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The development of mechanistic models of biological systems is a central part of Systems Biology. One major challenge in

developing these models is the accurate inference of the model parameters. In the past years, nested sampling methods have

gained an increasing amount of attention in the Systems Biology community. Some of the rather attractive features of these

methods include that they are easily parallelizable and give an estimation of the variance of the final Bayesian evidence estimate

from a single run. Still, the applicability of these methods is limited as they require the likelihood to be available and thus cannot be

applied to stochastic systems with intractable likelihoods. In this paper, we present a likelihood-free nested sampling formulation

that gives an unbiased estimator of the Bayesian evidence as well as samples from the posterior. Unlike most common nested

sampling schemes we propose to use the information about the samples from the final prior volume to aid in the approximation

of the Bayesian evidence and show how this allows us to formulate a lower bound on the variance of the obtained estimator.

We proceed and use this lower bound to formulate a novel termination criterion for nested sampling approaches. We illustrate

how our approach is applied to several realistically sized models with simulated data as well as recently published biological data.

The presented method provides a viable alternative to other likelihood-free inference schemes such as Sequential Monte Carlo

or Approximate Bayesian Computations methods. We also provide an intuitive and performative C++ implementation of our

method.

1 Introduction

The accurate modelling and simulation of biological processes such as gene expression or signalling has

gained a lot of interest over the last years, resulting in a large body of literature addressing various types

of models along with the means for their identification and simulation. The main purpose of these models

is to qualitatively or quantitatively describe observed biological dynamics while giving insights into the

underlying bio-molecular mechanisms.
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One important aspect in the design of these models is the determination of the model parameters.

Often there exists a mechanistic model of the cellular processes, but their parameters (e.g. reaction rates

or initial molecule concentrations) are largely unknown. Since the same network topology may result in

different behaviour depending on the chosen parameters [26], this presents a major challenge for modelling

and underscores the need for effective parameter estimation techniques.

The models used in Systems Biology can be coarsely classified into two groups: deterministic and

stochastic models. Deterministic models usually rely on ordinary differential equations which, given the

parameters and initial conditions, can describe the time evolution of the biological system in a deterministic

manner. However, many cellular processes like gene expression are subject to random fluctuations [12, 36],

which can have important biological functions [43, 49, 31] as well as contain useful information about

the underlying molecular mechanisms [39]. The important role of stochastic fluctuations in biological

systems has lead to increased interest in stochastic models and methods for their parameter inference[3,

25, 32, 41, 42, 56]. Such stochastic models are usually described in the framework of stochastic chemical

reaction networks that can be simulated using Gillespie’s Stochastic Simulation Algorithm (SSA) [17].

In recent years, the availability of single-cell trajectory data has drastically increased, providing detailed

information about the (potentially stochastic) development of single cells throughout time.

Despite the increasing interest in stochastic systems, performing inference on them is still challenging

and the available methods are computationally very demanding (see for instance [3, 20, 53]). Common

algorithmic approaches for such cases include various kinds of sequential Monte Carlo methods (SMC)

[9, 6], Markov Chain Monte Carlo (MCMC) methods [19, 3, 45], approximate Bayesian computation

(ABC) methods [54, 32, 28], iterative filtering [27] and nested sampling (NS) approaches [52, 29, 37, 15].

Furthermore, to reduce computational complexity, several of these inference methods rely on approximat-

ing the model dynamics (for instance using the diffusion approximation [18] or linear noise approximation

[11]). However, these approximations may not always be justifiable (in the case of low copy numbers

of the reactants for example) and might obscure crucial system behaviour. One particular problem that

is common to most inference methods is the usually high dimensional parameter space. Most of the

sampling-based inference techniques require the exploration of the full parameter space, which is not an

easy task as the dimension of the parameter space increases. In this paper, we focus on nested sampling
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methods and investigate its applicability to stochastic systems. Coming originally from the cosmology

community, NS (originally introduced in [52]) has gained increasing popularity and found also applications

in Systems Biology (see for instance [1, 5, 10, 29, 46]). Several implementations of NS are available

([14, 22]) and in [29] the authors even provide a NS implementation specifically for a Systems Biology

context. Even though the original purpose of NS was to efficiently compute the Bayesian evidence,

it has more and more become a viable alternative to MCMC methods for the approximation of the

posterior (see for instance [16, 24]).

There are various reasons for the interest in NS which are discussed in detail in [40, 33] and the

references within. Some of the rather appealing features of NS is that it performs well for multimodal

distributions [16, 22], is easily parallelizable [23, 5] and provides a natural means to compute error

bars on all of its results without needing multiple runs of the algorithm [51, 40]. For a comparison of

MCMC and NS see for instance [46, 40], for a discussion of other methods to compute the Bayesian

evidence using MCMC see [40, 34]. Like standard MCMC methods, NS requires the availability of

the likelihood l(θ) which limits its use to models that allow for the computation of the likelihood

such as deterministic models and simple stochastic models. In this paper, we consider an extension

to the original NS framework that, similarly to the particle MCMC method [55] and particle SMC

[2], allows the use of approximated likelihoods instead of the actual likelihood to be used for NS. In

the following we introduce the notation and problem formulation, in section 2 we revisit the basic

NS idea and outline some of its features. Section 3 is dedicated to the likelihood-free NS formulation

and in section 4 we demonstrate its performance on several chosen examples.

