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Abstract 
 
Data-Independent Acquisition (DIA) is a technique that promises to comprehensively detect and            
quantify all peptides above an instrument’s limit of detection. Several software tools to analyze              
DIA data have been developed in recent years. However, several challenges still remain, like              
confidently identifying peptides, defining integration boundaries, dealing with interference for          
selected transitions, and scoring and filtering of peptide signals in order to control false              
discovery rates. In practice, a visual inspection of the signals is still required, which is               
impractical with large datasets. Avant-garde is a new tool to refine DIA (and PRM) by removing                
interfered transitions, adjusting integration boundaries and scoring peaks to control the FDR.            
Unlike other tools where MS runs are scored independently from each other, Avant-garde uses              
a novel data-driven scoring strategy. DIA signals are refined by learning from the data itself,               
using all measurements in all samples together to achieve the best optimization. We evaluated              
the performances of Avant-garde with a calibrated sample using spiked-in standards in a             
complex background, a phospho-enriched dataset (Abelin et al, 2016), and two complex hybrid             
proteome samples for benchmarking DIA software tools. The results clearly showed that            
Avant-garde is capable of improving the selectivity, accuracy, and reproducibility of the            
quantification results in very complex biological matrices. We have further shown that it can              
evaluate the suitability of a peak to be used for quantification reaching the same levels of                
selectivity, accuracy, and reproducibility obtained with manual validation. 
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Introduction 
 

Quantitative proteomics is a fundamental tool to decode the complexity and the dynamics of the               

proteome. Data-Independent Acquisition (DIA) is a family of newly-developed LCMS acquisition           

methods combining the unbiasedness of Data-Dependent Acquisition (DDA) with the          

reproducibility, sensitivity, and accuracy of targeted methods1–4. In DIA, MS instrumentation           

co-isolates and fragments multiple peptides, either in sequential isolation windows traversing an            

m/z range, or all at once 1–9. DIA has the potential to comprehensively analyze all peptides in a                 

sample that are above the instrument’s limit of detection. 

 

DIA data are quantified with a chromatogram-based approach. For each peptide, several            

transitions (precursor/fragment ion pairs) are monitored over time, producing a set of            

chromatographic peak traces. Peak area is integrated and used as a proxy for analyte              

abundance. Ideally, all transitions of a given analyte should have: 1) the same elution peak               

shape, 2) relative areas mirroring the relative intensities found in their reference spectrum from              

a library, 3) a low mass error, and 4) consistency across all MS runs being compared. However,                 

due to the complexity of DIA data, it is difficult to obtain signals that correspond to this                 

archetype, and data analysis remains challenging. 

 

Several tools have been developed to analyze DIA data 10. Each one can produce a different set                

of detectable peptides and quantitative results, even with standardized samples and data sets11.             

This variability is introduced by differences at all stages of data analysis (i.e. raw data               

processing, protein database search, peak detection, transition selection, chromatogram         

extraction, peak integration, and statistical analysis), each of which can affect detection and             

quantification. 

 

Most tools focus on statistical validation of peptide detection (using target/decoy approaches            
12,13) but do not address the quantitative suitability of the signals extracted. Targeted analyses of               

DIA data begin with spectral libraries, which may be built from a single, fractionated “master               

sample” using narrow isolation window DDA methodology. These practices mask the complexity            

found in real DIA data and do not anticipate interferences present in real biological samples,               

especially when perturbations are introduced. Therefore, transitions selected from spectral          

libraries may not be suitable for quantification in actual biological sample sets. In practice,              
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further curation of signals is required for rigorous quantitation. During curation, an expert             

visually inspects the data, removes transitions subject to interference, and manually corrects            

peak integration boundaries. However, time-consuming manual curation is impractical with large           

datasets, and produces subjective user-dependent results. Curation is thus often omitted and            

the output of these tools is used at face-value for downstream analysis. 

 

Missing values are also a problem in DIA approaches. They can have a biological origin (e.g.                

peptides truly not present), a technical origin (e.g., peptide loss during sample processing), or a               

computational origin, (e.g., failure to assign the correct signal to the respective peptide). The              

latter reason can be due to retention time prediction or alignment models that improperly impute               

chromatographic boundaries of the analytes in real samples. Missing data can also originate             

from non-curated data. A peptide subject to interference might fail to be identified in a subset of                 

samples (e.g. indistinguishable from a decoy peptide), thus creating missing values even though             

the peptide is present. However, if another set of interference-free transitions had been used,              

this peptide might be detected in all samples, subsequently providing accurate and reproducible             

quantification. 

