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Abstract

Accumulating experimental and clinical evidence suggest that the immune
response to cancer is not exclusively anti -tumor. Indeed, the pro-tumor
roles of the immune system — as suppliers of growth and pro-angiogenic
factors or defenses against cytotoxic immune attacks, for example — have
been long appreciated, but relatively few theoretical works have considered
their effects. Inspired by the recently proposed “immune-mediated” theory of
metastasis, we develop a mathematical model for tumor-immune interactions
at two anatomically distant sites, which includes both anti - and pro-tumor
immune effects, and the experimentally observed tumor-induced phenotypic
plasticity of immune cells (tumor “education” of the immune cells). Upon
confrontation of our model to experimental data, we use it to evaluate the im-
plications of the immune-mediated theory of metastasis. We find that tumor
education of immune cells may explain the relatively poor performance of im-
munotherapies, and that many metastatic phenomena, including metastatic
blow-up, dormancy, and metastasis to sites of injury, can be explained by
the immune-mediated theory of metastasis. Our results suggest that further
work is warranted to fully elucidate the pro-tumor effects of the immune sys-
tem in metastatic cancer.
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1. Introduction

Although metastasis is implicated in over 90% of all cancer related deaths
(Gupta and Massague, 2006; Liu and Cao, 2016; Valastyan and Weinberg,
2011), a full understanding of the process remains elusive. Accumulating
evidence, including the observation that patients who received peritoneove-
nous shunts that inadvertently released large numbers of cancer cells directly
into the patients’ blood stream saw no increased rate of metastasis (Tarin
et al., 1984), and the immune-mediated preparation of the pre-metastatic
niche (PMN) by Kaplan and collaborators (Kaplan et al., 2005), has brought
into question the prevailing view of metastasis as a passive, random process.
Of particular interest is the recent hypothesis that the immune system —
in addition to its well-known anti -tumor role — plays an active pro-tumor
role in metastatic disease Cohen et al. (2015); de Mingo Pulido and Ruf-
fell (2016); Shahriyari (2016). Well supported by experimental and clinical
observations, this hypothesis and its consequences has yet to be fully investi-
gated. The goal of the present work is to begin this investigation through the
development and analysis of a mathematical model for the immune-mediated
theory of metastatic cancer. In the following section, we briefly highlight the
biological evidence for this theory to justify our mathematical model, which
is introduced in Section 2. We also include a short discussion of previous
mathematical models of metastasis in order to contrast them against our
approach.

1.1. The Immune-Mediated Theory of Metastasis

A link between the immune system and cancer has been noted for a
long time (Balkwill and Coussens, 2004; Walter et al., 2011), with investiga-
tors referring to tumors as “wounds that do not heal” (Dvorak, 1986, 2015)
or suggesting that they are the result of an uncontrolled healing process
(Meng et al., 2012). Recently, “avoiding immune destruction” and “tumor-
promoting inflammation” were identified as an emerging hallmark and an en-
abling characteristic of cancer, respectively (Hanahan and Weinberg, 2011).
More specifically, a number of authors have synthesized the accumulating evi-
dence implicating the immune system in metastasis to formulate the immune-
mediated theory of metastasis (Cohen et al., 2015; Shahriyari, 2016). In this
section we present a brief summary of the relevant evidence to support this
theory organized using the “metastatic cascade” framework. Within the
well-used metastatic cascade framework, metastasis is seen as a sequence of
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Figure 1: Cartoon model of the immune-mediated model of metastasis. Based on figure
from Chaffer and Weinberg (2011).

biological processes beginning with the development, growth, and local inva-
sion of a primary tumor, and followed by the preparation of a pre-metastatic
niche, entrance into, travel through, and exit from the vascular system, and
concluding with the growth and development of a secondary, metastatic tu-
mor. The metastatic cascade is depicted in Figure 1, with special attention
paid to the immune effects at each step. We now highlight the specific im-
mune cells involved at each step of the metastatic cascade and outline their
roles.

Step (1): Primary Tumor Growth and Local Invasion: Before
cancer can spread throughout the body, an initial primary tumor must first
develop (see Figure 1, (1)). Immune involvement in this stage of metastasis
has long been acknowledged (Dvorak, 1986; Hanahan and Weinberg, 2011).
A large amount of research suggests that the role of the immune system in tu-
mor progression is hardly straightforward (de Mingo Pulido and Ruffell, 2016;
Erdman and Poutahidis, 2010). Indeed, while the anti -tumor roles of the im-
mune system are well known — the cytotoxic effects of natural killer (NK)
cells, “classically activated” M1 macrophages, and CD8+ T cells, for exam-
ple (Joyce and Pollard, 2009) — many immune cells have also been shown
to play pro-tumor roles in primary tumor development (de Mingo Pulido
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and Ruffell, 2016; Joyce and Pollard, 2009). For example, regulatory T
cells (Tregs), T helper type 2 (Th2) cells, neutrophils, and “alternatively”
activated (M2) macrophages can all promote growth through inhibition of
cytotoxic immune responses (Joyce and Pollard, 2009) or promotion of an-
giogenesis (de Mingo Pulido and Ruffell, 2016). For extensive reviews of
the specific roles played by different immune cells, please see the reviews by
de Mingo Pulido and Ruffell (2016) and Joyce and Pollard (2009).

In addition to the contradictory anti- and pro-tumor roles played by im-
mune cells, there is evidence suggesting that tumors can “convert” or “edu-
cate” anti -tumor cytotoxic (CT) immune cells into pro-tumor immune cells
(Oleinika et al., 2013). Shahriyari (2016) has proposed that, at sites of chronic
inflammation, the local immune cells become adapted to the wound healing
process, resulting in increased proliferative signaling and decreased cytotoxic
activity. Liu et al. (2007) have demonstrated that tumor-derived transform-
ing growth factor (TGF) β, derived from the murine prostate tumor TRAMP-
C2 and renal cell carcinoma RENCA, can induce the transition of anti -tumor
CD4+CD25− T cells into pro-tumor CD4+CD25+ Tregs. Such results allow
for the notion of “tumor educated” (TE) immune cells (Liu and Cao, 2016); a
term that will be used throughout this paper. This experimentally-validated
notion of phenotypic plasticity amongst sub populations of immune cells is
not entirely new, and has been considered for some time in the context of
macrophages, with a continuum between anti -tumor M1 macrophages and
pro-tumor M2 macrophages being proposed (Balkwill and Coussens, 2004;
den Breems and Eftimie, 2016).

Step (2): Preparation of the Pre-Metastatic Niche: Often, metas-
tatic dissemination is viewed as a passive process in which cancer cells shed
from the primary tumor establish metastatic tumors at sites “downstream”
of the primary tumor, in locations that the circulating tumor cells (CTCs)
become stuck in small vessels (Chaffer et al., 2011; Hiratsuka et al., 2006). It
has been shown, however, that this model of metastasis can only account for
approximately 66% of all observed patterns of metastasis (Chambers et al.,
2002), suggesting that there are additional factors to consider. In an update
of Paget’s classic “seed and soil” hypothesis (Paget, 1989), the concept of
a pre-metastatic niche (PMN) has been developed by several investigators.
While the precise definition of a PMN is still being debated (Qian and Pol-
lard, 2010), the key concept is that the PMN is a supportive setting in which
metastatic tumors can more efficiently establish themselves, and which may
(Dos Anjos Pultz et al., 2017) or may not be influenced by the primary tumor
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itself.
Of particular interest is the implication of the immune system in the