1.1 Chemical Reaction Networks

We are considering a nx-dimensional Markov Process X(t) depending on a d-dimensional param-

eter vector θ. We denote with Xi(t) the ith entry of the state vector at time t and with X(t) =

{Xi(t)}i=1,...,nx the state vector at time t. We will write Xτ = X(tτ ) when talking about the state

vector at a timepoint tτ indexed with τ .

In the context of stochastic chemical reaction networks this Markov process describes the abun-
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dances of nx species X1,X2, . . . ,Xnx , reacting through nR reactions R1,R2, . . . ,RnR written as

Rj :
nx∑
i=1

pjiXi →
nx∑
i=1

qjiXi,

where pji is the numbers of molecules of species Xi involved in reaction Rj, and qji is the number of

molecules of species Xi produced by that reaction. The random variable Xi(t) corresponds to the

number of molecules of species Xi at time t. Each reaction Rj has an associated propensity. The

reaction propensities at a given time t depend on the current state X(t) and on a d-dimensional

parameter vector θ.

1.2 General Task

The process X(t) is usually not directly observable but can only be observed indirectly through a

ny-dimensional observation vector

Yτ ∼ p(·|Xτ , θ),

which depends on the state Xτ and on the d-dimensional parameter vector θ ∈ Ω where Ω ⊆ Rd

denotes the parameter space. We shall assume that the variable Y is not observed at all times

but only on T timepoints t1, . . . , tT and only for M different trajectories. With y we denote the

collection of observations at all time points. In the Bayesian approach the parameter vector θ is

treated as a random variable with associated prior π(θ). The goal is not to find just one set of

parameters, but rather to compute the posterior distribution P(θ|y) of θ

P(θ|y) =
1

Z
l(y|θ)π(θ),

where l(y|θ) (we will also write l(θ) if the dependence on y is clear from the context) is the likelihood

of θ for the particular observation y and Z is the Bayesian evidence

Z =

∫
Ω

l(y|θ)dπ(θ). (1.1)
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This has several advantages over a single point estimate as it gives insight into the areas of the

parameter space resulting in model behaviour similar to the observations as well as about their

relevance for the simulation outcome (a wide posterior indicates non-identifiability for example).

For a detailed discussion of Bayesian approaches see for instance [34]. In this paper we follow the

Bayesian approach and aim to recover the posterior P(θ|y). In the following section we briefly

outline the basic nested sampling approach.

2 Nested Sampling

Nested sampling is a Bayesian inference technique that was originally introduced by John Skilling in

[52] to compute the Bayesian evidence 1.1. NS can be viewed as an importance sampling technique

(as for instance discussed in [47]) as it approximates the evidence by generating samples θi, weights

wi and likelihoods li = l(θi) such that the weighted samples (θi, wi) can be used to obtain numerical

approximations of a function f over the prior π

∑
i

wif(θi) ≈
∫
f(θ)dπ(θ). (2.2)

To compute an approximation Ẑ of the Bayesian evidence 1.1, f is chosen to be the likelihood

function l

Ẑ =
∑
i

wili ≈
∫
l(θ)dπ(θ). (2.3)

The points θi are sampled from the prior distribution constrained to super level sets of the likelihood

corresponding to an increasing sequence of thresholds. In this sense it can also be viewed as a

sequential Monte Carlo method, where the intermediate distributions are the nested super level sets

of the likelihood. This way, samples from NS are concentrated around the higher regions of the

likelihood. One can also use the weights li × wi instead of wi to approximate functions over the

posterior P(θ)

1

Ẑ

∑
f(θi)liwi ≈

∫
f(θ)dP(θ).
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2.1 NS algorithm

In the following we briefly outline the NS algorithm. First, a set L0 of N “live” particles {θi}i=1,...,N

is sampled from the prior π

θi ∼ π(θ)

and their likelihoods li = l(θi) are computed. Then the particle with the lowest likelihood

θ1 = arg min {l(θ)|θ ∈ L0}

gets removed from the set of live particles and saved together with its likelihood

ε1 := l(θ1)

in a set of “dead” particles D. A new particle θ? is then sampled from the prior under the constraint

that its likelihood is higher than ε1

θ? ∼ π(θ|l(θ) > ε1). (2.4)

This particle is combined with the remaining particles of L0 to form a new set of live particles L1

that are now distributed according to the constrained prior π(θ|l(θ) > ε1), which we denote as

L1 ∼ π(θ|l(θ) > ε1).

This procedure is repeated until a predefined termination criteria is satisfied. The result is a sequence

of dead points θi with corresponding likelihoods εi that are concentrated in the regions of high

likelihood. The Nested Sampling procedure is shown in Algorithm 1.
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1: Given observations y and a prior π(θ) for θ.
2: Sample N particles θk from the prior π and save in the set L0, set D = {∅}
3: for i = 1, 2, . . . , m do
4: Set θi = arg min {l(θ)|θ ∈ Li−1} and εi = l(θi)
5: Add {θi, εi} to D
6: Set Li = Li−1\θi
7: Sample θ? ∼ π(θ|l(θ) > εi) and add it to Li
8: end for

Algorithm 1: Nested sampling algorithm

2.2 Approximating the Bayesian Evidence

Nested sampling exploits the fact that the Bayesian evidence 1.1 can also be written1 (see [52]) as

a one dimensional integral

Z =

1∫
0

L(x)dx,

over the prior volume

x(ε) := π(l(θ) > ε) =

∫
l(θ)>ε

dπ(θ),

where L(x) denotes the likelihood corresponding to the constrained prior with volume x

L(x) = arg inf
ε
{x(ε) ≥ x} . (2.5)

We have visualized these quantities on a simple example with a uniform prior on [0, 1] in Figure 1.

