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Abstract1

PCR amplification of 16S rRNA genes is a critical, yet under appreciated step in the generation2

of sequence data to describe the taxonomic composition of microbial communities. Numerous3

factors in the design of PCR can impact the sequencing error rate, the abundance of chimeric4

sequences, and the degree to which the fragments in the product represent their abundance in5

the original sample (i.e. bias). We compared the performance of high fidelity polymerases and6

varying number of rounds of amplification when amplifying a mock community and human stool7

samples. Although it was impossible to derive specific recommendations, we did observe general8

trends. Namely, using a polymerase with the highest possible fidelity and minimizing the number9

of rounds of PCR reduced the sequencing error rate, fraction of chimeric sequences, and bias.10

Evidence of bias at the sequence level was subtle and could not be ascribed to the fragments’11

fraction of bases that were guanines or cytosines. When analyzing mock community data, the12

amount that the community deviated from the expected composition increased with rounds of PCR.13

This bias was inconsistent for human stool samples. Overall the results underscore the difficulty14

of comparing sequence data that are generated by different PCR protocols. However, the results15

indicate that the variation in human stool samples is generally larger than that introduced by the16

choice of polymerase or number of rounds of PCR.17

Importance18

A steep decline in sequencing costs drove an explosion in studies characterizing microbial19

communities from diverse environments. Although a significant amount of effort has gone into20

understanding the error profiles of DNA sequencers, little has been done to understand the21

downstream effects of the PCR amplification protocol. We quantified the effects of the choice of22

polymerase and number of PCR cycles on the quality of downstream data. We found that these23

choices can have a profound impact on the way that a microbial community is represented in the24

sequence data. The effects are relatively small compared to the variation in human stool samples,25

however, care should be taken to use polymerases with the highest possible fidelity and to minimize26
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the number of rounds of PCR. These results also underscore that it is not possible to directly27

compare sequence data generated under different PCR conditions.28
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Introduction29

16S rRNA gene sequencing is a powerful and widely used tool for surveying the structure of30

microbial communities (1–3). This approach has exploded in popularity with advances in sequencing31

throughput such that it is now possible to characterize numerous samples with thousands of32

sequences per sample. Many factors can impact how a natural community is represented by33

the sequencing data including the method of acquiring samples (4–8), storage conditions (4–6,34

9–12), extraction methods (13), amplification conditions (8, 14, 15), sequencing method (15–17),35

and analytical pipeline (15, 18–20). The increased sampling depth that is now available relative36

to previous Sanger sequencing-based methods is expected to compound the impacts of an37

investigator’s choices and the interpretation of their results.38

One step in the generation of 16S rRNA gene sequence data that has been long known to have39

a significant impact on the description of microbial communities is the choice of conditions for40

PCR amplification (8, 14, 15). Factors such as the choice of primers have an obvious impact on41

which populations will be amplified (18, 21). However, a variety of PCR artifacts can also impact42

the perception of a community including the formation of chimeras (14, 22–24), misincorporation43

of nucleotides (23, 25, 26), preferential amplification of some populations over others leading to44

bias (24, 27–33), and accumulation of random amplification events leading to PCR drift (24, 27,45

32, 34). Many bioinformatic tools have been developed to identify chimeras; however, there are46

significant sensitivity and specificity tradeoffs (14, 35). Laboratory-based solutions to minimize47

chimera formation have also been proposed such as minimizing the amount of template DNA48

in the PCR, minimizing the number of rounds of PCR, minimizing the amount of shearing in the49

template DNA, using DNA polymerases that have a proof-reading ability, and emulsion PCR (14,50

23, 36). Others have attempted to account for PCR bias using modeling approaches (29, 37). In51

cases where such modeling approaches have been successful, it has been with relatively small52

communities with consistent composition (29). To minimize PCR drift, some investigators pool53

technical replicate PCRs hoping to average out the drift (34). Other factors that have been shown to54

impact the formation of PCR artifacts are outside the control of an investigator including the fraction55

of DNA bases that are guanines or cytosines, the variation in the length of the targeted region56
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across the community, the sequence of the DNA that flanks the template, and the genetic diversity57

of the community (28, 30–33). Early investigations of the factors that lead to the formation of PCR58

artifacts focused on analyzing binary mixtures of genomic DNA and 16S rRNA gene fragments to59

explore PCR biases and chimera formation. Although these studies were instrumental in forcing60

researchers to be cautious about the interpretation of their results, we have a poor understanding61

of how these factors affect the formation of PCR artifacts in more complex communities.62

