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Introductory paragraph 
	

Cells	 are	 known	 to	 be	 able	 to	 adapt	 to	 changing	 environments.	 In	 the	 classical	 neo-Darwinian	
picture,	 random	genetic	mutations	 cause	phenotypic	 variations,	 enabling	 adaptation	 to	 the	new	
environment.	 In	 addition,	 non-genetic	 pathways	 are	 increasingly	 believed	 to	 play	 an	 important	
role	 in	 rapid	 adaptation,	 notably	 in	 the	 emergence	 of	 drug	 resistance1-7.	 However,	 the	 coupling	
between	metabolism	and	adaptation	has	never	been	addressed	at	 the	 single-cell	 level.	Here	we	
show	that	following	a	severe,	unforeseen	challenge,	yeast	cells	display	a	wide	range	of	metabolic	
rates,	and	can	adapt	 rapidly,	with	the	rate	of	adaptation	being	controlled	by	the	metabolic	 rate.	
We	simultaneously	measured	metabolism	and	division	of	thousands	of	 individual	Saccharomyces	
cerevisiae	cells,	using	a	droplet-based	microfluidic	system8.	Remarkably,	the	majority	(~88%)	of	the	
cells,	 while	 not	 dividing,	 nevertheless	 displayed	 a	metabolic	 response	 with	 a	 wider	 diversity	 of	
metabolic	 rates	 (CV=0.60)	 than	 unchallenged	 cells	 (CV=0.24).	 Over	 the	 course	 of	 the	 70	 h	
experiment,	 a	 sizeable	 fraction	 of	 cells	 (53%)	 switched	 state	 either	 by	 accelerating	 their	
metabolism	(4%,	metabolic	recovery)	or	arresting	it	(49%).	The	time	of	acceleration	was	inversely	
proportional	 to	 the	 initial	 metabolic	 rate	 and	 a	 large	 fraction	 (73%)	 of	 these	 recovering	 cells	
resumed	division,	 on	 average	 at	 the	 same	 time	 they	 accelerate	 their	metabolism.	 This	 indicates	
that	 adaptation	 is	 an	 active	 process,	 requiring	 the	 consumption	 of	 a	 characteristic	 amount	 of	
energy.	 The	 adaptation	 rate	 (10-3cells/h)	 is	 orders	 of	magnitude	 higher	 than	 expected	 based	 on	
known	 mutation	 rates,	 suggesting	 an	 epigenetic	 origin.	 The	 demonstration	 that	 metabolic	
trajectories	 predict	 a	 priori	 adaptation	 events	 offers	 the	 first	 evidence	 of	 the	 tight	 energetic	
coupling	 between	 the	metabolic	 and	 regulatory	 processes	 in	 adaptation.	 This	 process	 allows	 S.	
cerevisiae	to	adapt	on	a	physiological	time	scale,	but	related	phenomena	may	also	be	important	in	
other	 processes,	 such	 as	 cellular	 differentiation,	 cellular	 reprogramming	 and	 the	 emergence	 of	
drug	resistance	in	cancer.		
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Text 

To	investigate	adaptation	of	the	yeast	S.	cerevisiae	confronted	with	a	severe	environmental	
challenge,	 we	 genetically	 “rewired”	 cells	 by	 detaching	 the	 essential	 HIS3	 gene	 of	 the	 histidine	
biosynthesis	system	from	its	native	regulatory	system	and	placed	it	under	the	exclusive	regulation	of	
the	 GAL	 system	 responsible	 for	 galactose	 metabolism9.	 The	 GAL	 system	 is	 highly	 induced	 in	 the	
presence	of	galactose	and	strongly	repressed	in	glucose.	Switching	cells	from	galactose	to	glucose	in	
a	medium	lacking	histidine	presents	the	yeast	with	the	challenge	of	reinitiating	histidine	synthesis	in	
order	 to	 resume	 growth	 and	 prevent	 extinction.	 The	 population	 dynamics	 of	 this	 system	 have	
previously	 been	 studied	 in	 detail	 by	 Braun	 and	 coworkers9-15.	 After	 switching	 to	 glucose,	 growth	
continues	 for	 ~1	 day	 (Phase	 I)	 then,	 after	 a	 few	 days	 with	 little	 or	 no	 growth	 (Phase	 II),	 normal	
growth	is	resumed	at	the	population	level	(Phase	III)	with	a	doubling	time	similar	to	that	before	the	
challenge,	indicating	that	after	only	a	few	days	the	population	is	fully	adapted	(Fig.	1).		

To	track	adaptation	at	the	single-cell	level,	we	used	a	droplet-based	microfluidics	system	that	
allows	simultaneous	measurements	of	growth	and	metabolism	of	a	large	number	(several	thousands)	
of	single	yeast	cells	over	time8.	Individual	cells,	harvested	from	batch	cultures	3	h	after	the	beginning	
of	Phase	II	(Fig.	1;	green	triangle),	were	compartmentalized	in	30	pL	droplets	and	incubated	at	30°C	
in	a	closed	glass	observation	chamber	for	65	to	70	h	(Fig.	2a).	The	concentration	of	cells	was	set	so	
that	only	a	small	fraction	of	the	droplets	contains	single	cells	(typically	6%),	and	these	are	surrounded	
by	 empty	 droplets.	 The	 consumption	 of	 nutrients	 (glucose)	 in	 a	 cell-containing	 droplet	 creates	 an	
osmotic	imbalance,	resulting	in	an	osmotically	driven	water	flux,	which	induces	the	shrinkage	of	this	
droplet	 and	 the	 swelling	 of	 neighboring	 cell-free	 droplets	 (Supplementary	 Video	 1).	 For	 each	
experiment,	 images	were	 taken	 every	 20	 or	 30	minutes	 during	 3	 days	 and	 used	 to	 determine	 the	
change	 in	 volume	 of	 each	 droplet	 as	 a	 function	 of	 time,	 reflecting	 cell	 metabolism,	 while	
simultaneously	imaging	the	cells	themselves	to	measure	their	division	(Methods).	Three	independent	
batch	cultures	were	analyzed	(Methods);	however,	hereafter,	only	the	consolidated	data	from	these	
three	 independent	experiments	 is	plotted	and	analyzed	 (see	Supplementary	Table	1	 for	analysis	of	
individual	experiments).		