 

The issues discussed above motivated us to create a tool for automated targeted MS data               

curation. Here we present Avant-garde (AvG), a modular tool meant to polish the results of DIA                

and PRM analysis tools. Building upon earlier work on DIA and PRM data optimization 14, AvG               

refines DIA signals to reach the highest possible levels of sensitivity, selectivity, and accuracy.              

AvG refines peak detection, adjusts peak boundaries, removes transitions subject to           

interference, eliminates noise, and estimates the FDR of analytes for quantitative suitability.            

Unlike other tools where MS runs are scored independently from each other, AvG uses a novel                

ensemble data-driven scoring strategy. DIA signals are refined by learning from the data itself,              

using all measurements in all samples together to achieve the best optimization. 

 

Results 
 

Principle of Avant-garde: 

 

AvG is a tool designed for automated data curation, meant to complement common DIA              

analysis tools such as mProphet12, OpenSWATH13, DIA-Umpire 15, EncyclopeDIA16, and         
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Specter17. To ease use and adoption of AvG, we have chosen Skyline 18 to extract              

chromatogram data as a vendor-independent and user-friendly tool. It enables data visualization            

and provides a common framework to refine results from different upstream tools. Skyline             

requires only the peptide sequences and peak integration boundaries determined by these            

tools. 

 

AvG uses the chromatogram data and employs three independent modules to refine the data              

(Fig. 1). First, a transition refinement module improves the choice of transitions to eliminate              

interferences and reduce noise. Second, a peak refinement module adjusts integration           

boundaries without the need for spiked-in retention time peptides. A third module scores peaks              

using a number of intuitive metrics and estimates the false discovery rate (FDR) for quantitative               

suitability. The refinement results and scoring metrics are then imported back into Skyline. 

 

 

 

 
Figure 1: Avant-garde’s role in data analysis and modular scheme. Top: AvG is employed              
downstream of independent DIA identification engines, and depends on Skyline to extract            
chromatogram data of detected peptides. The output of AvG (suitable transitions,           
chromatographic boundaries, and scoring metrics) is reimported to Skyline to produce curated            
quantitative data. Bottom: AvG is composed of three modules. Module 1 curates transitions to              
reduce noise and remove interference using a genetic algorithm, assigning a final quality metric              
to the selected set (AvG fitness score). Module 2 refines peak integration boundaries. AvG              
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calculates chromatographic subscores at each time point in the raw data, and combines them              
as a weighted product (AvG chromatographic score). The maximum value of this score             
corresponds to the most likely retention time of the analyte. Module 3 scores peaks (AvG score),                
filters the data and estimates the FDR for quantitative suitability. 
 
 

 

Like other tools, AvG assigns and quantifies peptides using composite scores (built from             

subscores) as the basis for quality filtering of results and estimation of the FDR. Each module of                 

AvG produces its own composite score: the “AvG fitness score” for transition selection, the “AvG               

chromatographic score” for peak integration boundaries, and the “AvG score” for the final             

scoring of peaks and FDR estimation. However, its composite scores are calculated as the              

product rather than the sum of its subscores. This approach avoids allowing any single              

subscore to push the composite score over an arbitrary “significance” threshold employed to             

control the FDR. Uniquely, AvG calculates its module scores in an ensemble-driven manner,             

curating transitions and peak boundaries while considering data from all samples in a set. 

 

The scoring strategy is designed to produce very conservative results. AvG penalizes peptides             

with any single metric that indicates poor quality. This scoring mechanism imposes strong             

penalties on transitions subject to interference. A high final AvG score ensures that minimal              

interference is present and that the signals are suitable for quantification. 

 

Automated refinement of transition selection by a genetic algorithm 

 

The transition refinement module is based on a genetic algorithm (Fig. 1), which is a machine                

learning method designed for solving optimization problems. Its operating principle mimics           

natural selection and biological evolution, and efficiently samples a large number of            

combinations without being exhaustive. To select the best set of transitions for each peptide, we               

start by extracting a large number of transitions for each (at least 5-10 per peptide). These                

transitions may be subject to interference (Fig. S1). For each step (or generation), the genetic               

algorithm selects several random subsets of transitions. The algorithm then scores each one             

with a fitness function and selects the best-scoring solution(s) as the starting population for the               

next generation. Over successive steps, the population "evolves" towards an optimal solution,            
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as the score of the fitness function increases until it reaches a stable maximum. The               

corresponding solution is the most suitable set of transitions for quantification. 