The influence that the choice of DNA polymerase has on the formation of PCR artifacts has not63

been well studied. There has been recent interest in how the choice of the hypervariable region64

and data analysis pipelines impact the sequencing error rate (15, 18–20); however, these studies65

use the same DNA polymerase in the PCR step and implicitly assume that the rate of nucleotide66

misincorporation from PCR are significantly smaller than those from the sequencing phase. There67

has been more limited interest in the impact that DNA polymerase choice has on the formation of68

chimeras (23, 38). A recent study found differences in the number of OTUs and chimeras between69

normal and high fidelity DNA polymerases (38). The authors of the study reduced the difference70

between two polymerases by optimizing the annealing and extension steps within the PCR protocol71

(38). Yet this optimization was specific for the community they were analyzing (i.e. captive and72

semi-captive red-shanked doucs) and assumed that if the two polymerases generate the same73

community structure that the community structure was correct. In fact, the community structure74

generated by both methods was not free of artifacts, but likely had the same artifacts. A challenge75

in these types of experiments is having a priori knowledge of the true community representation.76

A mock community with known composition allows researchers to quantify the sequencing error77

rate, fraction of chimeras, and bias (19); however, mock communities have a limited phylogenetic78

diversity relative to natural communities. Natural communities, in contrast, have an unknown79

community composition making absolute measurements impossible. They can be used to validate80

results from mock communities and to understand the relative impacts of artifacts on the ability to81

differentiate biological and methodological sources of variation. Given the large number of DNA82

polymerases available to researchers, it is unlikely that a specific recommendation is possible.83

Rather, the development of general best practices and understanding the impact of PCR artifacts84

on an analysis are needed.85
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This study investigated the impact of choice of high fidelity DNA polymerase and the number of86

rounds of amplification on the formation of PCR artifacts using a mock community and human87

stool samples. It was hypothesized that additional rounds of PCR would exacerbate the number88

of artifacts. We tested (i) the effect of the polymerase on the error rate of the bases represented89

in the final sequences, (ii) the fraction of sequences that appeared to be chimeras and the ability90

to detect those chimeras, (iii) the bias of preferentially amplifying one fragment over another in a91

mixed pool of templates, and (iv) inter-sample variation in community structure of samples amplified92

with the same polymerase across the amplification process. To characterize these factors we93

sequenced a mock community of 8 organisms with known sequences and community structure94

and human fecal samples with unknown sequences and community structures. We sequenced the95

V4 region of the 16S rRNA genes from a mock community by generating paired 250 nt reads on96

the Illumina MiSeq platform. This region and sequencing approach was used because it has been97

shown to result in a relatively low sequencing error rate and is a widely used protocol (18). To better98

understand the impact of DNA polymerase choice on PCR artifacts, we selected five high fidelity99

DNA polymerases and amplified the communities using 20, 25, 30, and 35 rounds of amplification.100

Collectively, our results suggest that the number of rounds and to a lesser extent the choice of DNA101

polymerase used in PCR impact the sequence data. The effects are consistent and are smaller102

than the biological differences between individuals.103
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Results104

Sequencing errors vary by the number of cycles and the DNA polymerase used in PCR.105

The presence of sequence errors can confound the ability to accurately classify 16S rRNA gene106

sequences and group sequences into operational taxonomic units (OTUs). More importantly,107

sequencing errors themselves can alter the representation of the community. Therefore, it is108

important to minimize the number of sequencing errors. Using a widely-used approach that109

generates the lowest reported error rate, we quantified the error rate by sequencing the V4 region of110

the 16S rRNA genes from an 8 member mock community. We also removed any contigs that were111

at least three bases more similar to a chimera of two references than to a single reference sequence112

(18, 19, 39). Regardless of the polymerase, the error rate increased with the number of rounds of113

amplification (Figure 1). Using 30 rounds of PCR is a common approach across diverse types of114

samples. Among the data generated using 30 rounds of PCR the Accuprime polymerase had the115

highest error rate (i.e. 0.124%) followed by the Platinum (i.e. 0.094%), Phusion (i.e. 0.064%), KAPA116