development of the PMN. Numerous cells, proteins, and factors have been
implicated in the preparation of the PMN, ranging from (primary tumor
associated) vascular endothelial growth factor (VEGF)-A, tumor necrosis
factor (TNF) α and TGF β (Liu and Cao, 2016), to immuno-attractant S100
proteins (Joyce and Pollard, 2009; Kitamura et al., 2015; Qian and Pollard,
2010) and matrix-degrading MMPs (Kitamura et al., 2015), to bone marrow
derived cells (BMDCs) (Coughlin and Murray, 2010; Joyce and Pollard, 2009;
Kaplan et al., 2005) and platelets (Joyce and Pollard, 2009; Shahriyari, 2016)
(which can produce their own pro-tumor factors). The work of Kaplan and
collaborators (Kaplan et al., 2005) showed that, not only did BMDCs arrive
at the site of future metastasis prior to the arrival of any cancer cells, but
once cancer cells did arrive, they localized to regions of high BMDC density,
suggesting a supportive role for immune cells in metastatic establishment.
Further implication of the immune system in metastatic establishment comes
from Shahriyari (2016), who has suggested that wound healing sites, which
are naturally populated with immune cells producing growth promoting and
CT immune inhibiting factors, may act as a metastasis-supporting PMN,
thereby providing a possible explanation for observations of metastasis to
sites of injury (Kumar and Manjunatha, 2013).

Taken together, such results suggest a supportive role for the immune
system in metastatic establishment, wherein the immune cells may aid in
successful establishment of newly arrived cancer cell(s) by supplying growth
factors (ex: platelets secreting pro-growth and angiogenic factors such as
stromal-derived factor (SDF) 1 (de Mingo Pulido and Ruffell, 2016)) and pro-
tection from CT immune cells (ex: Tregs or adapted immune cells (Shahriyari,
2016)) (Figure 1 (2)).

Step (3): Intravasation: In order to establish a secondary tumor at
an anatomically distant location from the primary tumor, cancer cells must
travel from the primary site to the secondary site. Although cancer cells
can be found in lymph nodes, it is believed that the major method of dis-
tant dissemination is through the vascular system rather than the lymphatic
system (Chambers et al., 2002; Joyce and Pollard, 2009). In order to gain
access to the vascular system, cancer cells, or small clusters of cancer cells
(Friedl and Mayor, 2017), must leave the parenchyma and enter a blood ves-
sel in a process called intravasation. While the precise mechanism underlying
intravasation remains obscure, tumor-associated macrophages (TAMs) have
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been implicated in the process. In fact, specific studies have reported that
intravasation occurred only where perivascular TAMs were located (see Joyce
and Pollard (2009); Liu and Cao (2016) and references therein) (see Figure
1 (3)).

Step (4): Circulation: Upon entrance into the blood vessel, the cancer
cells are subject to a litany of new dangers, including shear forces and immune
defenses (see Figure 1 (4)). It is believed that platelets play a critical role in
the protection of the cancer cell clusters while in circulation. Not only can
they protect from the effects of shear force by forming clumps with the cancer
cells, they may also act as shields against cytotoxic immune attack from NK
cells (Joyce and Pollard, 2009; Kitamura et al., 2015). While the precise
role of platelets is still debated (Coupland et al., 2012; Shahriyari, 2016),
it has been shown that treatments with anti-coagulant and non-steroidal
anti-inflammatory drugs (NSAIDs) can significantly decrease the rates of
metastasis (Joyce and Pollard, 2009; Marx, 2004).

Step (5): Extravasation: It has been estimated that a primary tumor
can shed tens of thousands of cells into the vasculature every day (Weiss,
1990). Experimental models of metastasis suggest that upwards of 80% of
all those cells shed will successfully exit from the blood vessel (extravasate)
at a distant secondary site (Cameron et al., 2000; Luzzi et al., 1998). As is
the case with intravasation, macrophages have been implicated in the reverse
process of extravasation (Kitamura et al., 2015; Liu and Cao, 2016; Qian and
Pollard, 2010). In addition to the survival and growth factors (ex: TGFβ,
CCL2, VEGF-A) supplied by metastasis-associated macrophages (MAMs) as
the tumor cells work to exit the vessel and enter the surrounding parenchyma
(see Figure 1 (5)), tumor-MAM contact has also been shown to aid in can-
cer cell movement through the vessel wall. Platelets have also been shown
to play a pro-tumor role in this setting (Kitamura et al., 2015; Shahriyari,
2016), however they are not necessary for successful extravasation (Coup-
land et al., 2012). Another immune cell type that has been implicated in
metastatic disease are neutrophils (Demers et al., 2012; Park et al., 2016)
through the use of neutrophil extracellular traps (NETs) which can trap
circulating tumor cells at a distant, hospitable site, or even increase local
vascular permeability, allowing for easier extravasation of cancer cells into
the surrounding parenchyma.

Step (6): Metastatic Establishment: Even though a large majority
of cells shed from the primary tumor will successfully extravasate at a sec-
ondary site, less than 0.01% of them will successfully colonize a macroscopic
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metastatic tumor (Cameron et al., 2000; Luzzi et al., 1998) (see Figure 1 (6)).
The experimental results of Cameron and colleagues (Cameron et al., 2000;
Luzzi et al., 1998) suggest that this precipitous drop in survival occurs after
the cells transition from quiescent to proliferative states, whereby they be-
come more vulnerable to local defenses. While this transition can occur rela-
tively soon after initial metastatic seeding of the secondary site, it is often the
case that the newly arrived cancer cells lay dormant for an extended period
of time before entering a proliferative phase (Hanahan and Weinberg, 2011).
A possible explanation for the low efficiency of establishment observed may
be found in an effective CT immune response (Eikenberry et al., 2009). How-
ever, the immune system plays contradictory roles in this step of metastasis,
with a pro-tumor response mediated by BMDCs (Hanahan and Weinberg,
2011; Joyce and Pollard, 2009) or MAMs (Kitamura et al., 2015), which pro-
vide survival and proliferation signals, or inflammatory stromal cells (Joyce
and Pollard, 2009), which provide protection from the cytotoxic effects of NK
cells. Additionally, immune preparation of the PMN (see previous section)
may also support metastatic development, and similar pro-tumor immune
effects on growth and development may be common between primary and
secondary sites.

1.2. Previous Mathematical Models of Metastasis

Metastasis, with its multi-step complexity and apparent stochasticity, is
relatively difficult to study experimentally. Consequently, there is a great
deal of uncertainty concerning the underlying dynamics of the process. The-
oretical and mathematical models of the process are therefore of significant
interest as they allow for detailed theoretical investigations of the underlying
processes in order to test hypotheses and guide future biological research. In
this section, we present a brief summary of the most relevant mathematical
descriptions of metastasis that have been previously investigated.

Focusing on the supposed stochasticity of the process, many authors have
developed stochastic models for cancer metastasis. From a stochastic model-
ing framework, Liotta et al. (1977) derived an expression for the probability of
being metastasis-free as a function of time from primary tumor implantation.
The Michor lab has spent significant effort investigating stochastic models for
the emergence of the metastatic phenotype (Haeno and Michor, 2010; Michor
et al., 2006). The natural history of cancer — that is, determining dates
of disease initiation, first metastasis inception, etc. from clinical data — is
the focus of the stochastic models emerging from the Hanin group (Hanin
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et al., 2006; Hanin and Rose, 2018). Recently, Frei et al. (2018) introduced
a spatial model for cancer metastasis that takes the form of a branching
stochastic process with settlement, providing one of the first models which
explicitly accounts for travel between metastatic sites.