 

The genetic algorithm maximizes the AvG fitness score (Supp. Methods and Fig. S2). The              

subscores fall into two categories: run-specific and dataset-wide scores. There are three            

run-specific subscores: 1) the mass error score penalizes differences between observed and            

expected masses of transitions, 2) the Spectral Library Similarity (SLS) score compares the             

relative intensities of transitions to a reference spectrum using a transformation of the dot              

product, and 3) the Peak Shape Similarity (PSS) score evaluates the correlation of elution              

profiles of transitions. The PSS score is extremely sensitive for detection of interference.  

 

The median profile of relative areas (MPRA) subscore is a dataset-wide score (Supp. Methods ).               

In a nutshell, the MPRA measures how similar the signals in a given run are to all other runs in                    

the entire dataset. It evaluates the similarity of the relative peak areas of transitions in one run to                  

the median profile calculated on all the runs in the dataset.  

 

For each run, the composite score is a combination of run-specific and dataset-wide scores.              

This ensures that the final solution is the best possible compromise considering all runs in the                

dataset and is not influenced only by a small number of high-scoring runs. It also allows the                 

identification of problematic runs. Finally, the AvG fitness score is calculated for each peptide in               

the dataset by calculating the mean of all combined scores for each run. Because the AvG                

fitness score is ensemble-driven, the genetic algorithm evolves towards noise-free signals,           

reduced interference, and consensus in quantifiable transitions across the entire dataset. 

 

Automated refinement of peak integration boundaries 

 

AvG uses the curated transitions to adjust peak boundaries without the need for retention time               

alignment. Several chromatographic subscores are calculated at each time point in the raw data              

(Fig. 1). The AvG chromatogram score is also calculated in an ensemble-driven manner as a               

product of subscores (Supp. Methods). The objective is to penalize peptides with any single              

metric that indicates poor quality. The maximum value of the AvG chromatogram score             

corresponds to a peak’s most likely retention time. 
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Fig. 1 (box 2) shows an example of the cumulative effect of transition curation and peak                

boundary refinement for a peptide. Initially, the integration boundaries (from Skyline) did not             

correspond to the real chromatographic peak. AvG focuses on signals that are potential peptide              

peaks, where for each point at least 3 non-zero transitions are observed. For potential peaks,               

the SLS and the MPRA are calculated. In the example, some subscores (SLS, MPRA, and the                

mass error) are low in the time range corresponding to the initial peak integration boundaries.               

The AvG chromatographic score has a low value close to zero in that time window, even though                 

the intensity scores are high. However, the maximum value of the AvG chromatographic score              

corresponds to the real retention time of the analyte. The peak boundaries are then defined               

around this time, guided by the AvG chromatographic score and the Intensity (sum) subscore.              

Prior knowledge of approximate retention time can improve the speed of this module, but is not                

a requirement (see Supp. Fig. 3 for the same example over a wider time window). When a                 

peptide is not present in a sample for biological or technical reasons, AvG still integrates the                

signal around the maximum value of the ensemble-driven AvG chromatographic score.  

 

AvG identifies DIA signals with high quantitative suitability 

 

After curation of transitions and peak boundaries, all signals are scored again with the third               

module to assess overall quality, and suitability for quantification (Supp. Methods). As described             

above, the scoring mechanism was designed to discriminate poor- from high-quality signals with             

respect to quantitative suitability. To evaluate the selectivity, precision, accuracy, and FDR of             

AvG results, a five-point calibration curve (5 samples analyzed in triplicate) was built using a               

background of HEK293T whole cell digest spiked with 95 synthetic phosphopeptides. The            

calibration curve ranged from 6.75 ng to 108 ng of total synthetic peptide mixture spiked into 1                 

μg of HEK293T digest per injection. Each sample was measured in triplicate on a Q-Exactive               

HF using a DIA method (Supp. Methods).  