(i.e. 0.062%), and Q5 (i.e. 0.060%) polymerases (Figure 1). When we applied a pre-clustering117

denoising step, which merged the counts of reads within 2 nt of a more abundant sequence (19),118

the error rates dropped considerably such that the Platinum polymerase had the highest error rate119

(i.e. 0.014%) followed by the Accuprime (i.e. 0.012%), Q5 (i.e. 0.0053%), Phusion (i.e. 0.0049%),120

and KAPA (i.e. 0.0049%) polymerases (Figure 1). Although specific recommendations are difficult121

to make because the phylogenetic diversity of the initial DNA template is likely to have an impact122

on the results, it is clear that using as few PCR cycles as necessary and a polymerase with the123

lowest possible error rate is a good guide to minimizing the impact of polymerase on the error rate.124

The fraction of sequences identified as being chimeric varies by the number of cycles125

and the DNA polymerase used in PCR. Chimeric PCR products can significantly confound126

downstream analyses. Although numerous bioinformatic tools exist to identify and remove chimeric127

sequences with high specificity, their sensitivity is relatively low and can be reduced by the presence128

of sequencing errors (14, 35). Because the true sequences of the organisms in the mock community129

were known, we generated all possible chimeras between pairs of V4 16S rRNA gene fragments130

and used these possible chimeric sequences to screen the sequences generated under the different131
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PCR conditions to detect chimeras. The number of chimeras increased with rounds of amplification132

(Figure 2A). Interestingly, the fraction of chimeric sequences from the mock community varied by the133

type of polymerase used. After 30 rounds of PCR, the Platinum polymerase had the highest chimera134

rate (i.e. 18.2%) followed by the Q5 (i.e. 8.1%), Phusion (i.e. 7.5%), KAPA (i.e. 2.3%), and Accuprime135

(i.e. 0.9%) polymerases. To explore the characteristics of the chimeras further, we analyzed those136

chimeras formed after 35 cycles. Because of the uneven number of chimeras generated across137

the five polymerases, we subsampled the frequency of the chimeras to have the same number of138

chimeras per polymerase the Q5, Phusion, Accuprime, and Platinum polymerases; the chimeric139

sequence yield with the KAPA polymerase was significantly lower than the other polymerases and140

was omitted from our initial comparison. As has been shown previously (14), chimera formation was141

not random. Among the chimeras that were generated in mock community samples, 4.4% of the142

chimeras were found across all four polymerases. These chimeras represented between 67.6 and143

74.5% of the chimeras generated with each polymerase; they represented 40.4% of the chimeric144

sequences generated using the KAPA polymerase. These results indicate that the mechanisms145

leading to the formation of chimeras are largely independent of the properties of the polymerase,146

but are more likely due to the properties of the sequences.147

Because our chimera screening procedure could only be applied to mock communities, we used148

the UCHIME algorithm to model the chimera screening approach that is used in most sequence149

curation pipelines. By comparing the output of UCHIME to our approach of screening for chimeras150

using all possible chimeras generated from the mock community sequences, we were able to151

calculate the UCHIME’s sensitivity and specificity (Figure 2A). The specificity for all polymerases152

was above 95.4% and showed a weak association with the number of cycles used (Figure 2A).153

There was considerable inter-polymerase and inter-round of amplification variation in the sensitivity154

of UCHIME to detect the chimeras from the mock community. This suggested that the residual error155

rate after pre-clustering the sequence data did not compromise the sensitivity of UCHIME to detect156

chimeras. The sensitivity of UCHIME varied between 50 and 87.0% when at least 25 cycles were157

used. The generalizability of these results is limited because we used a single mock community158

with limited genetic diversity. Although we did not know the true chimera rate for our four human159

stool samples, we were able to calculate the fraction of sequences that UCHIME identified as being160
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chimeric (Figure 2B). These results followed those from the mock communities: additional rounds161

of amplification significantly increased the rate of chimeras and there was variation between the162

polymerases that we used. Although it was not possible to identify the features of a polymerase163

that resulted in higher rates of chimeras, it is clear that using the smallest number of PCR cycles164