Metabolic	 activity	 was	 detectable	 for	 88%	 of	 cells	 (final	 droplet	 volume	 <0.95	 of	 initial	
volume,	 see	 Methods,	 Extended	 Data	 Fig.	 1).	 The	 volume	 variation	 of	 droplets	 containing	 cells	
displaying	metabolic	activity	is	plotted	for	both	the	control	experiment,	with	histidine	in	the	medium	
(Fig.	2b),	and	the	adaptation	experiment,	in	the	absence	of	histidine	(Fig.	2c).	Cells	in	medium	lacking	
histidine	 showed	 remarkably	 diverse	 metabolic	 trajectories	 (CV	 =	 0.60	 at	 10	 hours),	 while	 in	 the	
presence	of	histidine	the	diversity	of	the	metabolic	trajectories	was	more	restricted	(CV	=	0.24	at	10	
hours,	 Extended	Data	 Fig.	 2)	 and	 similar	 to	wild-type	 yeast8.	 Consistent	with	 these	 results,	 earlier	
studies	in	bulk	showed	a	wide	diversity	of	gene	expression	profiles	in	cells	from	Phase	II12.		

Quantitative	 analysis	 of	 the	 change	 of	 single	 droplet	 volumes	 over	 time	 (Extended	 Data	
Figures	 1-5)	 demonstrated	 two	 important	 switching	 events	 within	 the	 population	 of	 metabolizing	
cells	(Fig.	2d):	(i)	“metabolic	arrests”	in	which	the	volume	curve	flattened	before	nutrient	exhaustion	
and	 (ii)	 “metabolic	 recoveries”	 in	which	 the	 shrinkage	 rate	 increased	 to	 a	 similar	 level	 as	 for	 cells	
under	non-stressed	conditions	(in	the	presence	of	histidine).	Cells	which	fall	in	neither	of	these	two	
categories	 are	 termed	 “steady	 metabolisms”.	 The	 time	 of	 metabolic	 arrest	 (Tarr)	 and	 time	 of	
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metabolic	 recovery	 (Trec)	were	 determined	 as	 respectively	 the	minimum	 and	 the	maximum	of	 the	
second	derivative	of	the	drop-shrinkage	curves	(arrowheads	in	Fig.	2d,	Methods).		

The	population	of	metabolically	arrested	cells	was	characterized	by	a	final	volume	plateau,	at	
a	 value	 larger	 than	 the	 final	 volume	 of	 cells	 grown	 with	 histidine	 (Fig.	 2e,f).	 In	 the	 presence	 of	
histidine,	 an	 abrupt	 decrease	 in	 metabolic	 rate	 was	 reached	 when	 glucose	 in	 the	 droplet	 was	
exhausted	by	 the	 cells8,	 corresponding	 to	 a	mean	 final	 droplet	 volume	of	 0.49±0.002	of	 the	 initial	
value,	and	always	<0.55	of	the	initial	value	(Fig.	2e,	red).	In	contrast,	in	the	adaptation	experiment	in	
the	 absence	 of	 histidine	 (Fig.	 2e,	 blue),	 54%	 of	 cells	 had	 a	 final	 volume	 >0.55	 of	 the	 initial	 value,	
indicating	 that	 they	 had	 not	 consumed	 all	 the	 glucose	 in	 the	 droplet.	 These	 cells	 fall	 into	 two	
categories.	In	the	first	category	are	cells	(49%)	that	arrested	their	metabolism	during	the	experiment	
(Fig.	2f),	as	they	were	initially	metabolically	active	and	showed	an	abrupt	metabolic	deceleration	and	
a	stable	volume,	indicating	that	the	cells	were	not	metabolically	active	from	that	point	in	time	(Tarr).		
A	second	category	of	cells	(5%)	neither	arrested,	nor	recovered,	but	had	a	metabolism	slow	enough	
that	glucose	was	not	exhausted	at	the	end	of	the	experiment.	

Metabolic	 recoveries	 in	 the	 adaptation	 experiment	were	 determined	 as	 those	 cells	whose	
metabolic	 rate	 increased	 to	 levels	 comparable	 to	 the	 control	 with	 histidine,	 as	 computed	 by	 the	
difference	 between	 the	 maximum	 rate	 (Rmax)	 and	 the	 initial	 rate	 (R0)	 (2	 hours	 after	
compartmentalization)	 obtained	 from	 the	 volume	 time	 course	 of	 each	 droplet	 (Fig.	 2g).	 In	 the	
control,	the	metabolic	rate	of	cells	steadily	increased	due	to	cell	growth	and	division	before	glucose	
exhaustion	 (Fig.	2b)8,	with	a	mean	 rate	 increase	of	3.6±0.7	10-2	h-1	 (Fig.	2g,	 red).	 In	 the	adaptation	
experiment,	4%	of	cells	accelerated	their	metabolic	rates	(N=120,	Fig.	2h)	to	values	similar	to	those	
observed	 in	 the	 control	 (>1.3	 10-2	 h-1),	 the	 threshold	 for	 significant	 metabolic	 increase	 being	
determined	 by	 the	 overlap	 between	 the	 distributions	 with	 and	 without	 histidine	 (red	 and	 blue,	
respectively,	 in	Fig.	2g,	Extended	Data	Fig.	4).	The	cells	 that	were	not	part	of	any	of	 the	categories	
mentioned	 above	 (arrested,	 non-exhausted,	 recovered)	 had	 a	 steady	 metabolism	 until	 glucose	
exhaustion	(30%).	

We	 next	 addressed	 the	 question	 of	 the	 correlation	 between	 metabolic	 profiles	 and	
adaptation	 —	 the	 resumption	 of	 division.	 Each	 metabolizing	 cell	 within	 the	 shrinking	 drops	 was	
visualized	to	determine	if	division	occurred	at	 least	once	and	at	what	time;	the	time	of	division	Tdiv	
being	 defined	 as	 the	 time	 of	 appearance	 of	 a	 first	 bud	 eventually	 leading	 to	 a	 division	 event.	We	
found	that	within	the	subset	of	cells	showing	steady	metabolism,	only	about	9%	of	the	cells	resumed	
division,	 whereas	 within	 the	 metabolic	 recovery	 class,	 about	 73%	 resumed	 division	 (Fig.	 3a,b).	
Plotting	the	distribution	of	the	time	difference	between	the	onset	of	cell	division	(Tdiv)	and	metabolic	
recovery	(Trec)	shows	that	the	two	events	are	strongly	correlated	(R2=0.79,	p<10-5,	Extended	Data	Fig.	
6),	with	a	mean	value	Tdiv	–	Trec	≈	-1.35	±	5.5	h	(Fig.	3c),	which	is	significantly	smaller	than	the	average	
time	of	recovery	(29	h).	This	indicates	that	division	starts	when	the	maximum	metabolic	acceleration	
is	reached.		