Based on their ease of analysis in comparison to stochastic models, many
investigators have chosen to analyze deterministic models of metastasis. Saidel
et al. (1976) introduced one of the earliest models of metastasis in the 1970s,
using a simple compartmental ordinary differential equation (ODE) model
that took into account the different steps in the metastatic cascade. More
recently, Iwata (Iwata et al., 2000) introduced a partial differential equation
(PDE) model describing the colony size distribution of metastases that takes
the form of a transport equation subject to a non-local boundary condition.
The Iwata model has since been adapted, analyzed, and confronted to data
by several investigators — notably Benzekry and colleagues (Baratchart
et al., 2015; Benzekry, 2011; Benzekry et al., 2014, 2017) — and has pro-
vided important insights into, among others, the effects of primary resection
on metastatic tumor growth. To investigate the role of immune cell traffick-
ing between metastatic sites and the so-called abscopal effect — in which
cytotoxic treatment at one tumor site elicits an effect at a secondary site
— the Enderling group has developed a model for tumor-immune interac-
tions at multiple sites (Poleszczuk et al., 2016, 2017; Walker et al., 2018,
2017). While these works provide insight regarding tumor-immune dynamics
in the metastatic setting, they are unable to provide details of the metastatic
process itself. Franßen et al. (2018), on the other hand, have developed a
multi-site model with spatially explicit dynamics at each of the sites that
successfully captures the steps of the metastatic cascade.

Our model builds on Kuznetsov’s tumor-immune model (Kuznetsov et al.,
1994) which has been the starting point for several investigators (Kuznetsov
and Knott, 2001; Poleszczuk et al., 2016; Walker et al., 2018). Whereas mod-
eling of tumor-immune dynamics has been a popular topic for some time
(see the reviews in (Eftimie et al., 2011, 2016)), the number of such models
that include pro-tumor immune effects are limited. den Breems and Eftimie
(2016) incorporated M1 and M2 type macrophages in a 6-dimensional ODE
model of tumor immune dynamics which included phenotypic switching be-
tween anti -tumor M1 macrophages and pro-tumor M2 macrophages. A more
refined model of macrophage phenotypic plasticity was included in a more
recent paper (Eftimie and Eftimie, 2018) concerning tumor-immune dynam-
ics in the presence of an oncolytic virotherapy. Wilkie and Hahnfeldt (2017)
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have also developed a model of tumor-immune interactions that includes pro-
tumor immune effects by including an immune-dependent carrying capacity
for the tumor population. While a few models include the pro-tumor effect of
the immune response, this effect has not yet been included in a mathematical
model for metastasis, as we do here.

1.3. Paper Outline

Section 2 is devoted to the development and basic analysis of the two-site
model of tumor-educated immune mediated metastasis, including a subsec-
tion on parameter estimation and confrontation of the model to experimental
data (Section 2.3). Once the model has been introduced and parameterized,
we use it in Section 3 to perform three numerical experiments: simulations of
primary resection, immunotherapy, and injury at a secondary site are shown.
Model simulations demonstrate that tumor “education” of immune cells can
significantly impair the effectiveness of immunotherapies and provide a po-
tential explanation for rapid metastatic growth at the sites of injuries. We
conclude with a discussion of our results and conclusions in Section 4.

2. Two Site Model of Immune-Mediated Metastasis

In this section, we describe our model for tumor-immune interactions at
two anatomically distant sites. The modeling assumptions and the model
itself are described in Section 2.1. We present the steady states of the model,
including results concerning stability, in Section 2.2, and Section 2.3 intro-
duces the functional coefficients and the parameter values used in the simula-
tions that are the focus of Section 3. The section concludes with a comparison
of our parameterized model predictions with experimental data from Kaplan
et al. (2005).

2.1. The Model

Let us assume that there are two tumor sites of interest: the primary site,
where the initial tumor develops, and a secondary site where a metastatic
tumor will establish and grow. At both the primary and secondary sites (sub-
scripts i = 1, 2, respectively) we model the time dynamics of four local cell
populations: tumor cells, ui(t), necrotic cells, vi(t), cytotoxic (CT) immune
cells, xi(t), and tumor-educated (TE) immune cells, yi(t). As we are mod-
eling metastatic spread, the tumor cells of interest are those that are highly
tumorigenic. Consequently, the tumor cells in our model can be interpreted
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Primary Secondary
Tumor Cell
Necrotic Cell

CT Immune Cell
TE Immune Cell

Figure 2: Cartoon model of the 8 ODE model of metastasis — Equations (1) – (8). Arrows
indicate positive effects, and flat ends indicate inhibitory effects. Solid lines represent
direct effects and dashed lines denote indirect influence. See text for details. Color figure
available online.

as cancer stem cells (CSCs) or cells possessing the metastatic phenotype (see
Section 1). In any case, we assume that a fraction, θ−1

i , of the tumor cells are
capable of metastasizing. The full model is depicted graphically in Figure
2 and in Equations (1)–(8). The time-evolution of the eight quantities of
interest in our model is governed by the following system of equations:

du1
dt

= γ1(y1)g1(u1)u1 − σ1(x1, y1)u1 − s1u1, (1)

dv1
dt

= θ1σ1(x1, y1)u1 − µ1v1, (2)

dx1
dt

= α1 + λ1(u1, v1)x1 − ρ1u1x1 − ω1x1 − ed1(u1)x1, (3)

dy1
dt

= ed1(u1)x1 − τ1y1 − s̃1y1 + f1(u1)y1, (4)

du2
dt

= γ2(y2)g2(u2)u2 − σ2(x2, y2)u2 + est(v2, y2, x2)s1u1, (5)

dv2
dt

= θ2σ2(x2, y2)u2 − µ2v2, (6)

dx2
dt

= α2 + λ2(u2, v2)x2 − ρ2u2x2 − ω2x2 − ed2(u2)x2, (7)

dy2
dt

= ed2(u2)x2 − τ2y2 + ps̃1y1 + f2(u2)y2. (8)
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The equations above incorporate the following biological assumptions (for
details and references, please see Sections 1 and 2.3):

• In the absence of any immune cells, both tumor cell populations, ui
(i = 1, 2), proliferate according to the density-dependent growth rates,
gi(ui), and perish at some non-negative rate σi(xi, yi), thereby giving
rise to necrotic cells, vi. CT immune cells, xi, can increase this tumor
cell death rate, while TE immune cells, yi, can inhibit this CT immune
response. Hence σi(xi, yi) is decreasing in TE immune population, yi,
and increasing in CT immune population, xi. In addition to their
ability to suppress CT immune activity, TE immune cells can also
stimulate tumor growth according to the increasing, bounded functions
γi(yi).

• Tumorigenic tumor cells are shed from the primary tumor into the sur-
rounding vasculature proportionally to the primary tumor size with
rate s1. A fraction, est(v2, x2, y2), of these cells will successfully navi-
gate the blood stream, arrive at the secondary location, and contribute
to the development of a metastatic tumor. The fraction of such cells
depends on the local immune populations at the secondary site, x2 and
y2, in addition to the necrotic cells populating the secondary site, v2.
The fraction of successful cells, est(v2, x2, y2), is increasing in the TE
immune cells, y2, and necrotic cell populations, v2, and decreasing in
the local CT immune cell population, x2. We assume that establish-
ment is more likely in the presence of necrotic cells (Shahriyari, 2016),
but not impossible in their absence.

• At both sites (i = 1, 2) necrotic cells arise as a consequence of tumor
cell death, and are lysed at rate µi. Assuming that the ui describe only
a fraction of the total tumor burden, we include necrotic cells arising
from the death of non-tumorigenic tumor cells by using the factors θi.