possible will minimize the impact of chimeras.165

At the sequence level, PCR amplification bias is subtle. Since researchers began using PCR166

to amplify 16S rRNA gene fragments there has been concern that amplifying fragments from167

a mixed template pool could lead to a biased representation in the pool of products and would168

confound downstream analyses (24, 27–33). The mock community was generated by mixing equal169

amounts of genomic DNA from 8 bacteria resulting in uneven representation of the rrn operons170

across the bacteria as each bacterium had a different genome size and varied in the number of171

operons in its genome. The vendor of the mock community subjects each lot of genomic DNA to172

shotgun sequencing to more accurately quantify the actual abundance of each organism in the173

community. It should be noted that this approach to quantifying abundance is also not without174

its own biases (40), but does provide an alternative approach to characterizing the structure of175

the mock community. We compared the vendor reported relative abundance of the 16S rRNA176

genes from each bacterium in the mock community to the data we generated across rounds of177

amplification and polymerase (Figure 3). Interestingly, for some bacteria, their representation178

became less biased with additional rounds of PCR (e.g. L. fermentum), while others became more179

biased (e.g. E. faecalis), and others had little change (e.g. B. subtilis). Contrary to prior reports180

(28), the percentage of bases in the V4 region that were guanines or cytosines was not predictive181

of the amount of bias. Across the strains there was no variation in the length of their V4 regions182

and they each had the same sequence in the region that the primers annealed. One of the bacteria183

represented in the mock community, S. enterica, had 6 identical copies of the V4 region and 1184

copy that differed from those by one nucleotide. The dominant copy had a thymidine and the rare185

copy had a guanine. We used the sequence data to calculate the ratio of the dominant to rare186

variants from S. enterica expecting a ratio near 6 (Figure S1). The Accuprime, Phusion, Platinum,187

and Q5 polymerases converged to a ratio of 5.4; however, the ratio for the KAPA polymerase was188

above 6 for all rounds of PCR (6.1-7.4) and the ratio for Q5 was below 6 for all rounds of PCR189
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(5.3-5.5). Given the subtle nature of the variation in the relative abundances of each 16S rRNA190

gene fragment, it was not possible to create generalizable rules that would explain the bias.191

At the community level, the effects of PCR amplification bias grow with additional rounds192

of PCR. Because the variation in bias between polymerases and across rounds of PCR could be193

artificially inflated due to sequencing errors and chimeras, we analyzed the alpha and beta diversity194

of the mock community data at different phases of the sequence curation pipeline (Figure 4). First,195

we removed the chimeras from the mock community data as described above and mapped the196

individual reads to the OTUs that the 16S rRNA gene fragments would cluster into if there were no197

sequencing errors. This gave us a community distribution that reflected the distribution following198

PCR without any artifacts (Figure 4A; “No errors or chimeras”). Although the richness did not199

change, the Shannon diversity increased with the number of rounds of PCR for all polymerases200

except the KAPA polymerase, for which the diversity decreased. These data suggest that PCR201

had the effect of making the community distribution more even than it was originally, except for202

the data generated using the KAPA polymerase where the evenness decreased. Next, we used203

the observed sequence errors, but removed chimeras by comparing sequences to all possible204

chimeras between mock community sequences, and clustered the reads to OTUs (Figure 4A;205

“Residual errors, complete chimera removal”). The richness and diversity metrics trended higher206

with higher error rates and number of rounds of PCR. Finally, we used the observed sequence207

data and the UCHIME algorithm to identify chimeras (Figure 4A; “Residual errors, chimera removal208

with VSEARCH”). Again, the richness and diversity metrics trended higher with higher error rates209

and number of rounds of PCR. These comparisons demonstrated that although the bias at the210

sequence level was subtle, PCR introduces bias at the community level that is exacerbated by211

errors and chimeras when sequences are clustered into OTUs. When we measured the Bray-Curtis212

distance between the communities observed after 25 rounds of amplification and those at 30 and213

35, distances between 25 and 35 rounds were higher than between 25 and 30 rounds for each of214

the polymerases by an average of 0.022 units (Figure 4B). The Platinum polymerase varied the215

most across rounds of amplification (25 vs 30 rounds: 0.13; 25 vs 35 rounds: 0.15). For any number216

of cycles, the median Bray-Curtis distance between polymerases ranged between 0.074 and 0.11.217

