.37
• scrublet 0.87 0.74 0.68 0.62 0.53
• cxds 0.89 0.71 0.63 0.57 0.49
• hybrid 0.91 0.78 0.68 0.58 0.57
• dblDetection 0.91 0.79 0.69 0.58 0.57
• bcds 0.91 0.79 0.71 0.62 0.61
• dblFinder 0.92 0.79 0.70 0.63 0.62

hg-mm
• libsize 0.87 0.66 0.59 0.54 0.27
• features 0.89 0.68 0.60 0.55 0.30
• dblCells 0.93 0.88 0.84 0.79 0.73
• bcds 0.96 0.87 0.80 0.71 0.64
• hybrid 0.98 0.94 0.90 0.87 0.88
• scrublet 0.99 0.96 0.94 0.91 0.91
• cxds 0.99 0.98 0.98 0.97 0.97
• dblDetection 0.99 0.99 0.98 0.98 0.97
• dblFinder 1.00 0.99 0.99 0.99 0.99

Table 5: Performance of doublet prediction methods across four data sets. Gray bullets mark baseline
methods, blue bullets mark current methods for doublet annotation, and red bullets mark proposed
methods.

cxds bcds hybrid scrublet dblFinder dblDetection libsize numfeat dblCells

OR 7.70 5.39 3.97 3.32 3.19 3.04 2.62 1.20 0.98
p-value 7.38e-21 2.03e-16 2.29e-11 2.20e-10 6.82e-10 1.06e-07 2.46e-07 4.24e-01 9.18e-01

Table 6: Enrichment of heterotypic doublets in true positive annotations. OR = odds ratio. P-values
are via a Fisher exact test.
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AUROC pAUC90 pAUC95 pAUC97.5 AUPRC

ch cell-lines
bcds 0.70 0.66 0.64 0.62 0.43
cxds 0.65 0.59 0.57 0.55 0.26
bcds 7 0.69 0.65 0.63 0.61 0.41

ch pbmc
bcds 0.81 0.71 0.66 0.60 0.58
cxds 0.78 0.69 0.65 0.61 0.54
bcds 7 0.81 0.71 0.65 0.61 0.58

demuxlet
bcds 0.91 0.79 0.71 0.62 0.61
cxds 0.89 0.71 0.63 0.57 0.49
bcds 7 0.90 0.77 0.69 0.61 0.58

hg-mm
bcds 0.96 0.87 0.80 0.71 0.64
cxds 0.99 0.98 0.98 0.97 0.97
bcds 7 0.97 0.90 0.85 0.77 0.74

Table 7: Supplemental table. Comparison of annotation performance of bcds 7 with bcds and cxds.
We find that bcds 7 performs comparable to bcds, but at a fraction of the running times (see Table
3).

ch cell-lines ch pbmc

TP sen spe pre TP sen spe pre

dblDecon 180 0.20 0.92 0.23 829 0.33 0.81 0.25
dblCells 280 0.31 0.93 0.36 915 0.36 0.82 0.28
libsize 163 0.18 0.92 0.21 1501 0.59 0.86 0.46
features 179 0.20 0.92 0.23 1513 0.59 0.86 0.46
cxds 240 0.27 0.93 0.31 1439 0.57 0.86 0.44
scrublet 312 0.35 0.94 0.40 1431 0.56 0.86 0.43
bcds 338 0.38 0.94 0.44 1680 0.66 0.88 0.51
hybrid 334 0.38 0.94 0.43 1712 0.67 0.88 0.52
dblDetection 328 0.37 0.94 0.42 1769 0.70 0.88 0.54
dblFinder 339 0.38 0.94 0.44 1806 0.71 0.89 0.55

Table 8: Comparison of doublet annotation methods with dblDecon. TP: true positives, sen: sensitivity,
spe: specificity, pre: precision
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Figure 2: Performance of methods, stratified by library size. For each data set (columns), the first
row of panels shows performance in terms of the area under the ROC curve (AUROC), while the second
row shows performance under the precision-recall curve (AUPRC). For each panel the rows correspond
to methods, and the columns to groups of cells in the same stratum of library sizes. The left-most
column focuses on the 10% of cells with the lowest library size, the next column on the cells between
the 10% and the 20% quantile, etc. In each panel methods are ranked by their average performance
across quantile bins.
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Figure 3: Comparison of doublet predictions. For four data sets (panels) we show upset plots (Conway
et al., 2017) comparing doublet predictions for nine prediction methods (including baseline methods)
with annotated doublet cells. Bars showing the size of intersections containing annotated doublets
(termed “annotation”) are in black, bars showing intersections without annotated doublets are in gray.
We show the 20 largest intersection sets. For demuxlet, ch pbmc and ch cell-lines the set of doublets
that gets missed by all prediction methods (i.e., consistent false negatives) is ranked number six, three
and three in terms of size, respectively.
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Figure 4: Library size of doublet annotations, stratified by prediction type. For each data set (rows)
and each method (columns) violin plots of library sizes are shown for false negative predictions (FN,
blue), false positive predictions (FP, red) and true negative and true positive predictions (TN and TP,
both black). For most (but not all) method/dataset combinations library size in FP predictions tends
to be higher compared with FN predictions.
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Figure 5: Visual comparison of doublet predictions. For each data set (major columns), we show
four panels (minor columns) for the nine methods we compared (rows). The first left-most panel depicts
all cells, shaded by the rank of the respective doublet prediction score for a method. The second, third
and fourth panels show true positive (TP, green), false positive (FP, red) and false negative (FN, blue)
predictions for a method, respectively. Shading in the respective color reflects the relative density, cells
are shown in black.
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