 

First, we determined the FDR for quantitative suitability after curation with AvG using a              

target-decoy approach. To do this, we randomly selected 1000 human peptides that were             

identified in previous DDA runs of the same digest. Their signals and their corresponding              

shuffled-sequence decoys were extracted from DIA runs and were automatically curated using            

AvG. 
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The distributions of each subscore (Fig. S4) discriminate between targets and decoys with             

varying performance. However, a weighted product of the subscores produces an extremely            

good separation of the distributions. We empirically determined the exponent weights for the             

multiplicative combination of the AvG subscores. However, we verified that the results obtained             

with our weights matched the results with weights obtained by linear discriminant analysis             

(Supp. Methods and Fig. S5) with respect to overall sensitivity. Most decoys have an AvG score                

close to 0 (98% < 0.05) and the cutoff to obtain an FDR below 1% was a value equal to 0.11. 

 

AvG additionally enforces minimum thresholds for each subscore (SLS > 0.7, mass error score              

> 0.7, PSS > 0.85, MPRA > 0.9) to remove poor signals (Fig. S4). Filtering by these thresholds                  

does not alter the total number of analytes marked as suitable for quantification and the FDR                

remained below 1% (Fig. S6). A final AvG score threshold of 0.1 was adopted. FDRs computed                

using these thresholds were always < 1.0%. 

 

AvG ensures high accuracy and precision 

 

The precision and accuracy of AvG were evaluated using the dilution series of the 95 synthetic                

phosphopeptides that were spiked into the HEK293T digest. A typical AvG performance on the              

spiked-in synthetic peptide S[+80]LTAHSLLPLAEK is shown in Fig. 2A. Skyline’s initial           

extraction of signals from this peptide is incorrect in some runs, due to misassignment of peak                

boundaries. These aberrant signals cause departure from the expected linear relationship           

between concentration and peak area (r2 = 0.44, Fig. 2A, top). After curation by AvG, the                

expected linear relationship is recovered (r2 = 0.99, Fig. 2A, bottom). 

 

There was marked improvement for aggregate measurements of all 95 synthetic peptides after             

application of AvG (as compared to initial, unoptimized Skyline extractions) in several figures of              

merit (Fig. 2B). The precision, measured by the CVs of triplicates, improved from 43.2% to               

5.6%. The correlation coefficient between peptide concentration and peak area improved from            

r2=0.85 to r2=0.99. Improvements in the fraction of measurements with less than 20% absolute              

error (our definition of accuracy, see Supp. Methods) were also evident. Finally, the relative              

quantification accuracy was also evaluated. We calculated the ratios between the mean area of              

each calibration point to the mean area of the fourth calibration point (P4 in Fig. 2C). The                 
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distribution of measured ratios after AvG refinement is clearly much tighter and closer to the               

expected values.  

 

 

 
Figure 2: AvG improves quantitative figures-of-merit in a calibration curve. 95 synthetic            
phosphopeptides were spiked into a HEK293T whole cell digest to create a 5-point calibration              
curve (5 samples were analyzed in triplicate). (A) Calibration curve before (top) and after              
(bottom) curation by AvG for peptide S[+80]LTAHSLLPLAEK. In this case, AvG automatically            
corrected the peak boundaries for this peptide improving curve linearity. (B) Figures-of-merit            
summarising the results for all synthetic peptides, pre- and post-optimization: % CV of             
triplicates, r2 values of linear fits, and absolute percent error of measurements relative to the               
known concentration. Dashed lines indicate 20% thresholds. The box plot elements are: center             
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,             
outliers (C) Expected vs. observed ratiometric quantification, pre- and post-optimization. P1 to            
P5 represent the points of the calibration curve in increasing order of concentration. The ratios               
between the mean area of each calibration point to the mean area of the fourth calibration point                 
(P4) are shown here. The dashed lines represent the expected ratios (0.125, 0.25, 0.5 and 2)                
and the boxplots show the distribution of the measured ratios. The boxplot elements are the               
same as described for panel B. 
 

 

AvG results are concordant with expert manual curation 
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To further evaluate the performance of the automated data curation, we applied AvG to a               

reduced-representation phosphoproteomics dataset obtained for our LINCS project19. This         

dataset, acquired in DIA mode, had previously been manually curated by an expert in our               

laboratory, which we consider the gold-standard against which other approaches were           

compared. We curated data across 96 samples for 95 phosphopeptides for which            

isotopically-labeled heavy peptide counterparts were present. For the “unoptimized” analysis,          

the 5 most intense transitions from the spectral library were chosen and the peak boundaries               

were defined by Skyline. For the optimized version, all possible b- and y-ions above b 4 and y4                 

were extracted and subjected to further curation by AvG. AvG was run in two modes: 1) “open”                 

curation, where no subscore or composite score filters were applied, and 2) “filtered” curation,              

where subscore filters were introduced (see discussion of filtering above). 