We	 then	 examined	 the	 kinetics	 within	 the	 population	 of	 the	 following	 events:	 metabolic	
arrests,	 metabolic	 recoveries	 and	 adaptation.	 The	 cumulated	 fraction	 of	 metabolic	 recoveries	
displayed	a	sigmoidal	shape	(Fig.	4a,	green),	with	a	quadratic	increase	up	to	30	hours,	followed	by	a	
leveling	off.	As	expected	 from	the	close	correlation	between	 the	 times	of	metabolic	 recovery	 (Trec)	
and	 division	 (Tdiv)	 (Fig.	 3c),	 the	 cumulative	 fraction	 of	 cells	 re-commencing	 division	 (Fig.	 4a,	 red)	
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paralleled	the	cumulative	fraction	of	cells	showing	metabolic	recovery	(Fig.	4a,	green).	Therefore,	the	
instantaneous	 rate	 of	 adaptation	 increased	 over	 time	 up	 to	 30	 hours	where	 it	 reached	 a	 value	 of	
about	10-3	cells/hour	(Fig.	4b).	The	recovery	time	(Trec	)	as	a	function	of	the	inverse	initial	metabolic	
rate	(R0

-1),	shows	a	clear	linear	correlation	(R2=0.33,	p<10-3,	Fig.	4c).	The	droplet	volume	on	recovery	
peaks	 at	 ~74%	 of	 the	 initial	 droplet	 volume	 (Fig.	 4d,	 Supplementary	 Table	 1),	 indicating	 that	 on	
average	a	characteristic	amount	of	glucose	(156	pg)	is	required	for	a	cell	to	adapt	(Methods).	This	is	
equivalent	 to	approximately	one	day	of	maintenance	energy	consumption	 in	wild-type	yeast	 in	G1	
phase8.	 The	 consumption	 of	 a	 characteristic	 amount	 of	 glucose	 for	 adaptation	 implies	 that	 the	
distribution	of	adaptation	times	is	governed	by	the	distribution	of	the	initial	metabolic	rates.	Indeed,	
the	distribution	of	 initial	metabolic	 rates	peaks	 at	 low	values	 (Fig.	 4e),	 and	 there	 are	more	 slower	
than	faster	metabolizing	cells,	which	accounts	for	the	increase	in	the	instantaneous	recovery	rate	at	
early	times	(Fig.	4g).	At	later	times,	the	instantaneous	recovery	rate	decreases	due	to	the	vanishing	
number	of	very	slowly	metabolizing	cells,	as	well	as	the	competing	process	of	metabolic	arrest,	the	
rate	of	which	increases	over	time,	as	described	below.		

In	 contrast,	 the	 cumulated	 fraction	of	metabolic	 arrests	 increases	quadratically	 throughout	
the	course	of	the	experiments	 (Fig.	4f),	with	an	acceleration	coefficient	of	1.01±0.01	x10-4	cell-1.h-2,	
and	the	instantaneous	death	rate	increases	with	time	(Fig.	4g).	The	time	of	metabolic	arrest	is	poorly	
correlated	with	the	initial	metabolic	rate	(R2=0.12,	p<10-3,	Fig.	4h),	in	agreement	with	an	age	driven	
mechanism	essentially	independent	of	the	initial	metabolic	rate.	

We	 finally	 examined	 the	metabolism	 of	 single	 cells	 in	 the	 adapted	 populations	 (Extended	
Data	Fig.	7),	taken	2,	4	and	7	days	after	the	batch	population	entered	Phase	III	(Fig.	1;	blue	arrows,	
Supplementary	Movie	2).	The	overall	dynamics	of	the	adapted	population	(Extended	Data	Fig.	7a),	is	
highly	comparable	with	cells	 in	the	absence	of	stress	(Fig.	2b),	with	a	similar	spread	of	final	droplet	
volumes	 (Extended	Data	 Fig.	 7b)	 and	metabolic	 rates	 (Extended	Data	 Fig.	 7c,	 CV=0.35	 for	 adapted	
compared	to	CV=0.24	for	non-stressed	cells).	The	proportions	of	the	different	classes	of	cells	are	very	
similar	 at	 the	 three	 time	 points:	 non-metabolizing	 cells	 (1.6±1%),	 non-dividing	 metabolizing	 cells	
(10±1%)	and	dividing	cells	(89±2%)	(Extended	Data	Fig.	7d).	Consistent	with	adaptation	observed	at	
the	population	 level,	 the	fraction	of	dividing	cells	 is	>10-fold	higher	than	at	the	beginning	of	Phase	
II10.	The	variance	in	metabolic	rate	of	the	dividing	cells	is	similar	in	the	samples	taken	2,	4	and	7	days	
after	entering	the	adapted	phase	(CV	=	0.33±0.04)	and	very	close	to	that	observed	for	control	cells	
switched	to	glucose	plus	histidine	(CV	=	0.28).	None	of	the	174	dividing	cells	analyzed	reduced	their	
metabolic	 rate	 during	 the	 droplet-based	 experiment,	 demonstrating	 stability	 of	 the	 adapted	 state	
over	days	at	the	single	cell	level,	consistent	with	results	at	the	population	level10,14.	

In	conclusion,	this	work	establishes	the	existence	of	a	phenomenon	in	yeast	that	allows	rapid	
adaptation	and	necessitates	consumption	of	a	characteristic	amount	of	energy,	causing	certain	cells	
which	metabolize	more	 efficiently	 to	 adapt	more	 rapidly.	 In	 contrast	 to	 persister	 cells	 in	 bacteria,	
yeast,	 fungi,	 parasites	 and	 cancer,	 which	 are	 thought	 to	 be	 rare	 cells	 (rarely	more	 than	 1%,	 even	
taking	 into	 account	 the	 increased	 fraction	 of	 persister	 cells	 that	 may	 result	 from	 stress-induced	
responses3)	 that	 lie	metabolically	 dormant	 and	 then	 regrow	when	 the	 challenge	 is	 removed2-4,	we	
observed	here	 that,	 shortly	 after	 challenge	 the	majority	 (88%)	 of	 cells	were	metabolizing	 (but	 not	
dividing)	and	displayed	a	high	diversity	of	metabolic	rates.	Furthermore,	adaptation,	characterized	by	
simultaneous	acceleration	of	metabolism	and	 resumption	of	division,	occurred	while	 the	challenge	
was	maintained.	The	adapted	state	was	stable	over	the	time	course	of	 the	experiment,	backing	up	
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previous	 observations	 in	 bulk,	 which	 indicated	 that	 the	 adapted	 state	 is	 stably	 inherited	 across	
generations9,14,	and	indicating	that	this	is	a	genuine	adaptation	process.	