Although the distances between samples were small, the ordination of these distances showed a218

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/565598doi: bioRxiv preprint 

https://doi.org/10.1101/565598
http://creativecommons.org/licenses/by/4.0/


clear change in community structure with increasing rounds of PCR (Figure 4C). This observation219

was supported by our statistical analysis, which revealed that the effect of the number of rounds of220

PCR (R2=0.21, P<0.001) was comparable to the choice of polymerase (R2=0.20, P<0.001). These221

results demonstrate that subtle differences in relative abundances can have an impact on overall222

community structure. This variation underscores the importance of only comparing sequence data223

that have been generated using the same PCR conditions.224

The choice of polymerase or the number of rounds of amplification have little impact on the225

relative interpretation of community-wide metrics of diversity. We expected that the biases226

that we observed at the population and community levels using mock community data would227

be small relative to the expected differences between biological samples. To study this further,228

we calculated alpha and beta-diversity metrics using the human stool samples for each of the229

polymerases and rounds of amplification. We calculated the number of observed OTUs and230

Shannon diversity for each condition and stool sample (Figure 5A). Although there were clear231

differences between PCR conditions, the relative ordering of the stool samples did not meaningfully232

vary across conditions. When we characterized the variation between rounds of amplification233

using human stool samples, the distance between the 25 and 30 rounds and 25 and 35 rounds234

varied considerably between samples and polymerases (Figure 5B). In general the inter-round235

variation was lowest for the data generated using the KAPA and Accuprime polymerases. The data236

generated using the Platinum polymerase was consistent across rounds, but overall, it was more237

biased than the other polymerases. Considering the average distance across the four samples238

varied between 0.39 and 0.56, regardless of the polymerases and number of rounds of amplification,239

any bias due to amplification is unlikely to obscure community-wide differences between samples.240

In support of this was our principle coordinates analysis of the Bray-Curtis distances, which revealed241

distinct clusters by stool sample (Figure 5C). Within each cluster there were no obvious patterns242

related to the polymerase or number of rounds of PCR. Our statistical analysis revealed statistically243

significant differences in the community structures with the stool sample explaining the most244

variation (R2=0.79, P<0.001), followed by the number of rounds of PCR (R2=0.044, P<0.001) and245

the choice of polymerase (R2=0.033, P<0.001). Together, these results indicate that for a coarse246

analysis of communities, the choice of number of rounds of amplification or polymerase are not247
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important, but that they must be consistent across samples. It is difficult to develop a specific248

recommendation based on the level of bias across rounds of PCR or polymerases; however, the249

general suggestion is to use as few rounds of amplification as possible.250

There is little evidence of a relationship between polymerase or number of rounds of251

amplification on PCR drift. There have been concerns that the same template DNA subjected252

to the same PCR conditions could result in different representations of communities because of253

random drift over the course of PCR. To test this, we determined the average Bray-Curtis distance254

between replicate reactions using the same polymerase and number of rounds of amplification255

(Figure 6). Using the mock community data there were no obvious trends. The average Bray-Curtis256

distance within a set of conditions varied by 0.062 to 0.11 units. Although we did not generate257

technical replicates of each of the stool samples, the inter-sample variation for each set of258

conditions was consistent and varied between 0.50 and 0.56 units. These data suggest that259

amplicon sequencing is robust to random variation in amplification and that any differences are260

likely to be smaller than what is considered biologically relevant.261
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Discussion262

Our results suggest that the number of rounds of PCR and to a lesser degree the choice of DNA263

polymerase impact the analysis of 16S rRNA gene sequence data from bacterial communities.264