The sampling scheme of nested sampling provides a sequence of likelihoods ε1 < ε2 < . . . < εm,

but their corresponding prior volumes x(εi) are not known. However, since the εi are obtained by

iteratively removing the lowest likelihood of N uniformly distributed points on the constrained prior

π(θ|l(θ) > εi−1), the prior volume x(εi) can be written as

xi := x(εi) = t(i)xi−1,

1for this to hold some weak conditions have to be satisfied, see for details [8] and [15]

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2019. ; https://doi.org/10.1101/564047doi: bioRxiv preprint 

https://doi.org/10.1101/564047


BA

Figure 1: Illustration of the nested sampling approximation with a uniform prior on [0, 1]. A: The integral over the parameter space
∫
Ω l(θ)dθ.

B: The transformed integral
∫ 1
0 L(x)dx over the prior volume x.
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where each t(i) is an independent sample of the random variable t which is distributed as the largest

of N uniform random variables on the interval [0, 1] and x0 = 1 (For further justification and

discussion on this see [52, 15, 8] and the references within). The values t(i) are not known and

need to be estimated. Since their distribution is known2, they can be approximated by their means

E(t) = N
N+1

(or by the mean of their logs E(log(t)) = − 1
N
), and thus the ith prior volume can be

approximated as

x̂i =

(
N

N + 1

)i
≈ xi. (2.6)

With these prior volumes one can compute the importance weights wi in equation 2.2 and 2.3 for

each of the dead particles θi as

wi = (x̂i−1 − x̂i) . (2.7)

These weights correct for the fact that the samples in D are not drawn uniformly from the prior, but

are concentrated in areas of high likelihood. We note that to integrate a function on the parameter

space Ω over the prior π, as in equations 2.2, only these weights are needed. To approximate Z, NS

uses these weights to integrate the likelihood function l(θ) over the prior

Z =

1∫
0

L(x)dx ≈
m∑
i=1

L(xi)(x̂i−1 − x̂i) =
m∑
i=1

εiwi =: Ẑm
D (2.8)

where m is the number of performed NS iterations and the subscript D in Ẑm
D emphasizes that

for NS the evidence estimate is obtained using only the dead points in D. The justification for

these weights as well as an in depth discussion and error approximation can be found in [8, 24, 30]

and the references therein. This basic idea of nested sampling has seen several modifications and

improvements over the years, along with in-depth discussions of various sampling schemes for the

constrained prior [14, 22], parallel formulations [22, 23, 5] and several implementations [14, 22, 29].
2t ∼ B(N, 1) with B(a, b) being the Beta distribution with parameters a and b.
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2.3 Termination of NS

Assuming that the distribution 2.4 can be efficiently sampled, each iteration of the NS scheme

has the same computational complexity (the computationally most expensive step is usually to

sample θ? ∼ π(θ|l(θ) > εi) and computing its likelihood). The NS algorithm is usually run until

the remaining prior volume multiplied by the highest likelihood in this volume is smaller than a

predefined fraction of the current BE estimate (see [52]). We write this quantity as

∆m
max := x̂m max

θ∈Lm
(l(θ))

1

Ẑm
D
.

Some other termination criteria have been suggested (for instance in [22]), but since the prior

volume decreases exponentially with the number of NS iterations and each iteration takes the same

computational time, the choice of the particular termination criterion is not critical.

2.4 Parallelization of NS

The parallelization of NS can be done in a very straight forward manner. Still several different

parallelization schemes have been suggested in [22, 23, 5] (for a short overview see section S1). We

use a parallelization scheme similar to the one presented in [23], where at each iteration not only

the one particle with the lowest likelihood is resampled, but the r lowest particles. The resulting

parallel scheme is outlined in Algorithm 2. With r parallel particles the final approximation 2.8

changes to

Ẑm
D =

m∑
i=1

r∑
j=1

εi,j(x̂i,j−1 − x̂i,j), (2.9)

with xi,j = t
(i)
j xi−1,r and t

(i)
j being ith sample of tj which is the jth largest number among N uniform

numbers between 0 and 1 3 (with the obvious boundary condition x0,r = 1). We note that this is

slightly different than the parallelization scheme presented in [22, 23, 5], for a brief discussion see

S1.
3This means tj ∼ B(N − j + 1, j)
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1: Given observations y and a prior π(θ) for θ.
2: Sample N particles θk from the prior π and save them in the set L0, set D = {∅}
3: for i = 1, 2, . . . , m do
4: for j = 1, 2, . . . , r do
5: Set θi,j = arg min {l(θ)|θ ∈ Li−1} and εi,j = l(θi,j)
6: Add {θi,j, εi,j} to D
7: remove θi,j from Li−1

8: end for
9: Set Li = Li−1

10: for j = 1, 2, . . . , r do
11: Sample θ? ∼ π(θ|l(θ) > εi,r) and add it to Li
12: end for
13: end for

Algorithm 2: Parallel nested sampling algorithm. The samples drawn in line 11 are all inde-
pendent and thus can be drawn in parallel.

3 Likelihood-free nested sampling (LF-NS)

In many cases (such as most of the above mentioned stochastic models) the likelihood l(θ) cannot

be directly computed, making approaches like MCMC methods or nested sampling not applicable.