What	might	explain	this	finding	at	a	molecular	level?	The	high	rate	of	adaptation	is	difficult	to	
explain	 using	 established	 genetic	 mechanisms:	 stress	 can	 increase	 the	 mutation	 rate16	 but	 the	
adaptation	 rate	 observed	 here	 is	 ~10-3	 h-1,	 which	 is	 2	 to	 6	 orders	 of	 magnitude	 higher	 than	 the	
spontaneous	reversion	rates	by	point	mutation	 in	quiescent	histidine	auxotrophic	yeast	cells	 in	the	
absence	 of	 histidine	 (10-5	 to	 10-9	 h-1)17,	 and	 very	 high	 compared	 to	 the	 overall	 estimated	 rate	 of	
mutation	(~10-8	per	site	per	generation)18	and	the	rate	of	adaptive	mutation	(~10-11	per	generation)16	
in	 S.	 cerevisiae.	 This	 analysis	 is	 consistent	 with	 previous	 measurements11.	 This	 may	 point	 to	 an	
epigenetic	 mechanism,	 driven	 by	 a	 complex	 interplay	 between	 chromatin	 organisation	 and	
transcription	factor	networks	that	can	transmit	altered	states	to	daughter	cells,	providing	heritability	
and	allowing	selection,	as	recently	suggested	for	a	similar	engineered	yeast	system19.			

It	 is	known	that	chromatin	states	and	transcription	factor	networks	are	 intimately	 linked	to	
metabolism,	and	that	they	can	be	modified	by	external	stresses20.	Stress-induced	responses	are	well	
known	 in	 S.	 cerevisiae21,	 and	 entail	 large-scale	 changes	 in	 gene	 expression21,	 histone	modification	
and	 chromatin	 organization22.	 However,	 consistent	with	 previous	 results12,	 the	 adaptation	 process	
observed	here	appears	to	differ	from	known	S.	cerevisiae	stress	responses,	including	the	response	to	
amino-acid	starvation23,	in	a	number	of	ways.	Known	stress	responses	are	rapid	and	transient	(with	
changes	 in	 gene	 expression	 typically	 peaking	 after	 <2	 hours)21,24,	 and	 all	 cells	 respond	 broadly	
similarly24.	In	contrast,	the	characteristic	timescale	of	adaptation	of	single	cells	that	that	we	observe	
is	much	longer	(~103	hours,	see	Fig.	4b)	and	only	a	fraction	of	cells	adapt.	

Furthermore,	 the	adaptation	process	 is	not	 simply	 the	 result	of	 an	epigenetic	perturbation	
allowing	access	to	a	novel	phenotype(s),	due	to	induction	of	a	permissive	or	“plastic”	state	that,	for	
example	in	cancer,	is	proposed	to	allow	stochastic	oncogene	activation	or	non-physiological	cell	fate	
transitions25.	 Instead,	 adaptation	 is	 an	 active	 process,	 requiring	 the	 consumption	 of	 energy,	which	
implies	an	active	exploration	of	different	states,	and	fixation	of	the	solution(s)	that	allow	adaptation.	
Indeed,	 it	 has	 been	proposed	previously	 that	 adaptation	of	 yeast	 to	 an	unforeseen	 challenge	may	
involve	 dynamic	 exploration	 of	 different	 regulatory	 states15.	 However,	 if	 this	 is	 the	 case,	 the	
mechanism	 by	 which	 exploration	 is	 triggered	 and	 the	 way	 the	 adapted	 state	 is	 fixed	 allowing	
inheritance	of	the	adapted	state,	remains	unknown9,12,14.	Nevertheless,	it	is	clear	from	our	work	that	
adaptation	is	intimately	coupled	to	cellular	metabolism	and	depends	on	metabolic	efficiency.	

The	process	we	describe	allows	S.	cerevisiae	to	adapt	on	a	physiological	time	scale,	and	may	
provide	a	significant	evolutionary	advantage,	allowing	yeast	to	better	survive	and	adapt	faced	with	a	
range	of	environmental	challenges.	However,	it	is	tempting	to	speculate	that	a	related	process	may	
also	play	a	role	in	a	range	of	other	important	processes,	including	normal	cellular	differentiation	and	
development.	Indeed,	stochastic	processes,	associated	with	fluctuations	in	expression	of	Nanog	and	
other	key	transcription	factors	at	the	single-cell	level,	have	been	proposed	to	play	an	important	role	
in	early	stage	embryonic	stem	cell	differentiation26-28.	Likewise,	in	cancer,	epigenetic	mechanisms	are	
increasingly	believed	to	play	an	important	role	the	development,	progression	and	emergence	of	drug	
resistance	 in	cancer25,29.	Furthermore,	 it	may	have	 implications	for	 important	biotechnologies,	such	
as	reprogramming	of	human	somatic	cells	to	generate	induced	Pluripotent	Stem	Cells	(iPSCs),	which	
is	 characterized	 by	 a	 prolonged	 early	 stochastic	 phase,	 marked	 by	 the	 random	 and	 gradual	
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expression	 of	 pluripotency	 genes30.	 Further	 investigation	may	 thus	 lead	 to	 important	 fundamental	
insights	into	the	process	of	cellular	differentiation	as	well	as	non-genetic	mechanisms	of	adaptation	
and	 may	 have	 important	 practical	 applications	 such	 as	 combating	 drug	 resistance	 in	 cancer	 and	
improving	the	efficiency	of	tissue	engineering	and	cellular	reprogramming.	
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Figure	 1.	 Population	 growth	 of	 naïve	 rewired	 cells	 propagated	 in	 bulk	 cultures	 throughout	 the	
whole	 process	 of	 adaptation.	 Experiment	 1.	 The	 culture	 started	 with	 galactose	 as	 sole	 source	 of	
carbon	 (first	 red	arrow).	Then,	 the	medium	 is	 switched	 to	glucose	 (second	 red	arrow).	The	culture	
continues	 to	 grow	 during	 the	 “initial	 growth	 phase”	 (phase	 I),	 before	 entering	 the	 “latent	 phase”	
(phase	 II)	where	 the	culture	does	not	grow	anymore.	Finally,	 the	population	grows	again,	entering	
the	“adapted	phase”	 (phase	 III).	Green	and	blue	 triangles	 indicate	 time	points	when	samples	were	
taken	for	analysis	in	droplets	(green	triangle:	3	hours	after	the	beginning	of	phase	II;	blue	triangles:	2,	
3	and	6	days	after	the	onset	of	phase	III).		
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Figure	2.	Single-cell	analysis	of	metabolic	dynamics	in	droplets.	a)	Time-lapse	sequences	of	droplets	
containing	single	cells,	from	top	row	to	bottom	row:	metabolizing	dividing,	metabolizing	non-dividing	
and	arrested	cells.	b)	Single	droplet	volume	traces	of	the	droplet	volume	V	normalized	by	the	initial	
volume	V0	 in	the	absence	of	metabolic	challenge,	histidine	being	provided	in	the	medium.	c)	Single	
droplet	 volume	 traces	 starting	 3	 hours	 after	 switching	 from	 galactose	 to	 glucose.	 Lines	 are	 color	
coded	as	for	panel	d.	d)	Examples	of	volume	traces	of	single	droplets	initially	containing	a	single	cell	
for	 each	 category	 of	 response,	 depending	 on	 the	 change	 of	 metabolic	 and	 division	 states.	 e)	
Distribution	of	 final	droplet	volume	 (Vf)	normalized	by	 the	 initial	 volume	(V0)	 in	 the	presence	 (red)	
and	 absence	 (blue)	 of	 histidine.	 Ve	 indicates	 the	 maximum	 volume	 reached	 in	 the	 absence	 of	
challenge.	 f)	 Subset	 of	 arrested	 metabolisms	 from	 panel	 b.	 g)	 Distributions	 of	 the	 difference	 ΔR	
(metabolic	 rate	 increase)	 between	 the	 initial	 (at	 2	 hours)	 and	 maximum	 metabolic	 rates	 in	 the	
presence	(red)	and	absence	(blue)	of	histidine.	ΔR*	indicates	the	cross-over	between	distributions	of	
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metabolic	 rate	 increase	 in	 stressed	 (no	 histidine)	 and	 non-stressed	 (with	 histidine)	 conditions.	 h)	
Subset	of	metabolic	recoveries	from	panel	b.	i)	Subset	of	steady	metabolisms	from	panel	b.		
	