Although it was not possible to make direct connections between PCR conditions and specific265

sources of bias, we were able to identify general recommendations that reduce the amount of266

error, chimera formation, and bias. Researchers should strive to minimize the number of rounds267

of PCR and should use a high fidelity polymerase. Although specific PCR conditions impact the268

precise interpretation of the data, the effects were consistent and were smaller than the biological269

differences between the samples we tested. Based on these observations, amplicons must be270

generated by consistent protocols to yield meaningful comparisons. When comparing across271

studies, values like richness, diversity, and relative abundances must be made in relative and not272

absolute terms. Furthermore, care must be taken to not directly compare or pool samples from273

different studies. Instead, it is important to statistically model the study-based variation as has been274

done in recent meta-analyses that compared relative effect sizes or pooled data using a mixed275

effects statistical model (41, 42).276

The observed sequencing error rates and alpha diversity metrics followed the manufacturers’277

measurements of their polymerases’ fidelity (Figure 1). Accuprime and Platinum have fidelity that278

are approximately 10-times higher than that of Taq whereas the fidelity of Phusion, Q5, and KAPA279

are more than 100 times higher. Among these polymerases, the KAPA polymerase consistently280

resulted in a lower error rate, lower chimera rate, and lower bias across rounds of PCR for the mock281

community samples. Furthermore, among the human samples, the KAPA polymerase consistently282

had the lowest detected chimera rate and inter-cycle bias. These benefits were most accentuated283

at 35 cycles. However, in our experience and despite efforts to optimize the yield with the KAPA284

polymerase, the reactions typically had a high proportion of primer-dimer products and low yield of285

correctly-sized products. Although the error rate with the Accuprime polymerase was not as low as286

that with KAPA, we consider it to be an acceptable alternative. Considering polymerase development287

is an active area of commercial development with potential new polymerases becoming available,288

it is important for researchers to understand how changing the polymerase impacts downstream289
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analyses for their type of samples.290

Over the past 20 years, a large literature has attempted to document various PCR biases and291

underscored the fact that data based on amplification of DNA from a mixed community are not a true292

representation of the actual community. In addition to obvious biases imposed by primer selection,293

other factors inherent in PCR can influence the representation of communities. Factors that can294

lead to preferential amplification of one fragment over another have included guanine and cytosine295

composition, length, flanking DNA composition, amount of DNA shearing, and number of rounds of296

PCR (24, 27–33). These factors may become exacerbated if PCR is performed on multiple samples297

that vary in their concentration (43). In addition, environmental and reagent contaminants can also298

have a significant impact on the analysis of low biomass samples (44). Less well understood is the299

effect of phylogenetic diversity on bias and chimera formation. Communities with low phylogenetic300

diversity may be more prone to chimera formation since chimeras are more likely to form among301

closely related sequences (14, 35). The interaction of these various influences on PCR artifacts are302

complex and difficult to tease apart. Minimizing the level of DNA shearing, controlling for template303

concentration across samples, and using the fewest number of rounds of PCR with a polymerase304

that has the highest possible fidelity are strategies that can be employed to minimize the formation305

of chimeras. Although care should always be taken when choosing a polymerase for 16S rRNA306

gene sequencing, our observations show that variation among polymerases is smaller than the307

actual biological variation in fecal communities between individuals.308

Even with these strategies it is impossible to remove all PCR artifacts. Beyond the imperfections of309

the best polymerases, sometimes difficult to lyse organisms require stringent lysis steps and low310

biomass samples require additional rounds of PCR. A host of bioinformatics tools are available for311

removing residual sequencing errors (18, 45–47). Other tools are available for removing chimeras312

(14, 35) where there is a trade off between the sensitivity of detecting chimeras and the specificity313

of correctly calling a sequence a chimera. In recent years, parameters for these algorithms have314

been changed to increase their sensitivity with little evaluation of the effects on the specificity of315

the algorithms (45, 47). Others recommend removing any read that has an abundance below a316

specified threshold as a tool to remove PCR and sequencing artifacts (e.g. removing all sequences317

that only appear once) (20, 45–47). This method must be approached with caution as such318

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/565598doi: bioRxiv preprint 

https://doi.org/10.1101/565598
http://creativecommons.org/licenses/by/4.0/


approaches are likely to introduce a different bias of the community representation and ignore the319

fact, as we showed, that artifacts may be quite abundant and reproducible. Ultimately, researchers320

must test their hypotheses with multiple methods to validate the claims they reach with any one321

method (48). All methods have biases and limitations and we must use complementary methods to322

obtain robust results.323
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Materials & Methods324

Mock community. The ZymoBIOMICSTM Microbial Community DNA Standard (Zymo, CA, USA)325

was used for mock communities and the bacterial component was made up of Pseudomonas326

aeruginosa, Escherichia coli, Salmonella enterica, Lactobacillus fermentum, Enterococcus327

faecalis, Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis at equal genomic328