Fortunately, many variations of MCMC have been described circumventing this problem by intro-

ducing likelihood-free MCMC methods such as [35] or [55] as well as other likelihood-free methods

such as ABC [54] or likelihood-free sequential Monte Carlo (SMC) methods [50]. These approaches

usually rely on forward simulation of a given parameter vector θ to obtain a simulated data set

that can then be compared to the real data or can be used to compute a likelihood approximation

l̂(θ) ≈ l(θ). In the following we briefly illustrate one way to approximate the likelihood.

3.1 Likelihood approximation using particle filters

A common way to approximate the likelihood through forward simulation is using a particle filter

(see for instance [44] or [19]), which iteratively simulates the stochastic system with H particles

and then resamples these particles. In the following we illustrate such a particle filter likelihood

approximation on a simple birth death model, where one species (mRNA) is produced at rate k = 1

and degrades at rate γ = 0.1. We simulated one trajectory (shown in Figure 2 A) of this system

using Gillespies stochastic simulation algorithm (SSA [17]) and, using the finite state projection
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Figure 2: A: A simulated trajectory of the birth death system using k = 1 and γ = 0.1 with 21 equally spaced measurements (taken to
be normally distributed around the mRNA count with σ = 2).B: Top: Likelihood for different parameters k (red) and contour lines of the
joint distribution Π(k, log(k) of the parameter k and its likelihood approximation l̂(k), based on 106 samples of the likelihood approximation
obtained with a particle filter with 100 particles. Bottom: The constrained priors π(k|l(k) > ε) and π(k)p(l̂(k) > ε|k) for ε = 1e − 24. C:
Example distributions p(l̂(k)|k) (blue) for k = 1, 1.2 and 1.4 and the true likelihood l(k) red. D: blue: The ratio α(m) of the probability
masses of Π(k, l̂(k)|p(l(k) > εi) > k) above and below each likelihood threshold εi, constrained to those regions of k with p(l̂(k) > εi) > 0
(these are the parameter regions in panel B between k−i and k+

i ). purple: The evidence as estimated by all particles with likelihood below εm:
ZmD =

∫
l̂(k)≤εm

l̂(k)dΠ(k, l̂(k)).

(FSP [38]), computed the likelihood l(k) for different values of k while keeping γ fixed to 0.1. The

true likelihood for different k is shown as the solid red line in Figure 2 B and C. We also illustrated

the likelihood approximation l̂(k) using a particle filter ([19]) with H = 100 particles for three values

of k. For each of the values for k we computed 1000 realizations of l̂(k) and plotted the empirical

distributions in Figure 2 C. Note that l̂(k) is itself a random variable with distribution p(l̂(k)|k) and

has a mean equal to the true likelihood E(l̂(k)) = l(k) (see for instance [44]). We also sampled 106

values of k from a log uniform prior and approximate for each k its likelihood with the same particle

filter with H = 100 particles. We plotted the contour lines of this joint distribution

Π(k, l̂(k)) = π(k)p(l̂(k)|k)

in Figure 2 B.

In the following we discuss how to utilize such a likelihood approximation to apply the above

described NS procedure to cases where the likelihood is not available. Throughout the paper we
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assume that the likelihood approximation l̂(θ) is obtained using a particle filter, but our result hold

for any unbiased likelihood estimator.

3.2 The LF-NS scheme

From here on we assume that the true likelihood l(θ) is not available, but a realization l̂(θ) of the

approximated likelihood having the distribution

l̂(θ) ∼ p(l̂(θ)|θ)

with ∫
l̂(θ)dp(l̂(θ)|θ) = l(θ)

can be computed.

For NS, the constraint prior π(θ|l(θ) > εi) needs to be sampled. Since in the likelihood-free case,

the likelihood l(θ) is not available and l̂(θ) is itself a random variable, the set {θ ∈ Ω|l̂(θ) > εi} (which

is the support of the constrained prior) is not defined. To apply the NS idea to the likelihood-free

case, we propose to perform the NS procedure on the joint prior

Π(θ, l̂(θ)) = π(θ)p(l̂(θ)|θ) (3.10)

on the set Ω × R>0. This joint prior can be sampled by drawing a sample θ? from the prior π(θ)

and then drawing one sample l̂? from the distribution of likelihood approximations p(l̂(θ?)|θ?). With

such a sampling scheme we perform the NS steps of constructing the set of “dead” particles D on

the joint prior 3.10. As in standard NS, we sample a set of N “live” particles {θ, l̂} from Π(θ, l̂(θ)),

then we iteratively remove the particle {θ, l̂} with the lowest likelihood sample l̂ from the set of live

points and add it to the dead points. The LF-NS algorithm is shown in Algorithm 3.