• In addition to natural CT immune cell influx rates, α1,2, both local
tumor cells and necrotic cells induce CT immune responses, described
by the functions λi(vi, xi), which are increasing in both arguments. CT
immune cells perish at rates ωi, and are killed in interactions with tumor
cells with rates ρi. Finally, the local tumor population can induce a
phenotypic transition of anti -tumor CT immune cells into pro-tumor
TE immune cells. This “education” of immune cells is described by the
increasing functions edi(ui), i = 1, 2.
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• In the absence of a tumor population at the primary site, there will
be no TE immune cells. However, once a tumor is established at the
primary site, TE immune cells can accumulate at the primary site in
two ways: (1) by means of a tumor-induced phenotypic transition be-
tween CT and TE immune cell populations, and (2) by direct tumor
recruitment of pro-tumor immune cells governed by the function fi(ui),
i = 1, 2. The TE immune population at the primary site can decrease
through natural death at rate τ1, or through loss into the circulatory
system at rate s̃1.

• A fraction, p, of those TE immune cells shed from the primary site ar-
rive at the secondary site to supplement the previously described meth-
ods of TE immune cell accumulation — namely tumor “education” of
CT immune cells and tumor-mediated recruitment. TE immune cells
at the secondary site perish at rate τ2.

• We have assumed that the only significant shedding events occur from
the primary site, a choice justified by previous theoretical work showing
that shedding from the secondary site had negligible effects on the
observed dynamics (Hartung et al., 2014).

2.2. Steady States

We quickly summarize the steady states of model (1)-(8) and their sta-
bility, without presenting the details of the analysis. Three different steady
state expressions characterize the model:

1. A disease-free steady state, given by

(u1, v1, x1, y1, u2, v2, x2, y2) =

(
0, 0,

α1

ω1

, 0, 0, 0,
α2

ω2

, 0

)
. (9)

2. A metastatic-only steady state, given by

(u1, v1, x1, y1, u2, v2, x2, y2) =

(
0, 0,

α1

ω1

, 0, u2, v2, x2, y2

)
, (10)

where the barred values (when they exist) are defined by the following
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equations:

g2(u2) =
σ2(x2, y2)

γ2(y2)
, v2 =

θ2
µ2

σ2(x2, y2)u2, y2 =
ed2(u2)x2
τ2 − f2(u2)

,

x2 =
−α2

λ2(u2, v2)− ρ2u2 − ω2 − ed2(u2)
.

(11)

3. And a full-disease steady state expression, given by

(u1, v1, x1, y1, u2, v2, x2, y2) = (ũ1, ṽ1, x̃1, ỹ1, ũ2, ṽ2, x̃2, ỹ2) (12)

where the values on the RHS (when they exist) are defined by the
following equations,

g1(ũ1) =
σ1(x̃1, ỹ1) + s1

γ1(ỹ1)
, ṽ1 =

θ1
µ1

σ1(x̃1, ỹ1)ũ1,

x̃1 =
−α1

λ1(ũ1, ṽ1)− ρ1ũ1 − ω1 − ed1(ũ1)
, ỹ1 =

ed1(ũ1)x̃1
τ1 + s̃1 − f1(ũ1)

ũ2 =
est(ṽ2, ỹ2, x̃2)sũ1

σ2(x̃2, ỹ2)− γ2(ỹ2)g2(ũ2)
ṽ2 =

θ2
µ2

σ2(x̃2, ỹ2)ũ2,

x̃2 =
−α2

λ2(ũ2, ṽ2)− ρ2ũ2 − ω2 − ed2(ũ2)
, ỹ2 =

ed2(ũ2)x̃2 + ps̃1ỹ1
τ2 − f2(ũ2)

.

(13)

Representative solutions of the model illustrating the three different steady
states are shown in Figure 3. Explicit conditions to ensure the stability of the
disease-free and metastatic-only steady states are obtained, and presented in
the following proposition.

Proposition 2.1. If

g1(0) < s1 + σ1

(
α1

ω1

, 0

)
,

then extinction of the primary tumor is stable. Further, the disease-free
steady state is stable if and only if both

g1(0) < s1 + σ1

(
α1

ω1

, 0

)
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Figure 3: Solutions of the model (1) – (8) illustrating the three qualitatively different
steady states. Left column: dynamics at the primary site. Right column: dynamics at
the secondary site. Colors as indicated. Convergence to A: disease-free steady state. B:
metastatic-only steady state. C: full disease steady state. Parameters from Table 1 used
in C, and appropriately modified parameters used in A and B according to the conditions
in Proposition 2.1. Color figure available online.
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and

g2(0) < σ2

(
α2

ω2

, 0

)
are satisfied.

Remark 2.2. Note that the expressions for many of the non-trivial steady
states have denominators which could potentially change signs. In order for
these values to be biologically relevant, we insist on non-negativity of all the
steady state expressions. In particular, the denominators cannot be allowed
to change signs in our domains of interest. Using the literature-derived pa-
rameter estimates in Table 1 this requirement is satisfied.

2.3. Parameter Estimation

Numerical exploration of the model necessitates that certain choices are
made for the general functional coefficients in the model (1)–(8). In this
section, we make our choices and parameterize the resulting model. As
a simplifying generalization, we have assumed, as have others (Poleszczuk
et al., 2016), that many of the model parameter values are shared between
primary and secondary sites. This assumption is almost certainly incorrect
(Hanin and Rose, 2018), but as a first approximation we contend it suffices.
Table 1 summarizes the parameter values used in this paper together with
appropriate references (where applicable).

• Tumor cell growth rates, gi(ui), i = 1, 2, are chosen to be of logistic
type,

gi(ui) = ri

(
1− ui

Ki

)
,

where ri and Ki are growth rates and carrying capacities at sites i =
1, 2, respectively. Whereas we recognize that logistic growth is not
the ideal choice for modeling tumor growth dynamics in the metastatic
setting (Hartung et al., 2014), we have chosen to assume logistic growth
to mirror the choices of other investigators (den Breems and Eftimie,
2016; Eftimie and Eftimie, 2018; Kuznetsov et al., 1994; Poleszczuk and
Enderling, 2016). In the simulations presented below, we have used
tumor growth rates and carrying capacities determined in Kuznetsov
and Knott (2001) by fitting experimental data, and which were used
again in more recent work in the setting of abscopal effects (Poleszczuk
et al., 2016).
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• Tumor cell death rates, σi(xi, yi), are chosen to be a product of “switch-
like” hyperbolic tangent functions as used by Olobatuyi et al. (2017).
We include both an increasing version:

ν(x;m,M,A, S) =

M

2

[
tanh

(
6

S − A

(
x− S + A

2

))
− tanh

(
−3(S + A)

S − A

)]
+m,

(14)

which increases from m at x = 0 to m+M as x→∞, and a decreasing
version:

ξ(x;m,M,A, S) =

M
(

1− tanh
(

6
S−A

(
x− S+A

2

))
+m

(
tanh

(
6

S−A

(
x− S+A

2

))
− tanh

(
−3(S+A)

S−A

)))
1− tanh

(
−3(S+A)

S−A

) ,

(15)

which decreases from m+M at x = 0 to m as x→∞. Both of these
“switch-like” functions can be specifically tuned using four parameters:
activation (A) and saturation (S) thresholds together with lower (m)
and upper (m + M) bounds on the domain [0,∞). The tumor cell
death rates are then chosen as the product

σi(xi, yi) = ν(xi;minCi,maxCi, upCi, lowCi)ξ(yi; 0, 1, upDi, lowDi),

which increases in the CT immune cell populations, xi, and decreases
in the TE immune cell populations, yi, i = 1, 2. The only parameter in
this function that we were able to estimate from the literature is the
minimum death rates, minCi, with the estimate coming from previous
theoretical investigations (Orlando et al., 2013; Saidel et al., 1976). All
remaining parameters were estimated conservatively, for example, most
CT immune cell thresholds were chosen to be 15% (activation) and 65%
(saturation) of the disease-free steady state value of CT immune cells
(αi

ωi
, i = 1, 2, which was chosen to be of the order 106 cells by tuning

the parameters αi (den Breems and Eftimie, 2016; Negus et al., 1997;
Steidl et al., 2010)), and TE immune cell thresholds were then chosen
to be an order of magnitude lower than those for CT immune cells.

