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Abstract 
 
Haplotypes defined by rs7041/rs4588 in GC gene modulate 25-hydroxyvitamin D (25(OH)D)           
and vitamin D-binding protein (DBP) levels. To investigate the distributions of GC            
polymorphisms, the rs7041 and rs4588 allele and haplotypes frequencies were analyzed in            
samples from different Eurasian regions. The GC1S haplotype associated with high level of             
serum 25(OH)D had the maximum frequency in European populations (except Finish           
population). Such frequency distributions may be a result of adaptation to low solar insolation              
rate. Besides, there was a strong trend of increasing GC1F haplotype frequency from Europe              
(10-15%) to Siberia and Easter Asia (40-45%).  
 
INTRODUCTION 
 

Vitamin D deficiency is associated with negative health outcomes including          
cardiovascular disease (Skaaby, Thuesen, and Linneberg 2017), skeletal disorders (Wacker          
and Holick 2013) and type 2 diabetes mellitus (Harinarayan n.d.). After its synthesis in skin or                
absorption from dietary sources, vitamin D converts to 25-hydroxyvitamin D (25(OH)D). Serum            
total 25(OH)D is composed of three main metabolites: vitamin D-binding protein (DBP) bound             
form (85–90%), serum albumin bound form (10–15%) and free, unbound form (0.03%) (Bikle,             
Malmstroem, and Schwartz 2017) vitamin D status depends on the level of total 25(OH)D that is                
used to define vitamin D sufficiency.  

DBP encoded by GC gene inhibits some actions of vitamin D, because the bound              
fraction may be unavailable to act on target cells (Safadi FF n.d.). Twin studies established that                
mature serum DBP concentration has a significant heritable component (62%) (Hunter D n.d.).             
Genetic variation in GC gene are shown to be associated with 25(OH)D levels (Wang et al.                
2010). Recently, the racial difference was shown in DBP levels. Lower levels of DBP were               
shown in blacks compared to whites, although both groups had similar concentrations of             
estimated bioavailable 25(OH)D (Yousefzadeh, Shapses, and Wang 2014). However, the latest           
studies contradicted this racial difference and explained it by methodological faults (Nielson et             
al. 2016). It is still unclear whether DBP concentration relates to 25(OH)D level. Previous              
studies found no correlation between DBP and 25(OH)D levels (Bouillon R n.d.)(Winters SJ             
n.d.)(Blanton et al. 2011). The latest study revealed that high DBP level leads to low 25(OH)D                
level (Oleröd et al. 2017).  

Two SNPs, rs7041 and rs4588, in GC gene form three haplotypes, namely GC1F,             
GC1S, and GC2, where GC1F = rs7041(A) and rs4588(G), GC1S = rs7041(C) and rs4588(G)              
and GC2 = rs7041(A) and rs4588(T). The combination of rs7041(C) and rs4588(T) does not              
exist in humans. The haplotypes were shown to have additive effects on DBP concentrations              
(Powe et al. 2013) and presumably on affinities between DBP and 25(OH)D (Arnaud and              
Constans 1993)(Chun et al. 2014). However, contrary results have been published that describe             
no association between SNPs and affinities between DBP and 25(OH)D (Boutin, Galbraith, and             
Arnaud 1989; R. Bouillon et al. 1984).  

Blacks and Asians are more likely to carry GC1F haplotype, which is associated with low               
DBP levels and has the highest affinity for 25(OH)D. Whites are more likely to carry GC1S                
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haplotype. The GC2 haplotype, which is associated with lower DBP levels and has a lower               
affinity for 25(OH)D, is frequently found in whites and rarely found in blacks (Chun RF n.d.;                
Powe CE n.d.). 

Previous study found no differences in 25(OH)D values for children and adolescents,            
adults and elderly (Hilger et al. 2014), except for Asia/Pacific region where low 25(OH)D values               
found for Chinese children and adolescents. Also there were no significant sex-related            
differences in 25(OH)D before examining the data by region. Taking into account these data, we               
suggest that geographical region and GC polymorphisms are the main factors of population total              
25(OH)D level difference. 

We conducted a study to determine vitamin D–binding protein genotypes and haplotypes            
associated with vitamin D level in different populations.  
 
MATERIALS AND METHODS 
 
Data collection 

The global rs7041 and rs4588 allele frequencies were drawn using GnomAD database            
(Lek et al. 2016). The rs7041 allele frequencies in different ethnic group were obtained from               
Alfred database (Rajeevan et al. 2012).  

To investigate population differences in SNP frequencies in Eurasian populations, the           
genome data of Genotek Ltd. customers were analyzed. Totally, 4118 samples were studied             
with an average age of 33.3 ± 15.7. The group includes 46% female samples. All ethical                
requirements were covered by providing with informed consent of participants. Data used in our              
analysis were collected prior to February, 2018. 
 