The parallel version of LF-NS is analogous to the parallelization of the standard NS algorithm

in Algorithm 2.
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1: Given observations y, a prior π(θ) for θ and a likelihood approximation p(l̂(θ)|θ).
2: Sample N particles {θk, l̂k} from the prior Π(θ, l̂(θ)) and save it in the set L0, set D = {∅}
3: for i = 1, 2, . . . , m do
4: Find i′ = arg min

k

(
l̂k|{θk, l̂k} ∈ Li−1

)
and set θi = θi

′ and εi = li
′

5: Add {θi, εi} to D
6: Set Li = Li−1\{θi, εi}
7: Sample {θ?, l̂?} ∼ Π(θ, l̂(θ)|l̂(θ) > εi) and add it to Li
8: end for

Algorithm 3: Likelihood-free nested sampling algorithm

3.3 LF-NS is unbiased

As for standard NS, the sampling procedure for LF-NS guarantees that each set of live points Li

containsN samples uniformly distributed according to the constrained joint prior Π(θ, l̂(θ)|l̂(θ) > εi),

thus removing the sample with the lowest likelihood approximation l̂k results in the same shrinkage

of prior volume as the standard NS scheme. The prior volumes xi = t(i)xi−1 now correspond to the

volumes of the constraint joint priors Π(θ, l̂(θ)|l̂(θ) > εi) and the resulting weights wi = x̂i−1 − x̂i

can be used, similarly as in equation 2.2, to integrate functions f over the constrained prior

m∑
i=1

wif(θi, εi) ≈
∫
f(θ, l̂(θ))dΠ(θ, l̂(θ).

Using f(θi, εi) = εi we can use this to approximate the Bayesian Evidence

m∑
i

wiεi ≈
∫
l̂(θ)dΠ(θ, l̂(θ))

=

∫
Ω

∞∫
0

l̂(θ)π(θ)p(l̂(θ)|θ)dl̂(θ)dθ =

∫
Ω

π(θ)

∞∫
0

l̂(θ)p(l̂(θ)|θ)dl̂(θ)dθ =

∫
Ω

l(θ)π(θ)dθ = Z,

where the last equality relies on the unbiasedness of l̂(θ).

While the procedure for LF-NS is very similar to the standard NS algorithm, the new samples

θ? have to be drawn from the constraint joint prior Π(θ, l̂(θ)|l̂(θ) > ε) instead from the constrained

prior π(θ|l(θ) > ε). In the following we discuss the resulting difficulties and show how to overcome
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them.

3.4 Sampling from the super-level sets of the likelihood

One of the main challenges [7, 40, 4] in the classical NS algorithm is the sampling from the prior

constrained to higher likelihood regions π(θ|l(θ) > ε). A lot of effort has been dedicated to find ways

to sample from the constraine prior efficiently, the most popular approaches include slice sampling

[22] and ellipsoid based sampling [16].

In the case of LF-NS, at the ith iteration we are sampling not just a new parameter vector θ?

but also a realization of its likelihood approximation l̂? from

Π(θ, l̂(θ)|l̂(θ) > εi) = π(θ)p(l̂(θ)|θ, l̂(θ) > εi). (3.11)

Since it is in general not possible to sample l̂? from the constraint distribution p(l̂(θ)|θ, l̂(θ) > εi)

directly, we sample θ? from the prior π(θ), then sample l̂? from the unconstrained distribution

p(l̂(θ?)|θ?) and accept the pair (θ?, l̂?) only if l̂? > εi. While this procedure guarantees that the

resulting samples are drawn from 3.11, the acceptance rate might become very low. Each live set

Li consists of N pairs (θk, l̂k) distributed according to 3.11, thus the parameter vectors θk in Li are

distributed according to

θ ∼
∫

Π(θ, l̂(θ)|l̂(θ) > εi)dl̂(θ) = π(θ)p(l̂(θ) > εi). (3.12)

We plotted an example of the distributions 2.4 and 3.12 for the example of the birth-death process

in Figure 2 B. The distribution 3.12 has usually an infinite support, although in practice 3.12 will be

close to zero for large areas of the parameter space Ω. Similarly to NS, we propose to use the set Li

to drawn from the areas where 3.12 is non zero. Slice sampling methods ([1, 22]) are unfortunately

not applicable for LF-NS since they require a way to evaluate its target distribution at each of

its samples. We can still use ellipsoid sampling schemes, but unlike in the case of NS where the

target distribution π(θ|l(θ) > ε) has compact support, the target distribution for LF-NS 3.12 has
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potentially infinite support framing ellipsoid based sampling approaches rather unfitting. Sampling

using MCMC methods (as suggsted in [52]) is expected to work even for target distributions with

infinite support, but suffer from the known MCMC drawbacks, as they produce correlated samples

and might get stuck in disconnected regions.

To account for the smooth shape of 3.12 we propose to employ a density estimation approach. At

each iteration i, we estimate the density π(θ)p(l̂(θ) > εi) from the live points and employ a rejection

sampling approach to sample uniformly from the prior on the domain of this approximation. As

density estimation technique, we use Dirichlet Process Gaussian Mixture Model (DP-GMM) [21],

which approximates the distribution π(θ)p(l̂(θ) > εi) with a mixture of Gaussians. DP-GMM uses a

hierarchical prior on the mixture model and assumes that the mixture components are distributed

according to a Dirichlet Process. The inference of the distribution is an iterative process that uses

Gibbs sampling to infer the number and shape of the Gaussians as well as the parameters and hyper

parameters of the mixture model. DP-GMM estimations perform comparably well with sparse and

high dimensional data and are less sensitive to outliers. Further, since we employ a parallelized LF-

NS scheme, the density estimation has to be performed only after the finish of each parallel iteration,

making the computational effort of density estimations negligible compared to the computational

effort for the likelihood approximation. For a detailed comparison between DP-GMM and kernel

density estimation and a further discussion of DP-GMM see [21], for an illustration of DP-GMM,

KDE and ellipsoid sampler see section S2. Even though for the presented examples we employ

DP-GMM, we note that in theory any sampling scheme that samples uniformly from the prior π(θ)

over the support of π(θ)p(l̂(θ) > εi) will work.