• To model tumor and necrotic cell mediated immune cell expansion, we
use the successful Michaelis-Menten type function which is a popular
choice in tumor-immune models (Eftimie et al., 2011, 2016; Kuznetsov
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et al., 1994; Poleszczuk et al., 2016). As a consequence of their ubiq-
uity, estimates have been made by several authors for the associated
CT immune cell parameters. We have assumed that CT immune cell
recruitment by tumor cells and necrotic cells is additive, i.e.

λi(ui, vi) =

(
a1iui
b1i + ui

)
+

(
a2ivi
b2i + vi

)
.

We have also included tumor-mediated recruitment of TE immune cells
using the standard Michaelis-Menten type functions,

fi(ui) =
a3iui
b3i + ui

.

Whereas CT immune cell related parameters were easily found in the
literature, no such estimates exist (to the authors’ knowledge) for TE
immune cells. As a consequence, we have estimated the TE immune
parameters by scaling the corresponding CT immune cell parameters
by up to an order of magnitude.

• Due to its relatively recent experimental discovery, there has been little
work done attempting to elucidate the precise mechanisms underlying
the tumor-mediated phenotypic plasticity, or “education”, of CT im-
mune cells. As a result, the only relevant literature from which we can
inform our model is the theoretical work of den Breems and Eftimie
(den Breems and Eftimie, 2016), in which the authors use mass-action
kinetics to describe the tumor “education” of CT immune cells. Fol-
lowing this approach allows us to choose

edi(ui) = χiui

for some non-negative rate constants χi, i = 1, 2. In the absence of
additional evidence, we have chosen to use den Breem and Eftimie’s
“polarization” rate as our “education” rate (den Breems and Eftimie,
2016; Kim et al., 2017). For further discussion, see Section 4.

• To model the TE immune cell enhancement of tumor growth, we have
used the increasing hyperbolic tangent functions (14)

γi(ui) = ν(ui; 1,maxi, lowi, upi).

Thresholds were chosen as discussed previously, and we have assumed
that TE immune cells could increase the tumor cell growth rate by at
most 50%.
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• Finally, we choose a model for the establishment of circulating tumor
cells at the secondary site. Based on the evidence discussed in Section
1 we use

est(v2, x2, y2) =ν(v2;minV ,maxV , lowV , upV )

× ξ(x2; 0,maxCT , lowEstCT , upEstCT )

× ν(y2;minEstTE,maxEstTE, lowEstTE, upEstTE).

Immune cell thresholds were chosen as above, while the necrotic cell
thresholds were chosen to be 5% and 55% of the tumor carrying capac-
ities Ki. Estimates of the rates involved have been informed by both
previous experimental evidence (Cameron et al., 2000; Chambers et al.,
2002; Gorelik, 1983; Joyce and Pollard, 2009; Mehlen and Puisieux,
2006) and the authors’ estimates.

The above discussion is summarized in Table 1, where the parameter
values used in Section 3 are summarized with references (where applicable).

The initial conditions for all presented results (with the exceptions of
Figure 3 A and B, where the number of tumor cells at the primary site as
chosen to be larger for purposes of illustration) were chosen to be

(u1(0), v1(0), x1(0), y1(0), u2(0), v2(0), x2(0), y2(0)) =

(
1, 0,

α1

ω1

, 0, 0, 0,
α2

ω2

, 0

)
,

representing a slight perturbation of the disease-free steady state in which a
single tumor cell has developed at the primary site. This choice allows for the
inclusion of a time-dependent source of circulating tumor cells coming from
the growing primary tumor — dynamics that are often neglected in injection
(Cameron et al., 2000) or simulation (Eikenberry et al., 2009; Walker et al.,
2018) studies.

As an initial validation of both the model and the chosen parameter val-
ues, we compare the calibrated model’s predicted dynamics at the secondary
site with those observed experimentally by Kaplan et al. (2005). Follow-
ing intradermal injection of 2 × 106 Lewis lung carcinoma (LLC) cells into
murine flanks, Kaplan and colleagues measured the proportions of pro-tumor
BMDCs and tumor cells at the metastatic site (lungs) at several time points
(Figure 4, A (Figure 1 c in Kaplan et al. (2005))). As can be seen in Figure
4 (A) pro-tumor BMDCs arrived at the site of future metastasis well before
the arrival of any tumor cells. Our model successfully captures this phe-
nomenon, as seen in Figure 4 (B), with pro-tumor TE immune cells arriving
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at the future metastatic site in advance of any significant tumor colonization.
Furthermore, our model accurately captures the approximate scales of this
colonization, both in terms of magnitude (peaks of approximately 30% and
10% for BMDCs and tumor cells, respectively) and timing (approximately 2
weeks from initial colonization to tumor cell takeover).

There are, however, two shortcomings of this comparison. First, in our
simulation, the primary tumor reaches a size of approximately 2 × 106 cells
(matching the size of the injection used by Kaplan et al. (2005)) after 84
days, meaning that the delay to the dynamics presented in Figure 4 is ap-
proximately 120 days. While this shortcoming may appear problematic, it
may simply be a consequence of the differences between the details of the
experiment and the simulation. Second, the shape of the pro-tumor immune
curve in the experimental data — and the location of the peak, in particular
— is not well approximated by our simulation results, with the simulated
peak occurring much earlier than the experimentally observed peak. Al-
though these are both important shortcomings, we note that the data from
Kaplan et al. (2005) was not used in the calibration of our model. Conse-
quently, some inconsistencies may be reasonably expected, and we contend
that the successes described previously — those of order of arrival and gen-
eral scales being well approximated — are sufficient to claim that the pa-
rameters in Table 1 are biologically feasible and that the qualitative results
of the calibrated model reflect the true biology.

3. Model Simulations

Now that we have used experimental evidence and previous literature-
derived estimates to specify the model parameters, and we have confirmed
that these parameters can accurately reproduce experimental results (Figure
4), we perform three clinically relevant numerical simulations of the model
in order to further investigate the implications of the immune-mediated the-
ory of metastasis. This section investigates the effects of primary resection,
immune therapies, and injury at the secondary site on disease progression.