DNA abundance (https://web.archive.org/web/20171217151108/http://www.zymoresearch.com:329

80/microbiomics/microbial-standards/zymobiomics-microbial-community-standards). The actual330

relative abundance for each bacterium was obtained from Zymo’s certificate of analysis for the331

lot (Lot: ZRC187325), which they determined using shotgun metagenomic sequencing (https:332

//github.com/SchlossLab/Sze_PCRSeqEffects_mSphere_2019/data/references/ZRC187325.pdf).333

Human samples. Fecal samples were obtained from 4 individuals who were part of an earlier334

study (49). These samples were collected using a protocol approved by the University of Michigan335

Institutional Review Board. For this study, the samples were de-identified. DNA was extracted from336

the fecal samples using the MOBIOTM PowerMag Microbiome RNA/DNA extraction kit (now Qiagen,337

MD, USA).338

PCR protocol. Five high fidelity DNA polymerases were tested including AccuPrimeTM
339

(ThermoFisher, MA, USA), KAPA HIFI (Roche, IN, USA), Phusion (New England Biolabs, MA,340

USA), Platinum (ThermoFisher, MA, USA), and Q5 (New England Biolabs, MA, USA). Manufacturer341

recommendations were followed except for the annealing and extension times, which were342

selected based on previously published protocols (18, 38). Primers targeting the V4 region of343

the 16S rRNA gene were used with modifications to generate MiSeq amplicon libraries (18)344

(https://github.com/SchlossLab/MiSeq_WetLab_SOP/). The 16S rRNA gene targeting regions of345

the primers annealed to E. coli positions 515 to 533 (GTGCCAGCMGCCGCGGTAA) and 787 to346

806 (GGACTACHVGGGTWTCTAAT). The number of rounds of PCR used for each sample and347

polymerase started at 15 and increased by 5 rounds up to 35 cycles. Insufficient PCR product was348

generated using 15 rounds and has not been included in our analysis.349

Library generation and sequencing. Each PCR condition (i.e. combination of polymerase and350
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number of rounds of PCR) were replicated four times for the mock community and one time for each351

fecal sample. Libraries were generated as previously described (18) (https://github.com/SchlossLab/352

MiSeq_WetLab_SOP/). The libraries were sequenced using the Illumina MiSeq sequencing platform353

to generate paired 250-nt reads.354

Sequence processing. The mothur software program (v 1.41) was used for all sequence355

processing steps (50). The protocol has been previously published (18) (https://www.mothur.org/356

wiki/MiSeq_SOP). Briefly, paired reads were assembled using mothur’s make.contigs command to357

correct errors introduced by sequencing (18). Any assembled contigs that contained an ambiguous358

base call, mapped to the incorrect region of the 16S rRNA gene, or appeared to be a contaminant359

were removed from subsequent analyses. Sequences were further denoised using mothur’s360

pre.cluster command to merge the counts of sequences that were within 2 nt of a more abundant361

sequence. The VSEARCH implementation of UCHIME was used to screen for chimeras (35, 51).362

At various stages in the sequence processing pipeline for the mock community data, the mothur363

seq.error command was used to quantify the sequencing error rate as well as the true chimera364

rate. This command uses the true sequences from the mock community to generate all possible365

chimeras and removes any contigs that were at least three bases more similar to a chimera than to366

a reference sequence. The command then counts the number of substitutions, insertions, and367

deletions in the contig relative to the reference sequence and reports the error rate without the368

inclusion of chimeric sequences (19). UCHIME’s sensitivity was calculated as the percentage of369

true chimeras that were detected as chimeras when using UCHIME. Its specificity was calculated370

as the percentage of non-chimeric sequences that were detected as being non-chimeric by371

UCHIME. The reference sequences and rrn operon copy number for each bacterium were372

obtained from the ZymoBIOMICSTM Microbial Community DNA Standard protocol (https:373