Genotyping 

Genotek Ltd. samples were drawn from the DNA biobank of Genotek Ltd., a             
direct-to-consumer genetics company. All samples were genotyped using customized         
Illumina InfiniumCoreExome 24 v1.1 beadchip with 550,000 standard plus 12,000 add-on SNPs            
and Illumina Global Screening Array v.1 and v.2.  
 
Statistical analysis  

Imputing and phasing. Haplotypes were derived based on phasing using Beagle 5            
(“Beagle 5.0” n.d.) with HRC panel (“The Haplotype Reference Consortium” n.d.) as the             
reference. Beagle 5 also was used for rs4588 imputation due to its absence on Illumina Global                
Screening Array. 

Population inference. Ancestry was predicted using ADMIXTURE Version 1.3.0 in          
predictive mode (Alexander, Novembre, and Lange 2009). The samples from Behar et al. study              
(Behar et al. 2013) was used as original populations after exclusion of non-Ashkenazi jews.              
Each sample was assigned a population with maximal percent, but only if it was more than 50%.  
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RESULTS 
 

The global rs7041 and rs4588 allele frequencies are present in Table 1. The rs4588 (T)               
allele associated with increased levels of vitamin D–binding protein and decreased levels of             
total 25(OH)D in whites had the lowest frequency in African population. In whites, the lowest               
frequencies were observed in Finnish and Latino populations. The highest frequencies were            
shown for South Asian and Ashkenazi Jewish.  

In contrast, rs7041 (A) allele associated with lower DBP levels and decreased levels of              
total 25(OH)D among blacks had the highest frequencies in Africans. In whites, the highest              
frequency was observed in Finnish population. Thus in African and Finnish populations, there             
were the highest frequencies of alleles associated with low DBP level. 
 
Table 1 
Global rs4588 and rs7041 allele frequencies 
 

Geographic 
region 

Sample size (n) Allele 
Frequencies 

Allele 
Frequencies 

rs4588 (G/T) rs7041 (A/C) rs4588-T rs7041-A 

European 
(non-Finnish) 

64540 64539 0.282 0.429 

European 
(Finnish) 

12556 9964 0.201 0.713 

Ashkenazi 
Jewish 

5185 5185 0.286 0.403 

East Asian 9970 3607 0.271 0.446 

South Asian 15287 12557 0.298 0.326 

Latino 17663 17662 0.208 0.492 

African 12474 12475 0.099 0.842 

Other 3609 15292 0.262 0.449 

Total 141284 141281 0.25 0.486 

 
To investigate allele frequency diversity within large geographical regions, the rs7041           

allele frequencies were compared between different populations (Figure 1). 
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Thereafter, the mean 25(OH)D level was obtained in various genotypes for different            
population (STable 1).  

The allele and haplotype frequencies of rs7041 and rs4588 were estimated in a sample              
of 4118 Genotek Ltd customers. The obtained haplotype frequencies are present in Table 2 . A               
maximum frequency was shown for haplotype GC1S associated with high level of serum             
25(OH)D. The lowest frequency was observed for GC1F associated with lower level of serum              
25(OH)D comparing with GC1S haplotype.  
 
Table 2. Haplotype frequencies in Genotek biobank samples. 

 

Haplotype Alleles Frequency, % 

GC1S rs7041(C)-rs4588(G) 56.4 

GC2 rs7041(A)-rs4588(T) 29.9 

GC1F rs7041(A)-rs4588(G) 13.7 

 rs7041(C)-rs4588(T) 0 

  
To investigate haplotypes distribution in Genotek Ltd samples divided in different           

populations, population origins were defined for 4118 DNA samples of Genotek Ltd biobank.             
Major part of samples had East Europe origin. Totally, nine clusters were defined in the sample                
set. The rs4588(T) and rs7041(A) allele frequencies are present on SFigure 1 and SFigure 2 ,               
respectively. 

The haplotype GC1F has low frequencies in all populations, except East Asian and             
Siberia (SFigure 3). Haplotype frequencies for GC1S are present on Figure 2 . GC1S             
haplotype was the most frequent in all populations except East Asians and Siberia, where this               
haplotype had the lowest frequencies. Also there was a slight trend of increasing haplotype              
frequency from  north to south. 

The highest GC2 frequency was shown for East Europe population. There were two             
trends of decreasing haplotype frequency, although the gradient was lower comparing with            
those of GC1F and GC1S. The GC2 frequency was lower for east populations (Siberia and East                
Asia). The second consists of decreasing haplotype frequency from north to south. There also              
was a difference in frequencies between Caucasus populations. North Caucasus population had            
a higher GC2 frequency comparing to South Caucasus population. Jewish population had the             
lowest GC2 frequency. 
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Figure 1. The rs7041 allele frequencies in different populations 
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Figure 2. The GC1S haplotype frequencies in different Eurasian populations. 
 