 

The comparison of light-to-heavy ratios between the manually curated and unoptimized           

analyses (Fig. 3A) had many points deviating from the ideal x=y line. After “open” curation by                

AvG (Fig. 3B), many fewer points deviated from this line. The disagreements that remained              

could be explained by peptides where AvG chose different transitions than the manual curator,              

producing discrepant light-to-heavy ratios. These differences were enhanced if either the light or             

the heavy peptide had low intensity. In that case, any small change in the signal would have a                  

large impact on the ratio. The results of filtered curation correlated even better with manual               

curation (r=0.99, Fig. 3C). Signals creating discrepancies in the open curation analysis were             

filtered out showing that they were derived from low-quality data. 

 

Additionally, AvG improved the data completeness. Analysis of 190 precursors and 18240            

individual measurements was theoretically possible (95 peptides x 2 isotopic label states x 96              

samples). AvG improved the data completeness over unoptimized analysis and even manual            

curation (19% and 12%, respectively, at the measurement level, Fig. 3D). Overall, the data              

curation by AvG enabled the quantification of 92% of all peptides with data completeness of               

79%. AvG performed its curation of this dataset in < 1 hr of unsupervised time, while typically it                  

takes a manual curator > 10 hours of “hands-on” work. 
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Figure 3: Avant-garde equals the performances obtained by expert visual inspection and            
manual validation.  
We focused on 95 phosphopeptides, and their isotopically labeled heavy peptide counterparts, 
analyzed in a cohort of 96 phospho-enriched samples. The dataset was initially analyzed using              
Skyline and manually curated by an expert. The scatter plots compare results of light-to-heavy              
ratios of the (A) unoptimized dataset, (B) the AvG “open” curation dataset, and (C) the AvG                
filtered curation dataset to the manually curated dataset. (D) Data completeness measured after             
filtering the data for quantitative suitability at the measurement and at the analyte level. 
 

Evaluation of AvG with LFQBench 

 

We asked whether AvG could further improve quantification when applied to the leading DIA              

benchmarking dataset in the field, LFQBench 11, as compared to the many tools with which it has                

already been analyzed. This dataset was collected on a time-of-flight mass spectrometer,            

resulting in different data characteristics (resolution, mass accuracy, baseline noise level) than            

the Orbitrap-class data on which AvG was developed. 
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The example shown in Fig. 4 compares the basic Skyline analysis to the AvG curation of the                 

LFQBench HYE110 dataset, acquired with a SWATH method with 64 variable m/z windows11.             

The two samples are each mixtures of three complex proteomes - E. coli, human and yeast -                 

formulated as shown in Fig. 4A. Three expected ratios are possible when comparing sample A               

to B (0.1, 1 and 10 for the E. coli, human and yeast peptides respectively). The results extracted                  

using Skyline show that a large number of ratio data points deviate from the expected values                

(Fig. 4B). Even the centers of the distributions of ratios for the non-human proteomes did not                

match their expected values. The median percent errors were 373% for E. coli and 84% for                

yeast. These deviations also affected the precision of the measurement, calculated for triplicate             

values (median CV of 15.1%, 7.3%, and 19.3% for E. coli, human and yeast peptides               

respectively, Fig. 4D). 

 

After curating and filtering the data with AvG, the ratio distributions were much closer to the                

expected values (Fig. 4C). The median A/B ratio for each proteome was 0.11 ± 0.015 for E. coli,                  

1.03 ± 0.09 for human, and 11.24 ± 1.91 for yeast. The precision improved dramatically (median                

CV of 5.8%, 5.7 %, and 6%; Fig. 4D), as did the accuracy (median % error 5% and 19% for E.                     

coli and yeast respectively; Fig. 4E). 