	

	
	
Figure	3.	Relation	between	onset	of	division	and	metabolic	recovery.	a)	Fraction	of	dividing	cells	in	
steady	 metabolisms.	 b)	 Fraction	 of	 dividing	 cells	 in	 metabolic	 recoveries.	 c)	 Distribution	 of	 the	
difference	between	division	time	(Tdiv)	and	metabolic	recovery	time	(Trec).		
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Figure	4.	Characterization	of	adaptation.	a)	Cumulative	fraction	over	time	for	metabolic	recoveries	
(green)	 and	 division	 recoveries	 (red).	 Black	 lines	 are	 a	 quadratic	 fit	 over	 the	 first	 30	 hours.	 b)	
Instantaneous	 frequency	 of	 recoveries	 over	 cells	 that	 have	 neither	 arrested	 their	metabolism	 nor	
already	recovered.	At	each	time	point,	frequencies	are	computed	over	7	consecutive	points	and	error	
bars	 are	 standard	deviations	over	 the	 values	obtained	over	 these	points.	 The	 light	 blue	 line	 is	 the	
frequency	 computed	 from	 the	 quadratic	 fits	 of	 panels	 a	 and	 f.	 c)	 Correlation	 between	 the	
characteristic	time	of	initial	metabolisms	(inverse	of	initial	metabolic	rate)	and	the	time	of	recovery.	
The	parameter	region	above	the	grey	line	corresponds	to	cells	that	have	exhausted	droplet	resources	
before	being	able	to	recover.	The	contribution	of	this	constraint	has	been	accounted	for	to	compute	
the	coefficient	of	determination	R2	(Methods).	 	d)	Distribution	of	normalized	droplet	volume	at	the	
time	 of	 recovery.	 e)	 Distribution	 of	 initial	 metabolic	 rate	 for	 the	 sub-population	 of	 metabolic	
recoveries.	f)	Cumulative	fraction	over	time	for	metabolic	arrests	(black).	The	red	line	is	a	quadratic	
fit	 over	 the	 full	 time	 course.	 g)	 Instantaneous	 frequency	 of	 arrests	 over	 cells	 that	 have	 neither	
recovered	nor	already	arrested	their	metabolism,	computed	as	 in	panel	b.	The	light	blue	 line	 is	the	
frequency	 computed	 from	 the	 quadratic	 fits	 of	 panels	 a	 and	 f.	 h)	 Correlation	 between	 the	
characteristic	time	of	initial	metabolisms	(inverse	of	initial	metabolic	rate)	and	the	time	of	arrest.	The	
parameter	 region	 above	 the	 upper	 grey	 line	 corresponds	 to	 cells	 that	 have	 exhausted	 droplet	
resources	before	arresting.	The	parameter	 region	below	 the	 lower	grey	 line	corresponds	 to	curves	
whose	final	volume	is	indistinguishable	from	curves	of	empty	droplets	(overall	volume	variation<5%).	
The	 contribution	 of	 these	 constraints	 has	 been	 accounted	 for	 to	 compute	 the	 coefficient	 of	
determination	R2	(Methods).	
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Extended Data 
	

	

Extended	Data	Figure	1.	Threshold	for	significant	shrinking.	The	threshold	Vs	=	0.95	for	maximal	final	
volume	 indicating	 a	 significant	 volume	decrease	 is	 defined	 as	 3	 standard	 deviation	 away	 from	 the	
mean	of	volume	distribution	of	empty	droplets.		

	

	

	

	