3.5 A lower bound on the estimator variance

Unlike for NS, for LF-NS, even if at each iteration the proposal particle θ? is sampled from the

support of π(θ)p(l̂(θ) > εi), it will only be accepted with probability p(l̂(θ?) > εi). This means that

depending on the variance of the likelihood estimation p(l̂(θ)|θ) and the current likelihood threshold

εi the acceptance rate for LF-NS will change and with it the computational cost. We illustrated this

on the example for the birth-death model above. For each of the 106 samples {ki, l̂i} from Π(k, l̂(k))
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we set εi = li and considered the particles k−i = min(kj : lj ≥ εi) and k+ = max(kj : lj ≥ εi)

(illustrated in Figure 2 B). The particles {kj} in between k−i and k+
i give a numerical approximation

of the support of π(θ)p(l̂(θ) > εi). We denote with S+
i all the pairs {kj, l̂j} with kj between k−i and

k+
i with a likelihood above εi and with S−i the pairs with a likelihood below εi

S+ = {j : lj > εi, k
+
i ≥ kj ≥ k−i } and S− = {j : lj ≤ εi, k

+
i ≥ kj ≥ k−i }

and computed the ratio of the number of their element

α(m) =
|S+
m|

|S−m|+ |S+
m|
.

The values of α(m) give us an idea what the acceptance rate for LF-NS looks like in the best case

where the new particles k? are sampled from the support of π(k)p(l̂(k) > εm). We plotted α(m)

in Figure 2 D as well as the evidence Zm
D =

∫
l̂(k)≤εm l̂(k)Π(k, l̂(k)). We see that α(m) decreases to

almost zero as Zm
D approaches Z. The shape of αm will in general be dependent on the variance

of the likelihood approximation l̂(θ). For a further discussion on the acceptance rate for different

particle filter settings see section S3.

Due to this possible increase in computational time, it is important to terminate the LF-NS

algorithm as soon as possible. We propose to use for the Bayesian evidence estimation not only the

dead particles D, but also the current live points Lm. This possibility has been already mentioned

in other places (for instance in [8, 24, 30]) but is usually not applied, since the contribution of the

live particles decreases exponentially with the number of iterations.4 Since for standard NS each

iteration is expected to take the same amount of time, most approaches simply increase the number

of iterations to make the contribution of the live particles negligibly small.
4We point out that while in classical nested sampling the contribution of the live points can indeed be made

arbitrarily small, the resulting estimator (employing only the dead points) is strictly speaking not unbiased since it
approximates the Bayesian evidence not over the full prior volume but only up to the final xm, which is the quantity
Zm
L in equation 3.13
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The Bayesian evidence can be decomposed as

Z =

xm∫
0

L(x)dx

︸ ︷︷ ︸
=:ZmL

+

1∫
xm

L(x)dx

︸ ︷︷ ︸
=:ZmD

(3.13)

where xm is the prior volume for iteration m. The first integral Zm
L is the part that can be approx-

imated through the N live samples at any given iteration, while the integral Zm
D is approximated

through the dead samples. Writing

Lm :=
1

N

∑
{θ,l̂}∈Lm

l̂ ≈
∫
l̂(θ)dΠ(θ, l̂(θ)|l̂(θ) > εm)

for the estimator of the integral of the likelihoods in the live set, we propose the following estimator

for Z

Ẑm
tot =

m∑
i=1

εiwi︸ ︷︷ ︸
=ẐmD≈Z

m
D

+ x̂mLm︸ ︷︷ ︸
=ẐmL ≈Z

m
L

, (3.14)

where Ẑm
D approximates the finite sum Z̃m

D =
m∑
i=1

εi(xi−1 − xi) by replacing the random variables xi

with their means x̂i. Since x̂mLm is an unbiased estimator of Zm
L and Ẑm

D is an unbiased estimator of

Zm
D , the estimator Ẑm

tot is an unbiased estimator of the Bayesian evidence Z for any m. In particular,

this implies that terminating the LF-NS algorithm at any iteration m will result in an unbiased

estimate for Z. However, terminating the LF-NS algorithm early on will still result in a very high

variance of the estimator. Since the error of replacing the integral Z with the finite sum Z̃m
D is

negligible compared to the error resulting from replacing xi with x̂i (see [13] or [8]), this variance is

a result of the variances in xi and the variance in the Monte Carlo estimate Lm.5 In the following

we formulate a lower bound σ2m
min on the estimator variance σ2m

tot = Var
(
Z̃m
D + Ẑm

L

)
at iteration m,

show that this lower bound is monotonically increasing in m and propose to terminate the LF-NS
5As pointed out in [24], when using nested sampling approximations to approximate the integral of arbitrary

functions f over the posterior, an additional error is introduced by approximating the average value of f(θ) on the
contour line of l(θ) = εi with the value f(θi).
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algorithm as soon as the current estimator variance differs from this lower bound by no more than

a predefined threshold δ.

Treating the prior volumes xi and the Monte Carlo estimate Lm as random variables, the variance

σ2m
tot of the NS estimator at iteration m can be estimated at each iteration without additional

computational effort (see section S4 and [30]). This variance depends on the variance of the Monte

Carlo estimate Lm and is monotonically increasing in Var
(
Lm
)
(see section S5). We define the

term σ2m
min which is the same variance Var

(
Z̃m
D + Ẑm

L

)
but under the additional assumption that the

Monte Carlo estimate has variance 0: Var
(
Lm
)

= 0. Clearly we have for any m (see section S5)

σ2m
tot ≥ σ2m

min.