 

AvG produced very conservative results. The total number of reported peptides after curation             

was lower than initially reported by the upstream tools. We wanted to evaluate the quality of the                 

data in both pre- and post-curation analyses. To do this, we “marked” peptides as suitable for                

quantification by independently applying AvG’s third scoring/filtering module (Supp. Meth., and           

Figs. S7 and S8). In the unoptimized analysis, only 34% of over 240,000 initially reported               

measurements were marked as suitable according to our metrics. After the signal curation by              

AvG this fraction increased to 52%. This implies that AvG improves the number of peptides that                

can be quantified accurately and precisely (Fig. 4F), but that the quantitative suitability for a               

large number of analytes remained suspicious. 

 

 
 
 

12 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/565523doi: bioRxiv preprint 

https://paperpile.com/c/vsdiFI/JrM5E
https://doi.org/10.1101/565523
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 4: Evaluation of AvG with LFQBench data. (A) The composition of the LFQBench              
samples by species proteome. (B,C) Results of the relative quantification and distribution of the              
experimental ratios obtained in the unoptimized dataset (B) and the AvG-curated dataset (C).             
Each dot represents a ratio calculated for a given peptide in a given run. The dashed lines                 
represent the expected ratios. (D) The coefficient of variation and (E) the percent error for each                
proteome for the uncurated (top) and curated (bottom) dataset are shown. The vertical dashed              
lines demarcate the 20% threshold. The box plot elements are: center line, median; box limits,               
upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (F) The            
percentage of measurements meeting the criteria for quantitative suitability (AvG module 3) is             
shown before and after curation with AvG. 
 

 

Extended benchmarking of AvG demonstrates that it produces precise and accurate data 
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To further evaluate AvG, we created a complex benchmarking set of 4 samples consisting of a                

mixture of three complex proteomes. The total amount of protein and the proportion of the               

human proteome was kept constant in all samples, while the proportion of E. coli and yeast                

varied (Table 1, Fig. S9). Six pairwise combinations of the samples are possible, resulting in 12                

“ground truth” ratios ranging from 1.2-fold to 10-fold, plus a constant 1:1 ratio of human peptides                

for all possible comparisons. This experimental design enabled the estimation of reproducibility            

across many MS runs having different sample compositions, with some compositions more            

prone to interferences than others. 

 

 
 
Table 1: Expected ratios of the pairwise relative quantification of samples in the extended              
benchmarking dataset. From the 4 samples, 6 pairwise combinations can be obtained for             
relative quantification. This table summarizes the expected ratios for each proteome and each             
comparison. 
 

The resulting dataset has a large peptide abundance dynamic range and emulates ratios close              

to typical thresholds of biological significance for evaluation of DIA analysis tools11,20. We report              

results at the peptide level (not protein level), as it more accurately reflects the direct               

measurements made by the mass spectrometer. Protein “roll-up” can mask peptide           

inaccuracies. We used our DIA benchmarking dataset to evaluate the results of the widely-used              

mProphet tool compared to data curation with AvG. 

 

The results of the relative quantification accuracy for the baseline mProphet analysis (Fig.             

S10A) showed high variance and large deviations from the expected values. This phenomenon             

was readily observed when examining the distribution of ratios for the human peptides, which all               

should have a nominal ratio of 1:1 in comparing any two samples (Fig. S10A, bottom panel).                

While these large deviations were more prominent at low intensity, they were observed             

throughout the entire intensity range. Summarizing across all 6 pairwise comparisons, we            

observed MAD = 0.20 and 𝜎=1.94 around the expected ratio of 1:1. In practical terms, this                

14 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/565523doi: bioRxiv preprint 

https://paperpile.com/c/vsdiFI/PvIed+JrM5E
https://doi.org/10.1101/565523
http://creativecommons.org/licenses/by-nc-nd/4.0/


means that any ratio derived from mProphet results ranging from 0.25:1 to 4:1 (+/- 2𝜎) was not                 

statistically different from 1:1. Relative quantification of the pre-defined ratios for the E. coli and               

yeast peptides was also poor, with a mean percent error of 59% for E. coli-derived ratios and                 

178% for yeast peptides. 

 

After refining the same dataset using AvG, relative quantification accuracy improved           

dramatically (Fig. S10B). Summary statistics for the human peptides improved to MAD = 0.13              

and 𝜎=0.27, allowing detection of significant differences at a threshold of 1.54-fold. Relative             

quantification of the post-defined ratios for the E. coli and yeast peptides improved, with a mean                

percent error of 17% for E. coli-derived ratios and 18% for yeast peptides. The FDR calculated                

after refinement was 0.15% at the measurement level and 0.3% at the peptide level. When               

scoring mProphet results with AvG metrics, it is clear that many peaks would fall below               

thresholds that we considered reliable for quantification (Fig. S10C). Improvement in all figures             

of merit (CV, accuracy, % error, and linear goodness-of-fit) was observed after AvG curation              

(Fig. S10D). While the total number of peptide analytes dropped after AvG curation, we are               

confident that these were the most reliable for use in downstream quantitative analyses. 