Extended	Data	Figure	2.	Distribution	of	metabolic	rates	at	10	hours	after	encapsulation	of	yeast	in	
droplets.	Red:	in	the	absence	of	metabolic	challenge	(with	histidine).	Blue:	in	response	to	a	metabolic	
challenge	(no	histidine).	
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Extended	 Data	 Figure	 3.	 Automated	 analysis	 of	 metabolic	 kinetics	 from	 the	 time-lapse	
measurement	of	droplet	volumes.	a)	Example	of	20	droplet	volumes	V	over	time	normalized	by	their	
initial	volume,	V0.	The	point	of	metabolic	acceleration	(Amax)		is	shown	by	triangles,	of	maximum	rate	
(Rmax)		by	squares	and	metabolic	arrest	(Tarr)	by	circles	(see	below).	b)	Metabolic	rate	R	computed	as	
minus	the	time	derivative	of	the	normalized	volume.	Rmax	(square)	is	determined	as	the	maximum	of	
each	 curve.	 Metabolic	 arrest	 is	 determined	 as	 the	 point	 at	 which	 R	 reaches	 1/10	 of	 Rmax,	 and	
generally	 corresponds	 to	 the	 minimum	 of	 the	 acceleration	 curves	 in	 panel	 c,	 although	 the	 latter	
yields	 a	 less	 reliable	 estimate.	 c)	 Metabolic	 acceleration	 A	 computed	 as	 the	 derivative	 of	 the	
metabolic	 rate.	 The	 time	 of	 acceleration	 (triangle)	 is	 determined	 from	 the	 maximum	 Amax	 of	 this	
curve.	The	time	of	recovery	(Trec)	 is	the	time	at	which	Amax	 is	reached	within	the	population	of	cells	
that	significantly	increase	their	metabolism	(ΔR	>	ΔR*)	(see	Fig.	2g	and	Extended	Data	Figure	4).			
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Extended	 Data	 Figure	 4.	 Determination	 of	 the	 metabolic	 increase	 threshold	 ΔR*	 for	 significant	
metabolic	recovery.	The	metabolic	 increase	ΔR	 is	 the	difference	between	the	 initial	metabolic	rate	
(taken	at	2	hours)	and	the	maximum	measured	metabolic	rate	Rmax	(see	Extended	Data	Figure	3).	For	
each	bin	size,	we	determined	the	lower	and	upper	bound	for	the	cross-over	between	the	metabolic	
increase	distributions	(see	Fig.	2g),	in	the	presence	or	absence	of	metabolic	challenge.	These	bounds	
converge	 at	 a	 certain	 bin	 value	 which	 optimally	 defines	 the	 cross-over	 ΔR*	 between	 these	 two	
distributions.	
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Extended	Data	Figure	5.	Classification	tree	of	metabolic	responses.	For	the	details	of	the	treatment,	
refer	to	the	Methods	section	“Droplet	tracking	and	quantitative	analysis	of	droplet	volumes”.	Vend	is	
the	 final	 droplet	 volume;	 Vs	 =1-3σ,	 where	 σ	 is	 the	 coefficient	 of	 variation	 of	 empty	 droplet	 final	
volumes	 taken	 over	 all	 experiments;	 Ve	 is	 the	maximal	 normalized	 volume	 reached	 by	 cells	 in	 the	
control	experiment	(with	histidine);	λ	is	the	Poisson	parameter	corresponding	to	the	average	number	
of	cells	encapsulated	per	droplet;	R	is	the	metabolic	rate;	Rmax	is	the	maximum	metabolic	rate	reach	
for	each	cell;	Tarr	 is	 the	 time	at	which	R	 reaches	Rmax/10	 in	arresting	cells;	ΔR	 is	 the	metabolic	 rate	
increase	 computed	 as	 the	difference	between	Rmax	and	 the	 initial	 rate	R0	 (at	 2	 hours);	 	 ΔR*	 is	 the	
cross-over	value	between	 low	and	high	metabolic	 rate	 increases	 (Extended	data	Figure	4);	A	 is	 the	
metabolic	acceleration,	which	is	the	time	derivate	of	R;	Amax	is	the	maximum	metabolic	acceleration	
(Extended	data	Figure	3);	Trec	is	the	time	at	which	Amax	is	reached	within	the	population	of	cells	that	
significantly	 increase	their	metabolism	(ΔR	>	ΔR*);	Tdiv	 is	 the	time	at	which	the	first	bud	appears	 in	
droplets	where	the	final	number	of	cells	is	larger	than	2.	
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Extended	Data	 Figure	 6.	 Correlation	 between	 the	 times	 of	 division	 (Tdiv)	 and	metabolic	 recovery	
(Trec).	 Each	 dot	 corresponds	 to	 the	 analysis	 of	 a	 single	 volume	 trace	measured	 in	 the	 absence	 of	
histidine.	The	diagonal	corresponds	to	Tdiv	=	Trec.	
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Extended	Data	 Figure	 7.	 Adapted	 population.	 a)	 Volume	 traces	 of	 droplets	 containing	 single	 cells	
taken	 from	 the	 culture	 4	 days	 after	 the	 challenge.	 Droplet	 volume	 V	 is	 normalized	 by	 the	 initial	
volume	V0.	Lines	are	color	coded	as	for	Fig.	2d.	b)	Distribution	of	final	volumes	(at	70	hours)	4	days	
after	the	challenge	(blue)	and	for	the	control	with	histidine	(red).	The	vertical	dashed	line	represents	
Ve,	the	maximum	normalized	volume	reached	by	cells	in	the	histidine	positive	control.	c)	Distribution	
of	metabolic	rates	at	10	hours,	4	days	after	stress	(blue)	and	for	the	control	with	histidine	(red).	d)	
Fraction	of	each	cell	type	2,	4	and	7	days	after	the	challenge.	 	
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Methods 

Chemicals.	All	chemicals	were	purchased	from	Sigma–Aldrich	unless	otherwise	mentioned.	

Strains	and	culture	conditions.	The	Saccharomyces	cerevisiae	YPH499	strain	carries	a	deletion	of	the	
endogenous	 chromosomal	 HIS3	 gene	 and	 a	 plasmid	 containing	 the	 divergent	 GAL1/GAL10	
promoters.	There	 is	a	HIS3	gene	under	sole	regulation	of	GAL1	promoter,	and	a	GFP	 reporter	gene	
under	control	of	the	GAL10	promoter9.	Cells	were	grown	from	colonies	on	plates	in	25	mL	of	culture	
medium	comprising:	1.7	g/L	of	yeast	nitrogen	base	without	amino	acids	and	ammonium	sulfate,	5	g/L	
ammonium	 sulfate,	 1.4	g/L	 amino	 acid	 dropout	 powder	 (without	 Trp,	 His,	 Leu,	 Ura),	 0.004	g/L	 L-
tryptophan,	 and	0.002	g/L	uracil,	 20	g/L	of	 galactose	or	 glucose;	 and	 incubated	at	30°C,	 shaking	at	
200	r.p.m.	in	100	mL	Erlenmeyer	flasks.	Cultures	were	diluted	every	12h	to	maintain	OD<1.0	(never	
transferring	less	than	3.106	cells).		