 

 
Figure 3. The GC2 haplotype frequencies in different Eurasian populations. 
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DISCUSSION 
 

Globally, there were maximum rs7041(A) allele frequency in African region. The Finnish            
population ranked second in rs7041(A) allele frequency. Recently, it was shown that blacks had              
the higher total 25(OH)D level comparing whites and Asians. At the same time, Finnish              
population had lower total 25(OH)D level comparing with most other European populations            
(Hilger et al. 2014). In Finns, the high frequency of rs7041(A) allele may be the consequences                
of a population bottlenecks resulting from consecutive founder effects (Chheda et al. 2017). In              
spite of rs7041 association with total 25(OH)D level in blacks, we suggest that genetic factors               
have minor influence on total 25(OH)D level in blacks.  

Previous reviews (van Schoor and Lips 2011)(Lips 2007) reported a north-south gradient            
for 25(OH)D level in Europe, with Scandinavian countries showing generally higher values than             
European and Southern countries. We found no critical differences in rs7041(A) allele frequency             
in European populations except Finnish population. Probable these gradient is explained by            
non-genetic factors such as differences in skin pigmentation, diets rich in oily fish and low-fat               
milk, the common use of cod-liver oil and a higher degree of vitamin D supplementation in                
Scandinavian countries (Hagenau et al. 2009).  

The GC1F haplotype had the lowest frequency in Genotek Ltd samples. However it was              
the most frequent in East Asia and Siberia population. Previously, it was shown that GC1F               
haplotype is the ancestral form of the gene (Advances in Forensic Haemogenetics 1994). This              
haplotype probably leads to the highest DBP affinity and lowest bioavailable 25(OH)D            
comparing with other haplotypes, what seems to be profitable in regions with high solar              
insolation rate. 25(OH)D bound form is inactive and perhaps could be a kind of storage of                
25(OH)D overload (R. Bouillon and Van Baelen 1980).  

The GC1S haplotype had the highest frequency in Genotek Ltd samples, except            
samples of East Asian and Siberia origin. Our results correspond to previous studies             
demonstrating dependence of GC1S frequency on the distance from the equator (Roger            
Bouillon 2017). GC1S variant occured at highest frequency at high latitudes. Vitamin D amount              
synthesized in skin is lower at high latitudes due to lower solar insolation rate. This haplotype is                 
associated with lower DBP affinity comparing with GC1F and the highest levels of both total and                
bioavailable 25(OH)D comparing with other haplotypes (Yao et al. 2017), what seems to be              
adaptive factor to low vitamin D synthesis rate. Solar insolation rate is higher in Siberia and East                 
Asia comparing with Europe, what seems to be a possible explanation of especial low GC1S               
level in these populations. 

The frequency of GC2 haplotype was 29.9% in Genotek Ltd samples. The GC2             
frequency variance was lower for different populations. This haplotype is associated with lowest             
DBP affinity comparing with other haplotypes and higher level of bioavailable 25(OH)D            
comparing with GC1F (Yao et al. 2017; Braithwaite et al. 2015), what could benefit in case of                 
lower solar insolation rate.  

Our study has several limitations. Not all populations living in Russia has been included              
in study. It is possible that small populations have different haplotype frequencies than large              
population groups. Research participants were drawn from customers of genetic company, what            
potentially could influence on sampling representativeness.  
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Supplementary 

Table 1. Mean 25(OH)Vitamin D Level (nmol/L) in the Various Genotypes obtained in different              
populations. 

Population 
Number of 
patients Sex 

GC 
1s/1s 

GC 
1f/1f 

GC 
2/2 

Norway (Jorde et al. 2015) 11704 both 55.4 52.2 46.9 

Denmark (Fang et al. 2009) 538 both 65.8 58.5 64.9 

French (Sinotte et al. 2009) 727 female 67.5 -- 58.4 

Belgian (Janssens et al. 2010) 150 both 65.75 -- 51.5 

Chineese (Zhang et al. 2013) 2897 both 50.75 -- 42.25 

Finland (Pekkinen et al. 2014) 160 girls -- -- 38.5 

Finland (Pekkinen et al. 2014) 73 boys -- -- 45.3 

Jordanian (Lafi et al. 2015) 200 both 90.25 -- 31 

Mean   65.9 55.35 47.3 
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Figure 1. The rs4588(T) allele frequencies in different Eurasian populations. There were trends             
of decreasing allele frequency from west to east and from north to south. The highest T-allele                
frequency was observed in samples with east Europe origin. Lower T-allele frequency was             
shown for East Asia and Siberia populations. There was some difference of frequencies             
between Caucasus populations. North Caucasus population had a higher T-allele frequency           
comparing to South Caucasus population. Jewish population had low T-allele frequency. 
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Figure 2. The rs7041(A) allele frequencies in different Eurasian populations. There was a trend              
of decreasing A-allele frequency from east to west and from north to south. Siberian and East                
Asian populations had the highest A-allele frequencies. There also was a difference of             
frequencies between Caucasus populations. North Caucasus population had a higher T-allele           
frequency comparing to South Caucasus population. Jewish population had the lowest T-allele            
frequency. 
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Figure 3. The GC1F haplotype frequencies in different Eurasian populations. European,           
Caucasus and Jewish populations had similar low frequencies. Siberian and East Asian            
populations had the highest A-allele frequencies. 
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