 

Performance of AvG under conditions emulating real biological data 

 

Detection of changes in protein levels between two sample classes (e.g., diseased vs. healthy,              

treated vs. control) is a major paradigm for quantitative proteomics. To evaluate whether AvG              

curation would help achieve this goal, we simulated biological data to create a realistic scenario               

in which most peptides in the data set were “unchanged,” while a small minority were up- or                 

down-regulated. This was practically achieved by downsampling the benchmarking data to           

include 90% human analytes (3000 peptides, unchanged), 5% E. coli peptides (positive            

fold-changes), and 5% yeast peptides (negative fold-changes). The analytes were chosen at            

random from the larger pool of peptides, allowing us to bootstrap the analysis by selecting               

different subsets. 

 

We calculated ratios of peptides between the different sample compositions before and after             

AvG curation, and compared them to the expected ratios (Table 1). Significance (p) values were               

assigned to the ratios using a moderated t-test and corrected for multiple hypothesis testing 21.              

Peptides were classified as differentially expressed if their adjusted p-value was lower than 0.05              
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and their absolute fold change was > 2σ of the fold changes for the (unchanged) human                

peptides present in the downsampled data, and considered “accurate” if their observed ratio             

was 80-120% of expected. Knowledge of the species-of-origin for each peptide allowed us to              

classify results as true- or false-positive. 

 

AvG improved the ability to detect changes in protein expression. As an example, we compared               

sample A to B before and after AvG curation (Fig. 5A). The improved accuracy and precision                

obtained after AvG resulted in a much higher number of true positive hits (blue and red full                 

disks) and lower number of false positives hits (green full disks not within the grey area).                

Additionally, the number of accurate measurements (observations between the dashed lines)           

increased after curation. 

 

To quantify the improvement in performance, we calculated the recall, % of “accurate”             

measurements, and false positive rates for detection of differentially expressed peptides across            

the range of fold-changes using 1000 bootstrap iterations as described in Supp. Methods. The              

results are illustrated in Fig. 5B, with the shaded areas indicating improvement in             

figures-of-merit achieved after AvG curation. AvG increased the recall and led to a higher              

number of correct calls of significance for differentially expressed peptides (Fig. 5B, left). After              

curation, a recall higher than 95% was achieved for any absolute fold change above 2.0. In                

comparison, unoptimized data could only achieve a recall of ~80% even for 10-fold changes. In               

addition, we observed an improvement in the percentage of true positive hits that were              

classified as being accurate, with a median improvement of 47% (Fig. 5B, middle). Furthermore,              

the false positive rate decreased from a median value of 38% to a median of 25%. 

 

The presence of the unchanging proportion of human peptides across all samples allowed us to               

estimate the minimum detectable fold change (estimated as μ +/- 2σ) before and after data               

curation. The threshold for uncurated data was 2.3-fold, but fell to 1.4-fold after AvG. Sensitivity               

(recall) was 70% at this threshold, and 85% of the differential peptides had a calculated ratio                

within 20% of the true ratio. This demonstrated that we can confidently detect relatively small               

changes in peptide abundance with properly curated data. 
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Figure 5: Detection of differentially expressed peptides in unoptimized and curated data. (A) An              
example of a pairwise comparison (sample A vs. B), with volcano plots of unoptimized (left) and                
curated (right) data. Each point represents an E. Coli (red), Yeast (blue) or Human (green)               
peptide. The shaded regions demarcate ranges where detection of differential expression is not             
statistically viable. The dashed lines represent accuracy boundaries of +/- 20%.(B) Bootstrap            
(n=1000) analysis of downsampled datasets for recall (sensitivity), accuracy, and false positive            
rate. Shaded regions indicate improvement in area under the curve after AvG curation. Error              
bars connote the standard deviation across bootstrap iterations. 
 