Rewired	yeast	cells,	were	first	grown	in	a	batch	culture	with	galactose	medium	lacking	histidine.	The	
optical	 density	 (OD600nm)	 of	 the	 culture	 was	 monitored	 and	 it	 was	 maintained	 in	 the	 exponential	
phase	 of	 growth	 by	 serial	 dilutions	 for	 2	 days.	 The	medium	was	 then	 switched	 from	 galactose	 to	
glucose.	 As	 previously	 reported9,14,	 naïve	 cells	 (i.e.	 rewired	 cells	 that	 had	 never	 been	 grown	 in	
glucose	 before)	 were	 able	 to	 grow	 for	 about	 20	 hours	 in	 glucose	 media	 lacking	 histidine	 with	 a	
doubling	time,	tD,	of	1.9	h	(phase	I).	Following	this	phase,	the	cells	ceased	growing,	or	their	growth	
slowed	 considerably	 (tD	 	 17.1	 h),	 leaving	 the	OD600nm	 approximately	 constant	 (phase	 II,	 the	 “latent	
phase”).	At	 the	end	of	 this	phase,	after	durations	 that	varied	across	 repeated	experiments	 from	(1	
day	to	6	days),	the	population	adapted	and	started	growing	and	proliferating	(phase	III,	the	“adapted	
phase”).	The	doubling	time	of	the	adapted	population	reduced	from	3.1	h	1	day	after	entering	phase	
III,	to	2.1	h	after	8	days	in	phase	III		(Fig.	1),	reflecting	the	fact	that	the	population	continues	to	adapt	
after	 resuming	 growth10.	Microfluidic	 device	 fabrication.	Microfluidic	 devices	were	obtained	using	
conventional	 soft	 lithography	methods31,	 as	 described32.	Molds	 were	 prepared	 using	 SU8-2015	 or	
SU8-2075	 photoresist	 (MicroChem	 Corp.)	 and	 used	 to	 pattern	 20	 and	 75	 µm-deep	 channels	 onto	
silicon	wafers	(Siltronix).	The	channels	of	the	devices	were	passivated	with	Aquapel	in	HFE7100	(3M)	
and	subsequently	flushed	with	compressed	nitrogen	gas.		

Formation	and	 imaging	of	droplet	 arrays.	 To	measure	 single-cell	metabolic	 and	 growth	dynamics,	
yeast	cells	 from	batch	culture	were	 individually	compartmentalized	 in	200,000	monodisperse	30	pL	
volume	 (38	µm	diameter)	 aqueous	droplets	 containing	 fresh	glucose	medium	 lacking	histidine	and	
incubated	 at	 30°C	 in	 a	 2D	 array,	 taking	 images	 every	 30	minutes	 over	 three	 days,	 as	 described	 in	
Boitard	et	al.8	Briefly,	a	flow-focusing	device33	was	used	for	droplet	generation	and	flow	rates	were	
controlled	using	standard-pressure	infuse/withdraw	PHD	22/2000	syringe	pumps	(Harvard	Apparatus	
Inc.,	 Holliston,	 MA).	 Syringes	 (Hamilton)	 connected	 to	 the	 microfluidic	 device	 using	 0.6	 x	 25	 mm	
Neolus	needles	(Terumo	Corporation)	and	PTFE	tubing	with	an	internal	diameter	of	0.56	mm	and	an	
external	 diameter	 of	 1.07	 mm	 (Fisher	 Bioblock	 Scientific).	 The	 aqueous	 phase,	 comprising	 cells	
suspended	 in	 culture	 medium,	 was	 injected	 at	 300	µL/h	 and	 dispersed	 in	 a	 continuous	 phase	
consisting	 of	 HFE-7500	 fluorinated	 oil	 (3M)	 containing	 2%	 (w/w)	 008-FluoroSurfactant	 (RAN	
Biotechnologies),	 a	PFPE-PEG-PFPE	amphiphilic	 tri-block	copolymer34,	 injected	at	150	µL/h,	 forming	
30	pL	volume	(38	µm	diameter)	droplets	at	2,800	droplets	s-1.	Droplets	were	produced	in	a	compact	
manner	and	were	directly	incubated	in	a	glass	chamber	of	3.5	x	1.5	cm	to	form	a	compact	2D	droplet	
array8.	Compaction	of	 the	emulsion	prevents	droplet	movement	 to	enable	 their	 tracking	over	 long	
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time	 scales.	 The	 chamber	 was	 maintained	 at	 30°C	 on	 a	 Nikon	 T300	 inverted	 microscope	 with	 a	
Thorlabs	MAX202	XY	stage.	Images	of	the	droplet	array	were	taken	every	30	min	using	a	Hamamatsu	
Orca-ER	 camera.	 Custom-made	 Labview	 software	 was	 used	 to	 automate	 image	 acquisition	 and	
microscope	control.	

Data	processing.	For	a	schematic	representation	see	Extended	Data	Fig.	5.		