3.1. Primary Resection

When possible, surgical removal (resection) of a tumor can be the pre-
ferred method of treatment. Unfortunately, this treatment is not always effec-
tive and may only offer temporary relief, with local recurrence or metastatic
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Parameter Description Value Units References

r1,2 tumor growth rate 0.38 1/day Poleszczuk et al. (2016)
K1,2 tumor carrying capacity 5.3196× 108 cells Poleszczuk et al. (2016)

θ1,2 CSC scaling constant 65.67 —
Enderling (2015);

Rhodes and Hillen (2016)

µ1,2 dead cell lysis rate 0.01, 0.05 1/day
Eikenberry et al. (2009);

Robertson-Tessi et al. (2015)
α1,2 CT immune influx rate 1× 106 1/day Eikenberry et al. (2009)
ρ1,2 fatal immune-tumor interaction rate 0.001, 0.01 1/day Eikenberry et al. (2009)
ω1,2 CT decay rate 0.59 1/day Poleszczuk et al. (2016)

χ1,2 immune education rate 5× 10−5 1/day
den Breems and Eftimie (2016);

Kim et al. (2017)
τ1,2 TE decay rate 0.05 1/day Eikenberry et al. (2009)

s1 tumor shedding rate 0.01 1/day
Gupta and Massague (2006);

Joyce and Pollard (2009)
s̃1 TE shedding rate 0.05 1/day Eikenberry et al. (2009)
p proportion successful TE 1× 10−4 — —

max1,2 max (increase) TE growth 0.5 — —
low1,2 growth activation 25424 cells —
up1,2 growth saturation 110169 cells —

lowD1,2 death activation: TE 25424 cells —
upD1,2 death saturation: TE 110169 cells —

minC1,2 min death rate 0.2 1/day
Orlando et al. (2013);

Saidel et al. (1976)
maxC1,2 max increase death 0.1 1/day —
lowC1,2 death activation: CT 254237 cells —
upC1,2 death saturation: CT 1101695 cells —
a11,12 CT expansion: tumor 0.524 1/day Kuznetsov and Knott (2001)
a21,22 CT expansion: dead 0.786 1/day —

b11,12,21,22 immune damping (dead;tumor) 1.61× 105 cells Kuznetsov and Knott (2001)

a31,32 TE expansion rate 0.04 1/day
Kuznetsov and Knott (2001);

Poleszczuk et al. (2016)

b31,32 TE expansion damping 1.6× 105 cells
Kuznetsov and Knott (2001);

Poleszczuk et al. (2016)
maxCT max (increase) establish rate 100 — Gorelik (1983)

lowEstCT,TE activation level: establish 254237, 25424 cells —
upEstCT,TE saturation level: establish 1101695, 110169 cells —

minEstTE min establish rate 0.001 1/day

Cameron et al. (2000);
Chambers et al. (2002);

Joyce and Pollard (2009);
Mehlen and Puisieux (2006)

maxEstTE max establish rate (increase) 0.002 1/day —
lowV activation: dead cells 2.66× 107 cells —
upV saturation: dead cells 2.93× 108 cells —
minV min establish rate 0.001 1/day —
maxV max establish rate (increase) 0.999 1/day —

Table 1: Model Parameters and the values used in presented simulations.
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Figure 4: Comparison of experimental data from Kaplan et al. (2005) (A) to the model
predicted dynamics at the secondary site (B). Time in the top plot is measured from the
time of injection of 2× 106 LLC cancer cells, whereas time in the bottom plot is measured
from the beginning of the simulation (primary tumor inception). In both cases, green
corresponds to pro-tumor immune cells (BMDCs at top, and TE immune cells at bottom)
and red corresponds to tumor cells. Color figure available online. A adapted from Kaplan
et al. (2005), Figure 1 c.
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disease appearing after a short period of apparent health. Our model frame-
work allows us to interrogate the effect of primary resection on the dynamics
of the secondary tumor. We study two cases. In the first case, we assume
that the disease free equilibrium is locally unstable. In this case, each resec-
tion of less than 100% efficiency leads to recurrence of the tumors. Here we
are interested in the time delay before re-growth occurs. Figure 5 shows the
tumor cell dynamics at the primary (left) and secondary (right) sites using
the parameters from Table 1. The untreated dynamics at both sites are repre-
sented by the black curves. A primary tumor develops relatively quickly and
reaches the local carrying capacity after approximately 100 days, with the
secondary tumor only fully developing approximately 150 days later (notice
the different time intervals shown on the horizontal-axis).

Note that the saturation observed at both sites can be explained in terms
of CSCs. Indeed, we have assumed that the quantities u1 and u2 represent
tumorigenic cells within the tumor populations at the primary and secondary
sites, respectively. Therefore, saturation may correspond to the homeostati-
cally stable population of CSCs, and may not necessarily represent the end
of tumor growth. As the fraction of CSCs within a tumor population is a
hotly debated topic (Enderling, 2015), with a number of theoretical results
suggesting that pure CSC tumors are possible (Rhodes and Hillen, 2016),
this explanation is not unfounded. Alternatively, the rapid saturation at the
primary site may suggest that, in this case, the subject would succumb to
the primary tumor before the advent of any significant metastatic disease.

We have simulated primary resection by removing a specified fraction —
the resection efficiency — of all populations at the primary site at time
t = 90 days (vertical dashed line in left plot of Figure 5) (Eikenberry et al.,
2009). The resection time was chosen such that the primary tumor grew suffi-
ciently large so that it could be detected by clinicians (order 107 cells (Friberg
and Mattson, 1997; Eftimie and Eftimie, 2018)). Resection efficiencies in Fig-
ure 5 range from 99.99% (blue) to 100% (red). As expected, increasing the
resection efficiency increases the delay in both local recurrence and metasta-
sis. Using the parameters in Table 1, no resection efficiencies below 100% can
prevent local recurrence, and no resection efficiencies can prevent metastasis.

In a second case we assume that tumor extinction at the secondary site
is stable by reducing the tumor growth rate r2 (see Proposition 2.1). Then
the model exhibits more realistic bi-stable behavior at the expense of much
slower metastatic growth. The secondary tumor dynamics in response to
100% efficient primary resection are presented in Figure 6 for varying times
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Figure 5: Effects of primary resection on tumor population dynamics at the primary (left)
and secondary (right) sites. Primary tumor was removed at time t = 90 days (vertical
dashed line in left plot) with efficiency ranging from 99.99% to 100% (blue to red). Arrow
indicates the direction of increasing resection efficiency. The black dotted curves represent
control dynamics. Parameters as in Table 1. Color figure available online.

of primary resection. As a control, we present the secondary tumor dynamics
in the absence of any primary intervention as the black curve. A consequence
of primary resection is that the secondary site loses a source of tumor cells.
If this primary intervention occurs sufficiently early, the secondary tumor is
too small to support itself, resulting in metastatic extinction (green curves
in Figure 6).

On the other hand, if enough time has passed with the primary tumor
present to ensure that the metastatic tumor is large enough so that it can
maintain growth even in the absence of the source of cells from the primary
tumor, then we observe rapid metastatic growth, possibly following a period
of dormancy (red curves in Figure 6). Two important observations should be
made in this case. First, the final metastatic tumor density is smaller when
compared to the control case, and second, primary resection can trigger an
extended period of dormancy at the secondary site.

3.2. Immune Therapy

While there is a significant diversity of immunotherapeutic techniques in
cancer treatment, they all share the same goal: increase the number or effec-
tiveness of CT immune cells in order to elicit a strong anti-tumor response.
The promise of harnessing the power of the immune system to treat tumors
has inspired significant experimental and theoretical investigation. Unfor-
tunately, in many cases, the promises of immunotherapy have not come to
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Figure 6: Effect of primary resection on secondary tumor dynamics for various times of
primary resection, ranging between t = 10000 and t = 12500 days. Primary resection was
100% efficient, meaning there was no influence on secondary site from the primary site
following resection. Secondary tumor growth rate was r2 = 0.2999 so that extinction of
metastases was stable. The black trajectory shows secondary tumor growth without pri-
mary resection and acts as a control curve. Green trajectories are destined for extinction,
while red trajectories are destined for full secondary tumor. Color figure available online.
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Figure 7: Effect of immune therapy on growth of the metastatic tumor. Left: Tumor
cell dynamics at the secondary site for increasing CT immune cell influx rates, α1 and
α2. Therapy administered beginning from time t = 90 days, and maintained over the
course of the simulation. Values are increasing from blue to red (in direction of arrow).
Leftmost (black dotted) curve represents control dynamics. Dash line represents half the
carrying capacity, 1

2K2. Right: Time secondary tumor reaches half its carrying capacity
as a function of the factor the CT immune cell influx rate increased. Color figure available
online.

fruition, with relatively low response rates for both single (10%− 30%) and
combination therapies (50% − 60%) (Emens et al., 2017). A potential ex-
planation for this shortcoming may be found in the contradictory roles of
the immune system in cancer progression (Section 1), but this possibility has
remained largely unexplored. In this section, we consider the implications of
immune phenotypic plasticity on the effectiveness of immunotherapies.