Discussion 
 

Data curation is an extremely important but often overlooked step in transition-based            

quantitative proteomics. We have demonstrated that AvG can curate DIA data in an automated              

manner. AvG tailors the choice of transitions to each dataset to minimize noise and increase the                

reliability of quantification. A key feature of AvG is that each peptide is reassessed with an                

independent global scoring module after curation to estimate a dataset-level FDR for            

quantitative suitability, not just detection. Counterintuitively, the number of detected peptides           

may go down after AvG, but the quality of quantitation for those peptides will be higher. We                 

have empirically demonstrated that the AvG score tends to be low for “decoy” analytes, and               
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data curated with AvG consistently produces FDRs < 1.0% at the thresholds we have defined.               

Other software tools for DIA analysis typically simply extract the 5-10 most intense transitions              

from the spectral library. This approach does not guarantee interference-free transitions for            

analyzing complex biological samples, where curation is paramount. 

 

An alternative approach is to select the transitions that are predicted to be unique to their                

precursor ion using tools like SRMCollider22. However, interferences are difficult to predict due             

to run-to-run chromatographic variability and changes in sample composition. These tools do            

not consider retention time or fragment ion intensities, hindering accurate curation. A priori             

prediction of interference, reliant on protein databases and other user choices, does not             

anticipate real-world LCMS data artifacts. Another a priori approach to curation,           

SWATHProphet23, uses spectral libraries embedded with retention time information to anticipate           

quantitative interferences. In this case, library completeness (again traceable to experimental           

and user decisions) governs the success of the approach. In contrast, AvG uses an a posteriori                

approach to curate data that explicitly considers LCMS artifacts and utilizes prior knowledge but              

is not limited by it. 

 

SWATHProphet, based on the mProphet discriminant score, also implements an approach for a             

posteriori flagging of poor transitions. Its application requires iterative cycles of optimization and             

data re-extraction, and again relies on spectral libraries as the primary source of interference              

detection. Further, it focuses on improving quantitation for peptides that already have a high              

mProphet score, rather than potentially improving scores of borderline peptides. This approach            

is apt to produce false negatives and will fail to rescue suitable data signals. AvG focuses on                 

identifying the “cleanest” transitions that are the best suited for quantification, and can improve              

signal quality for marginal cases. It does not require iterative cycles and is not bound to any                 

specific DIA or PRM workflow, as it is fully implemented as an external tool in Skyline. 

 

The objective of quantitative proteomics is to identify differentially expressed proteins or            

peptides. Therefore, it is important to evaluate new methods with scenarios that mimic             

conditions found in real biological milieux. For us, that meant creating a dataset where the               

majority of peptide analytes were unchanged between two sample classes, while a minority             

were changing with a known ratio. Moreover, we needed to evaluate ranges of borderline              

biological significance (1.5 - 2.0-fold) as well as extreme significance (>5-fold) to truly assess              
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method performance. By downsampling and bootstrapping a very large DIA dataset of mixed             

multi-species proteomes, we could evaluate 1000s of such simulated datasets to test the             

robustness of AvG. We were pleased to find that AvG could enable discrimination of changes as                

low as 1.4-fold with fairly high sensitivity and accuracy, and that, across the board, it can add                 

value to the work done by other DIA analysis tools by improving quantitative suitability of the                

data. To us, this means that it can help produce more accurate and reproducible quantification               

results, providing more granularity in the elucidation of the complex dynamics of proteomes. 

 

AvG’s ensemble-driven scoring strategy is designed to produce very conservative results by            

penalizing poor-quality signals. Its combined score is a weighted product of run-specific and             

dataset-wide subscores that intuitively map to common LCMS data quality metrics. AvG            

penalizes sets of transitions for peptides with any single poorly-scoring metric, making it very              

sensitive to interferences. However, its evolutionary optimization approach ultimately selects          

sets of transitions that produce the lowest levels of noise and the highest level of parsimony for                 

signals across the entire dataset. Application of AvG improves selectivity, accuracy, and            

reproducibility of quantitative DIA proteomics data. The resulting curated data is comparable to             

the current gold-standard of expert human curation, but obtainable in a fraction of the time.               

AvG’s compatibility with a variety of acquisition modes (DIA or PRM), data sources (e.g.              

Orbitrap and TOF), upstream DIA identification tools (e.g. EncyclopeDIA, Specter, mProphet,           

etc.), and Skyline integration should make it attractive for broad utilization in the field. 
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