Droplet	tracking	and	quantitative	analysis	of	droplet	volumes.	Droplets	were	detected	with	an	 in-
house	Matlab	segmentation	routine	and	tracked	 in	 time	by	a	nearest	neighbour	criterion,	knowing	
that	displacements	from	image	to	image	are	much	smaller	than	the	characteristic	droplet	diameter.	
Images	 in	 which	 large	 displacements	 occurred	 were	 easily	 detected	 as	 they	 displayed	 strongly	
discontinuous	volume	traces	and	were	discarded.	In	order	to	minimize	volume	fluctuations	caused	by	
defocusing	 in	 time,	 volumes	were	 normalized	 by	 the	 time	 course	 of	 the	 average	 of	more	 than	 10	
empty	droplets	for	each	image.	Images	for	which	normalization	failed	were	discarded	(Extended	Data	
Fig.	5).	The	Poisson	parameter	λ	 (the	mean	number	of	cells	per	droplet)	was	determined	 from	the	
frequency	of	occupied	droplets	on	a	sample	of	10	initial	images	(~1500	droplets)	per	experiment.	The	
number	 of	 droplets	 containing	 cells	 arrested	 from	 the	 start	 was	 estimated	 by	 calculating	 the	
difference	 between	 λ	 and	 the	 number	 of	 significantly	 shrinking	 droplets	 (Extended	Data	 Fig.	 5).	 A	
droplet	was	 considered	 to	be	 significantly	 shrinking	 is	 its	 final	normalized	volume	Vend	was	 smaller	
than	Vs	=1-3σ,	where	σ	 is	 the	coefficient	of	variation	of	empty	droplet	 final	volumes	taken	over	all	
experiments	(Extended	Data	Fig.	1).	We	measured	Vs	=	0.95.	The	first	and	second	derivatives	of	the	
normalized	 volume	 over	 time	were	 computed	 over	 5	 time	 point	 sliding	windows	 and	 provide	 the	
metabolic	rate	R	(h-1)	and	metabolic	acceleration	A	(h-2)	(Extended	Data	Fig.	3).	These	quantities	were	
used	to	automatically	determine	the	maximum	metabolic	rate	Rmax,	 the	metabolic	 increase	ΔR	 (h-1,	
difference	 between	 the	 initial	 metabolic	 rate	 R	 at	 2	 hours	 and	 Rmax)	 and	 the	 time	 of	 maximum	
metabolic	 acceleration	 Amax.	 Metabolically	 arrested	 cells	 were	 defined	 as	 cells:	 (i)	 which	 do	 not	
consume	 all	 the	 nutrients	 available	 in	 the	 droplets	 within	 the	 timeframe	 of	 the	 experiment,	 as	
defined	by	Vend	>	Ve,	where	Vend	 is	the	final	droplet	volume	and	Ve	=	0.55	is	the	maximal	normalized	
volume	 reached	 by	 cells	 in	 the	 control	 experiment	 (with	 histidine),	 and	 (ii)	 for	 which	 the	 volume	
trace	 significantly	 flattens	 during	 the	 time	 course	 of	 the	 experiment.	 The	 latter	 was	 determined,	
within	 the	subpopulation	of	cells	wherein	Vend	>	Ve,	as	 the	existence	of	an	 inflection	 in	 the	volume	
curve	 leading	 to	 a	 rate	 R	 <	 Rmax/10	 after	 the	maximum	 rate	 Rmax	 observed	 for	 this	 cell	 has	 been	
reached.	The	metabolic	arrest	point	(Tarr)	is	defined	as	the	time	at	which	R	reaches	Rmax/10	(Extended	
Data	 Fig.	 3).	 In	 stress	 experiments,	 metabolisms	 were	 considered	 to	 be	 significantly	 accelerating	
when	metabolic	 increase	ΔR	was	 comparably	high	 to	 that	of	 control	 cells	with	histidine	ΔRHIS+.	 For	
this	we	determined	the	lower	and	upper	bounds	of	the	crossing	values	for	the	histograms	of	ΔR	after	
stress	 and	ΔRHIS+	 as	 given	 for	 different	 binning	 intervals.	 The	 threshold	 value	ΔR*	 =	 0.013	 h-1	 was	
obtained	 when	 these	 bounds	 converge	 (Extended	 Data	 Fig.	 4).	 For	 cells	 classified	 as	 significantly	
increasing	their	metabolic	rate	(ΔR>ΔR*),	the	time	of	metabolic	recovery	Trec	was	determined	as	the	
time	of	maximum	metabolic	acceleration	Amax	 (Extended	Data	Fig.	3c).	The	time	of	division	Tdiv	was	
determined	as	the	first	observed	budding	event	in	droplets	which	contained	one	cell	at	the	beginning	
of	the	experiment	and	two	or	more	cells	at	the	end	of	the	experiment.		

Instantaneous	 frequencies	 of	 arrest	 and	 metabolic	 recovery.	 Three	 distinct	 cell	 fates	 were	
categorized	 from	 the	metabolic	 curves:	metabolic	 arrest,	metabolic	 recovery	 and	 non-accelerated	
cells.	Calling	N	 the	 total	number	of	cells	observed	during	 the	experiment,	Na	and	Nr	 the	respective	
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cumulative	number	of	arrested	and	 recovering	cells,	 the	 instantaneous	 rate	of	arrest	and	 recovery	
were	respectively	computed	as	𝑑𝑁!/𝑑𝑡 (𝑁 − 𝑁! − 𝑁!)	and	𝑑𝑁!/𝑑𝑡 (𝑁 − 𝑁! − 𝑁!).	These	values	
were	computed	both	for	the	experimental	data	and	from	their	quadratic	fit	at	 initial	times	(0	to	30	
hours)	(Fig.	4	b	and	g).	

Effective	coefficients	of	determination.	The	correlations	of	Figure	4,	panels	c	and	h,	display	regions	
of	 experimentally	 inaccessible	parameter	 values,	 due	 to	 the	 finite	 amount	of	 resource	 available	 in	
each	droplets	and	the	noise	 in	droplet	volume	measurements.	The	coefficient	of	determination	Ra

2	
computed	directly	from	the	data	thus	comprises	a	contribution	of	these	boundary	constraints.	This	
contribution	Rb

2	to	the	total	covariance	has	been	estimated	with	a	Monte	Carlo	approach	preserving	
the	marginal	distributions:	105	random	permutations	of	the	measured	values	were	generated	under	
the	 boundary	 constraints,	 taking	 Rb

2	 as	 the	 mean	 coefficient	 of	 determination	 of	 the	 last	 104	
realizations.	 Assuming	 independence	 between	 the	 experimental	 constraints	 and	 cell	 fates	 in	 the	
absence	 of	 resource	 exhaustion,	 the	 additive	 contribution	 of	 these	 phenomena	 to	 the	 covariance	
leads	to	effective	coefficients	of	determinations	R2=	Rb

2-	Ra
2.	

Characteristic	 of	 the	 characteristic	 amount	 of	 glucose	 required	 for	 a	 cell	 to	 adapt.	 Adaptation	
peaked	at	74%	of	 the	 initial	 volume	of	30	pL	of	droplet	with	a	 concentration	of	20	g/L	of	glucose,	
which	leads	to	a	characteristic	amount	of	glucose	of	 1 − 0.74 ∗ 30 ∗ 20 = 156	pg.	
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Supplementary Information 
	

Supplementary	 Video	 1.	 Droplets	were	 incubated	 at	 30°C	 in	 a	 sealed	 glass	 chamber	 imaged	 over	
70h.	 Images	 were	 taken	 every	 30	 min,	 as	 indicated	 by	 the	 time	 stamp.	 Individual	 cells	 were	
compartmentalised	in	aqueous	droplets	dispersed	in	an	oil	phase	and	parked	in	a	2D	array	in	a	closed	
glass	chamber.	About	6%	of	the	droplets	contain	a	single	cell.	The	consumption	of	nutrients	(glucose)	
in	 a	 cell-containing	droplet	 creates	 an	osmotic	 imbalance,	 resulting	 in	 an	osmotically	 driven	water	
flux,	which	 induces	 the	 shrinkage	of	 this	droplet	 and	 the	 swelling	of	neighboring	 cell-free	droplets	
The	change	in	volume	of	the	droplet	containing	the	cell	is	extracted	by	image	analysis	to	measure	cell	
metabolism	in	function	of	time,	while	imaging	enables	measurement	of	cell	division.	
	

Supplementary	Table	1.	 Parameters	measured	and	computed	 for	each	 individual	experiment	after	
stress,	after	adaptation,	for	the	control	with	histidine,	and	over	groups	of	experiments.	 In	all	cases,	
the	symbol	“N”	refers	to	a	number	of	droplets.	
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