In the following, “immunotherapy” will be simplified to any intervention
that results in an increased influx of CT immune cells. Therefore, increasing
the CT immune cell influx rates, α1 and α2, by some scaling factor will
serve as a simplified model of immunotherapy. As was the case for primary
resection, therapeutic interventions can only be undertaken in the case that a
primary tumor has been identified clinically, so we begin therapy at time t =
90 days and maintain the therapy until the end of the simulation. Under these
conditions, the model predicts little effect on the dynamics at the primary
site — not an unexpected result based on the low response rates of many
immunotherapies — so we present only the dynamics at the secondary site;
thereby shedding light onto the effects of immunotherapy on small, clinically
undetectable metastatic tumors, which is particularly relevant to the clinical
setting.

The model predicted results of immotherapy are presented in Figure 7.
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Figure 8: Effect of two-pronged immune therapy on growth of the metastatic tumor.
Left: Tumor cell dynamics at the secondary site for increasing CT immune cell influx
rates, α1 and α2, and prevention of immune education, χ1,2 = 0. Therapy administered
beginning from time t = 90 days, and maintained over the course of the simulation.
Values are increasing from blue to red (in direction of arrow). Leftmost (black dotted)
curve represents control dynamics. Dash line represents one quarter the carrying capacity,
1
4K2. Right: Time secondary tumor reaches a quarter its carrying capacity as a function
of the factor the CT immune cell influx rate increased. Color figure available online.

Figure 7 (left) shows the dynamics of the secondary tumor cell population
for various scaling factors of the CT immune cell influx rates α1 and α2,
with the scaling factor increasing from blue to red. Figure 7 (right) shows
the time to half the carrying capacity (1

2
K2 — horizontal dashed line in

left plot) as a function of the scaling factor; in other words, the right plot
shows the intersection times of the solution curves and the dashed line in the
left plot. Of note is the non-monotonicity of the rightmost plot. For small
increases to the immune influx rates we see significant improvement in tumor
delay. However, there is an optimal increase factor, above which the effects
of the immunotherapy are actually detrimental relative to the optimal and, if
increased by a sufficiently large factor, we can have detrimental effects even
compared to the control case (results not shown).

In order to determine the mechanism responsible for the non-monotone
dynamics in Figure 7, we simulate a modified version of the previous im-
munotherapy. In addition to the increased CT immune cell influx rate, we
assume that our simulated immunotherapy is capable of preventing tumor
education of CT immune cells (i.e. the education rates vanish: χ1,2 = 0).
The model predicted effects of such an intervention are presented in Figure 8.
As in the previous figure, the left plot shows the tumor cell dynamics at the
secondary site for varying strengths of immunotherapy (increasing from blue
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to red) and the right plot shows the times our solutions reach the endpoint
as a function of immunotherapy strength. Note that by preventing tumor
education of CT immune cells, the resulting steady state tumor density at
the secondary site is significantly diminished, so we use 1

4
K2 as our endpoint

instead of the previously used 1
2
K2.

In contrast to the previous case, the rightmost plot in Figure 8 is mono-
tonically increasing. Although there is a significant slowing of growth in the
right plot, the time to endpoint continues to increase for all CT influx rate
scalings tested. Noting, in addition, that the ability of the secondary tu-
mor to directly recruit pro-tumor immune cells to the secondary site was not
affected by our simulated therapy, it follows that the tumor-induced pheno-
typic plasticity between CT and TE immune cells is key in the non-monotonic
dynamics of Figure 7.

3.3. Metastasis to Sites of Injury

Our modeling framework provides us the opportunity to investigate whether
or not this theory of immune-mediated metastasis is sufficient to explain the
observations of metastatic spread to sites of injury. We simulate an injury at
the secondary site at time t by pausing the simulation at time t, adding 107

cells to the necrotic compartment, and restarting the simulation with this
adjusted initial condition. Evaluation of this injury’s effect on the secondary
tumor dynamics is done by reporting the time when the secondary tumor
reaches a population of 1

2
K2 cells (referred to hereafter as the “endpoint”).

Figure 9 shows the time to endpoint as a function of the time that an
injury at the secondary site is incurred. Control results are presented as the
horizontal dashed line, so that times above this line are beneficial to patient
survival (green), and those below the line are detrimental (red). The model
predicts a clear distinction between early and late injuries. Injuries incurred
earlier in the progression of the metastatic tumor are actually beneficial to the
patient — delaying metastatic growth by up to nearly 4 months — whereas
those that occur in the later stages of disease progression are detrimental to
the patient, reducing the time to endpoint by up to two months.

A glimpse into the mechanisms underlying the biphasic dynamics of Fig-
ure 9 are presented in Figure 10, where the dynamics of all cell populations at
the secondary site are presented for three situations: control dynamics (black
dotted curves), an early injury (green curves) and a late injury (red curves).
Early and late injury times were chosen to be the times corresponding to
the maximum and minimum times to endpoint from Figure 9, respectively
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Figure 9: Time required for secondary tumor to reach 1
2K2 cells as a function of the time

an injury of 1× 107 necrotic cells was incurred. Dashed line represents the control value.
Green (above dashed line) indicates a desirable outcome, while red (below dashed line)
indicates an undesirable outcome. Parameters as in Table 1. Color figure available online.
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(indicated by the colored arrows in Figure 10). Note that the early injury
occurs slightly before clinical detectability of the primary tumor (which we
have taken to be 90 days), while the late injury occurs slightly after.

The dynamics in response to the early injury closely follow the traditional
view of both injury response and tumor-immune dynamics: there is a robust,
transient CT immune response to the injury (panel (C), green), which inhibits
the phase of rapid tumor growth observed in the control dynamics beginning
at approximately t = 75 days (panel (A), black). As a consequence of this
slowed tumor growth, the TE immune population suffers an extended period
of stagnation (panel (D), green), thereby slowing subsequent tumor growth
and resulting in a significant delay in tumor progression at the secondary
site.

In contrast, the dynamics in response to the late injury are remarkably
different, and instead of delayed tumor growth, metastatic “blow-up” —
rapid metastatic growth in response to en external stimulus — is predicted.
Although the late injury induces a similar CT immune response, it is sig-
nificantly foreshortened in comparison to the early injury case (panel (C)).
Moreover, the TE immune population undergoes a period of rapid growth
coinciding with the CT immune response (panel (D), red). Taken together,
and noting that the tumor population has undergone a period of significant
growth between the two injury times (panel (A), control), we conclude that
the larger secondary tumor present at the time of the late injury more ef-
fectively corrupts, or educates, the CT immune response to the local injury.
In fact, in simulations where the education rate was decreased, the injury
no longer elicited a pro-tumor response (results not shown), demonstrating
that tumor education of the CT immune response is vital to the dynamics
reported in Figures 9 and 10.