//web.archive.org/web/20181221151905/https://www.zymoresearch.com/media/amasty/amfile/374

attach/_D6305_D6306_ZymoBIOMICS_Microbial_Community_DNA_Standard_v1.1.3.pdf).375

Sequences were assigned to operational taxonomic units (OTUs) at a threshold of 3% dissimilarity376

using the OptiClust algorithm (52). To adjust for unequal sequencing when measuring alpha and377

beta diversity, all samples were rarefied for downstream analysis. The Good’s coverage for the378

samples was routinely greater than 95%.379
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Statistical analysis. All analysis was done with the R (v 3.5.1) software package (53). Data380

transformation and graphing were completed using the tidyverse package (v 1.2.1). The distance381

matrix data was analyzed using the adonis function within the vegan package (v 2.5.4).382

Reproducible methods. The data analysis code for this study can be found at https://github.com/383

SchlossLab/Sze_PCRSeqEffects_mSphere_2019. The raw sequences are available at the SRA384

(Accession SRP132931).385
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Figure 1. The error rate of assembled mock community sequence reads increases with the549

number of rounds of PCR; however, much of this error was eliminated by denoising and550

followed the relative error rates provided by the manufacturers. Each line represents the551

mean of four replicates.552

Figure 2. The fraction of all denoised sequences that were identified as being chimeric553

increases with the number of rounds of PCR used and varied between polymerases. (A)554

Sequencing of a mock community allowed us to identify the total fraction of sequences that were555

chimeric as well as the specificity and sensitivity of UCHIME to detect those chimeras. Each line556

represents the mean of four replicates. (B) Sequencing of four human stool samples after using557

one of five different polymerases again demonstrated increased rate of chimera formation with558

increasing number of rounds of PCR and variation across polymerases.559

Figure 3. The relative abundances of mock community sequence reads mapped to560

reference sequences differed subtly from the expected relative abundances as determined561

by shotgun metagenomic sequencing. Bias did not increase with number of rounds of PCR or562

vary by polymerase or the guanine and cytosine content of the fragment. The expected relative563

abundance of each organism is indicated by the horizontal gray line. The percentage of bases564

that were guanines or cytosines within the V4 region of the 16S rRNA genes in each organism is565

indicated by the number in the lower left corner of each panel. Each line represents the mean of566

four replicates.567

Figure 4. Despite evidence of subtle PCR bias at the genome level, there was significant568

evidence of bias using community-wide metrics that grew with the number of rounds of569

PCR when using a mock community. (A) With the exception of the KAPA polymerase data, the570

richness and Shannon diversity values increased with number of rounds of PCR and the inclusion of571

residual sequencing errors and chimeras. The horizontal black line indicates the expected richness572

and diversity. (B) Relative to the mock community sampled after 25 rounds of PCR, the distance573

to the communities sampled after 30 and 35 rounds of PCR increased for all polymerases. (C)574

The variation between samples demonstrated a significant change in the community driven by the575

number of rounds of PCR and the polymerase used. The ellipses represent bivariate normally576
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distributed 95% confidence intervals. The data in A and B represents the mean of four replicates.577

Figure 5. Sequencing of human stool samples indicated clear increase in bias with number578

of rounds of PCR, however, the bias appeared to be consistent within each sample. (A) With579

the exception of data collected using the KAPA polymerase, the richness and Shannon diversity580

values increased with number of rounds of PCR. (B) Relative to the stool communities sampled581

after 25 rounds of PCR, the distance to the stool communities sampled after 30 and 35 rounds of582

PCR was inconsistent and there was little difference in variation for data collected using the KAPA583

polymerase. (C) The variation between stool samples was larger than the amount of variation584

introduced by varying the number of rounds of PCR or polymerase. The ellipses represent bivariate585

normally distributed 95% confidence intervals. Results for some samples at 20 cycles are not586

presented because it was not possible to obtain a sufficient number of reads for those polymerases.587

Figure 6. The average distance between replicates of sequencing the same mock588

community or between the human stool samples (i.e. drift) did not vary by number of589

rounds of PCR or by polymerase. .590

Figure S1: With the exception of the sequence data generated using the KAPA polymerase,591

the ratio of the two Salmonella enterica V4 sequences from the mock community was lower592

than the expected ratio of 6:1. The dominant and rare S. enterica V4 sequences differed by a593

single base. The horizontal gray line indicates the expected 6:1 ratio. Each line represents the594

mean of four replicates.595
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