More importantly, as we show in section S5.2, σ2m
min is monotonically increasing in m

σ2m′

min ≥ σ2m
min, ∀m′ ≥ m.

This allows us to bound the lowest achievable estimator variance σ2
min = sup

m→∞
σ2m
min from below

σ2
min ≥ σ2m

min.

The terms for σ2m
tot and σ2m

min both contain the unknown value Lm which can be approximated using

its Monte Carlo estimate Lm giving us the estimations of the above variances σ̂2m
tot and σ̂2m

min. We use

these variance estimates to formulate a termination criteria by defining

∆m
LFNS :=

√
σ̂2m
tot −

√
σ̂2m
min

Ẑm
tot

and terminate the algorithm as soon as ∆m
LFNS < δ for some predefined δ. This termination criteria

seems intuitive since it terminates the LF-NS algorithm as soon as a continuation of the algorithm

is not expected to make the final estimator significantly more accurate. As a final remark we note

that the final estimator Ẑm
tot as well as the termination criteria using ∆m

LFNS can of course also be
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A B C DPosterior estimation Variance estimate Error estimateBE estimate

Figure 3: A: Histogram of the posterior P(k) estimate obtained with LF-NS using N = 100 and H = 100. The true posterior is indicated
in black. B: Development of the estimation of the Bayesian evidence using the estimation based solely on the dead points ẐD, the estimate
approximation from the live points ẐL and the estimation based on both Ẑtot. The corresponding standard errors are indicated as the shaded
areas. The true Bayesian evidence is indicated with the dashed red line. C: Estimate of the current variance estimate σ̂2m

tot and the lower bounds
for the lowest achievable variance σ̂2

min. D: Developments of the different error estimations for each iteration.

applied in the standard NS case.

4 Examples

We test our proposed LF-NS algorithm on three examples for stochastic reaction kinetic models.

The first example is the birth death model, already introduced in section 3.1, the second example is

the Lac-Gfp model used for benchmarking in [32] and the third example is a transcriptional model

from [48] with corresponding real data. In the following examples all priors are chosen as uniform

or log-uniform in the bounds indicated in the posterior plots.

4.1 The stochastic birth-death Model

We first revisit the example of section 3.1 to compare our inference results to the solution obtained

by FSP. We use the same data as in section 3.1 and use the same log-uniform prior. We run our

LF-NS algorithm as described above using DP-GMM for the sampling. We used N = 100 LF-NS

particles, H = 100 particle filter particles and sample at each iteration r = 10 particles. We ran

the LF-NS algorithm until ∆m
LFNS is smaller than 0.001. We show the obtained posterior in Figure

3 A. Figure 3 B shows the obtained estimates of the Bayesian evidence, where the shaded areas
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indicate the standard error at each iteration. The dashed red line indicates the true BE computed

from 106 samples from Π(θ, l̂(θ)). The estimates of the lower σ̂2m
min and upper bound σ̂2m

tot for the

lowest achievable estimator variance σ2
min are shown in Figure 3 C and we can clearly see how they

converge to the same value. For our termination criteria we show the quantities ∆m
max and ∆m

LFNS

in Figure 3 D.

4.2 The Lac-Gfp model

We demonstrate how our algorithm deals with a realistic sized stochastic model, by inferring the

posterior for the parameters of the Lac-Gfp model illustrated in Figure 4 A. This model has been

already used in [32] as a benchmark, although with distribution-data. Here we use the model to

simulate a number of trajectories and illustrate how our approach infers the posterior of the used

parameters. This model is particularly challenging in two aspects. First, the number of parameters

is 18, making it a fairly large model to infer. Secondly, the model exhibits switch-like behaviour

which makes it very hard to approximate the likelihood of such a switching trajectory (see section

S6.2 and particularly Figure S 3 for further details). We used N = 500 LF-NS particles, H = 500

particle filter particles and sample at each iteration r = 50 particles.

The measured species in this example is fluorescent Gfp (mGFP) where it is assumed that each

Gfp-molecule emits fluorescence according to a normal distribution. We used one trajectory to infer

the posterior, whose marginals are shown in Figure 4 E. The solid blue lines indicate the parameters

used to simulate the data. Figure 4 B shows the estimated Bayesian evidence with corresponding

standard errors for each iteration. Figure 4 D shows the corresponding estimations of the bounds of

the lowest achievable variance. As we see, the estimated Bayesian evidence, as well as the estimated

variance bounds, do several jumps in the process of the LF-NS run. These jumps correspond to

iterations in which previously unsampled areas of the parameter space got sampled with a new

maximal likelihood. In Figure 4 C we plotted the acceptance rate of the LF-NS algorithm for each

iteration as well as the cumulative computational time6. The inference for this model took well over

12 hours and as we see, the computational time for each iteration seems to increases exponentially,
6The computation was performed on 48 cores of the Euler cluster of the ETH Zurich.
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Figure 4: A: Schematic of the Lac-Gfp Model where the final measurement is the mature GFP (mGFP) and the input is IPTG (assumed to
be constant 10µM). B: Development of the estimation of the Bayesian evidence using the estimation based solely on the dead points ẐD, the
estimate approximation from the live points ẐL and the estimation that uses both Ẑtot. The corresponding standard errors are indicated as
the shaded areas. C: The acceptance rate of the LF-NS algorithm for each iteration (blue) and the cumulative time needed for each iteration
in hours (red). The computation was performed on 48 cores in parallel on the Euler cluster of the ETH Zurich. D: Estimate of the current
variance estimate σ̂2m

tot and the lower bounds for the lowest achievable variance σ̂2
min. E: Marginals of the inferred posterior distributions of the

parameters based on one simulated trajectory. The blue lines indicate the parameters used for the simulation of the data.
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as the acceptance rate decreases. The low acceptance rate is expected, since the number of particle

filter particles H = 500 results in a very high variance of the particle filter estimate (see Figure S3

B). Clearly, for this example, the early termination of LF-NS is essential to obtain a solution within

a reasonable time.