The result of this education is a robust population of pro-tumor TE im-
mune cells which stimulates rapid tumor growth much earlier than in the
control case — that is to say that metastatic “blow-up” is observed. There-
fore, our model predicts that rapid metastatic growth at the site of injury
necessitates the presence of a sufficiently large local tumor population in or-
der to adequately corrupt/educate the injury-induced CT immune response;
otherwise, the immune response to injury is anti-tumor, as traditionally ex-
pected. Moreover, our results refine those of Eikenberry et al. (2009), whose
mathematical model of metastatic melanoma suggested “blow-up” was the
result of a depleted CT immune population. Indeed, “blow-up” in our model
was a result of a decrease in the CT immune population and a corresponding
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Figure 10: Dynamics of the tumor cells (A), necrotic cells (B), CT immune cells (C),
and TE immune cells (D) at the secondary tumor site upon the simulation of an injury.
Two injury times are presented (arrows): an early injury at t = 74.1 days (green) and
a late injury at t = 102.5 days (red). Injury was 1 × 107 necrotic cells. Dashed line in
(A) represents endpoint value of K2/2. Dotted black curves in each plot denote control
dynamics. Parameters as in Table 1. Color figure available online.
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increase in the TE immune population as a consequence of tumor “educa-
tion.”

4. Discussion

There is a growing body of evidence implicating pro-tumor effects of the
immune system in cancer development and metastatic spread (see the ex-
tended list of references in Section 1). Inspired by Shahriyari’s synthesis of
this evidence (Shahriyari, 2016) to formulate a theory of metastasis in which
the immune system plays a major role — which we have called the “immune-
mediated” theory of metastasis (Cohen et al., 2015) — we have developed a
mathematical model of tumor-immune interactions at two anatomically dis-
tant sites to interrogate the validity and the implications of this hypothesis.

Validation of our modeling approach and our literature-derived parame-
ter estimates was done by confronting the model to experimental data from
Kaplan et al. (2005). We found that the model correctly predicted the prepa-
ration of the PMN by pro-tumor TE immune cells prior to the arrival of any
tumor cells in addition to accurately reproducing the relative magnitude and
timing of this PMN preparation (see Figure 4). It is important to note that
these results were in the absence of any explicit fitting to the Kaplan data,
and that the Kaplan data was not used to calibrate the model. Consequently,
the discrepancies between data and model predictions are not be particularly
concerning.

Once validated, the model was used to numerically explore the implica-
tions of the immune-mediated theory of metastasis. We simulated primary
resection surgeries, immunotherapeutic interventions, and injuries at the sec-
ondary site. Metastasis is relatively robust in the face of primary resection,
with metastatic extinction only possible in certain parameter regimes, and
only if the primary tumor is completely removed sufficiently early (Figure 6).
In response to the loss of cells arriving from the primary tumor, metastatic
dormancy could be observed. A second set of numerical experiments con-
cerned the effects of tumor-education on the efficacy of immunotherapies.
We found that tumor-induced phenotypic plasticity between anti- and pro-
tumor immune cells provides a potential explanation for the relatively poor
performance of many immunotherapies (Emens et al., 2017). Moreover, our
model predicts that the most successful approach to improving the efficacy of
immunotherapies is to inhibit tumor-induced phenotypic plasticity thereby
allowing the CT immune cells to play their anti-tumor roles. This result has
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been recently demonstrated experimentally by Park et al. (2018), lending
further credibility to the results presented herein.

Finally, we asked whether or not the immune-mediated theory of metas-
tasis could provide an explanation for metastasis to sites of injury by simulat-
ing an injury at the secondary site. We found that the CT immune response
elicited by an injury was anti -tumor in the absence of a significant metastatic
tumor cell population at the secondary site, and pro-tumor if this population
was sufficiently large to corrupt the incoming CT immune cells, forcing them
to play a pro-tumor role (Figure 10). Not only do these findings support the
suggestion of Kumar and Manjunatha (2013) that a population of tumor cells
is required at the injury site prior to the injury to see metastasis establish
at that site, but they also suggest that tumor-induced phenotypic plasticity
plays a crucial role in such establishment.

In the work above, we considered a secondary site, but the secondary
tumor dynamics could also be interpreted as the total metastatic burden by
appropriate choice of growth functions. Furthermore, we considered only
one secondary site, but this could easily be extended to include N sites with
anatomically motivated connection network as in (Poleszczuk et al., 2016;
Franßen et al., 2018). We provide a brief sketch of such a model now. Let
ui, vi, xi, and yi denote the number of cancer, necrotic, CT, and TE cells at
tumor site i, where i = 1, 2, . . . N . Let φi,j, ψi,j, and ζi,j denote the number of
tumor cells, TE immune cells, and CT immune cells respectively, leaving site
j and arriving at site i. We assume that necrotic cells do not travel between
sites. Under the above assumptions, we arrive at the following N site model
for tumor-immune interactions including both pro- and anti-tumor immune
effects:

dui
dt

= γi(yi)gi(ui)ui − σi(xi, yi)ui − siui + esti(vi, xi, yi)

(
N∑
j=1

φi,j

)
,

dvi
dt

= θiσi(xi, yi)ui − µivi,

dxi
dt

= αi − ρiuixi − ωixi − edi(ui)xi +

(
N∑
j=1

ζi,jλj(uj, vj)xj

)
,

dyi
dt

= edi(ui)xi − τiyi − s̃iyi +

(
N∑
j=1

ψi,jfj(uj)yj

)
.

(16)
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Modeling of the connection terms, φi,j, ψi,j, and ζi,j, is a complicated
problem (see the works of Poleszczuk et al. (2016); Walker et al. (2018, 2017)
for discussion on the ζi,j term) and is left as future research.

Instead of complicating the present model further, it may also be of in-
terest to simplify it in order to perform more rigorous mathematical analysis
with the aim of discovering the mechanisms underlying the dynamics de-
scribed in Section 3. Such simplification is the focus of a current study, with
results forthcoming.

As the explicit inclusion of pro-tumor immune cells in mathematical mod-
els for tumor-immune dynamics is relatively new, the model for phenotypic
plasticity between immune types was chosen to follow simple mass-action ki-
netics which are most likely too simplistic. den Breems and Eftimie (2016), in
their model of M1/M2 macrophages, also modeled the transition using mass-
action kinetics. However, Eftimie and Eftimie (2018) have recently proposed
a more sophisticated transition function. Based on the important effect that
these phenotypic transitions appear to have on the overall dynamics (above,
and in (den Breems and Eftimie, 2016; Eftimie and Eftimie, 2018)), research
looking to uncover the underlying dynamics of this phenotypic plasticity is
warranted.

The model developed here includes a significant number of parameters,
with many of them not previously estimated. Consequently, the results we
have presented above should be taken with some degree of caution. We do
note that some of the TE immune related parameters — recruitment rate
by the tumor, for example — may be underestimated (Oleinika et al., 2013),
meaning that the observed effects may be conservative. Further experimental
and theoretical work must be done in order to validate the predictions made
herein before specific therapeutic recommendations can be made. Specializ-
ing the model to focus on specific immune cells in a particular cancer may
provide more clinically relevant results, and is the focus of a current study.

Overall, our modeling approach showcases the importance of including
pro-tumor effects — and tumor-induced phenotypic plasticity in particular
— in models of tumor-immune interactions. By confronting our mathemat-
ical model to experimental data, we performed meaningful simulations of
complex biological phenomena, which provided important insight into the
underlying dynamics; insight that may be obscured in traditional biological
experimentation. We believe that our research can help inform the design
of future experiments and clinical investigations focused on elucidating the
precise nature of the pro-tumor role of the immune system in cancer progres-

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/565531doi: bioRxiv preprint 

https://doi.org/10.1101/565531
http://creativecommons.org/licenses/by-nc-nd/4.0/


sion and metastasis.
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