4.3 A stochastic transcription model

As a third example we use a transcription model recently used in [48], where an optogenetically

inducible transcription system is used to obtain live readouts of nascent RNA counts. The model

consists of a gene that can take two configurations “on” and “off”. In the “on” configuration mRNA

is transcribed from this gene and can be individually measured during this transcription process (see

[48] for details). We modelled the transcription through n = 8 subsequent RNA species that change

from one to the next at a rate λ. This is done to account for the observed time of 2 minutes that

one transcription event takes. With such a parametrization the mean time to move from species

RNA1 to the degradation of RNAn is n
λ
. An illustration of the model is shown in Figure 5 A. For the

inference of the model parameters we chose five trajectories of real biological data, shown in Figure

5 C. Clearly, the system is inherently stochastic and requires corresponding inference methods. We

ran the LF-NS algorithm for N = 500 and H = 500 on these five example trajectories. The resulting

marginal posteriors are shown in Figure 5 B, we also indicated the model ranges considered in [48].

These ranges were chosen in [48] in an ad-hoc manner but, apart from the values for koff seem to fit

very well with our inferred results. In Figure 5 D and E we show the development of the evidence

approximation as well as the corresponding standard errors and the development of the upper and

lower bound estimation for the lowest achievable variance σ2
min. Similarly to the Lac-Gfp example,

we see that the development of the BE estimate is governed by random spikes which again are due

to the sampling of particles with a new highest likelihood.
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Figure 5: A: A schematic representation of the gene expression model. The model consists of a gene that switches between an “on” and an
“off” state with rates kon and koff. When “on” the gene is getting transcribed at rate kr. The transcription process is modelled through n RNA
species that sequentially transform from one to the next at rate λ. The observed species are all of the intermediate RNAi species. B: The
marginal posterior distribution of the parameters of the system. The shaded areas indicate the parameter ranges that were considered in [48]. C:
The five trajectories used for the parameter inference. D: Development of the estimation of the Bayesian evidence using the estimation based
solely on the dead points ẐD, the estimate approximation from the live points ẐL and the estimation that uses both Ẑtot. The corresponding
standard errors are indicated as the shaded areas. E: Estimate of the current variance estimate σ̂2m

tot and the lower bounds for the lowest
achievable variance σ̂2

min.
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5 Discussion

We have introduced a likelihood-free formulation of the well known nested sampling algorithm and

have shown that it is unbiased for any unbiased likelihood estimator. While the utilization of NS

for systems without an available likelihood is straight forward, one has to take precautions to avoid

infeasibly high computational times. Unlike for standard NS it is crucial to include the estimation

of the live samples to the final BE estimation as well as terminate the algorithm as soon as possible.

We have shown how using a Monte Carlo estimate over the live points not only results in an unbiased

estimator of the Bayesian evidence Z, but also allows us to derive a formulation for a lower bound on

the achievable variance in each iteration. This lower bound at each iteration has been shown to be

a lower bound for the best achievable variance and has allowed us to formulate a novel termination

criterion that stops the algorithm as soon as a continuation can at best result in an insignificant

improvement in accuracy. While the formulation of the variances and its lower bound were derived

having a parallel LF-NS scheme in mind, they can equally well be used in the standard NS case and

can be added effortlessly to already available toolboxes such as [14] or [22]. We emphasize that the

lower variance bound approximation σ̂2m
min is neither a strict error term, as it only gives information

of the variance of the estimator, nor a strict lower bound of the estimator variance since it contains

the unknown term Lm. Instead, it gives an estimate of the lowest achievable estimator variance that

depends on the Monte Carlo estimate of the likelihood average over the live points Lm. This can be

seen Figure 4 D and Figure 5 E, where the lower bound estimate σ̂2m
min does not only make jumps, but

also decreases after each jump (the actual lower bound estimate σ2m
min is monotonically increasing in

m as shown in section S5.2). Our suggested LF-NS scheme has three different parameters that govern

the algorithm behaviour. The number of LF-NS particlesN determines how low the minimal variance

of the estimator can get, where low values for N result in a rather high variance and high values

for N result in a lower variance. The number of particles for the particle filter H determines how

wide or narrow the likelihood estimation is and thus determines the development of the acceptance

rate of the LF-NS run, while the number of LF-NS iterations determines how close the variance of

the final estimate comes to the minimal variance. We have demonstrated the applicability of our
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method on several models with simulated as well as real biological data. Our LF-NS can, similarly

to ABC, pMCMC or SMC models deal with stochastic models with intractable likelihoods and has

all of the advantages of classic NS. We believe that particularly the variance estimation that can be

performed from a single LF-NS run proves to be useful as well as the straight forward parallelization.
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