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Abstract 

We have engineered light-gated channelrhodopsins (ChRs) whose current strength and light 

sensitivity enable minimally-invasive neuronal circuit interrogation. Current ChR tools applied to 

the mammalian brain require intracranial surgery for transgene delivery and implantation of 

invasive fiber-optic cables to produce light-dependent activation of a small volume of brain tissue 

[~1 mm3]. To enable optogenetics for large brain volumes and without the need for invasive 

implants, our ChR engineering approach leverages the significant literature of ChR variants to 

train statistical models for the design of new, high-performance ChRs. With Gaussian Process 

models trained on a limited experimental set of 102 functionally characterized ChR variants, we 

designed high-photocurrent ChRs with unprecedented light sensitivity; three of these, ChRger1, 

ChRger2, and ChRger3, enable optogenetic activation of the nervous system via minimally-

invasive systemic transgene delivery with rAAV-PHP.eB, which was not possible previously due 

to low per-cell transgene copy produced by systemic delivery. These engineered ChRs enable 

light-induced neuronal excitation without invasive intracranial surgery for virus delivery or fiber 

optic implantation, i.e. they enable minimally-invasive optogenetics.  

 

Introduction 

Channelrhodopsins (ChRs) are light-gated ion channels found in photosynthetic algae. Transgenic 

expression of ChRs in the brain enables light-dependent neuronal activation1. These channels 

have been widely applied as tools in neuroscience research2; however, functional limitations of 

available ChRs prohibit a number of optogenetic applications. In their algal hosts, ChRs serve as 

sunlight sensors in phototaxic and photophobic responses1. These channels have broad activation 

spectra in the visible range and require high-intensity light for activation [~1 mW mm-2]. ChRs 

are naturally low-conductance channels requiring approximately 105 – 106 functional ChRs 

expressed in the plasma-membrane of a neuron to produce sufficient light-dependent 

depolarization to induce neuronal activation3. When applied to the mouse brain, ChRs require ~1 

– 15 mW light delivered ~100 µm from the target cell population to reliably activate action 

potentials4-6. This confines light-dependent activation to a small volume of brain tissue [~1 mm3]7. 

Enabling optogenetics for large brain volumes without the need to implant invasive optical fibers 

for light delivery would be highly desirable for neuroscience applications.  
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Our goal has been to engineer available ChRs to overcome limits in conductance and light 

sensitivity and extend the reach of optogenetic experiments. Engineering ChRs requires 

overcoming three major challenges. First, rhodopsins are trans-membrane proteins that are 

inherently difficult to engineer because the sequence and structural determinants of membrane 

protein expression and plasma-membrane localization are highly constrained and poorly 

understood8,9. Second, because properties of interest for neuroscience applications are assayed 

using low-throughput techniques, such as patch-clamp electrophysiology, engineering by directed 

evolution is not feasible10. And third, in vivo applications require either retention or optimization 

of multiple properties in a single protein tool; for example, we must optimize expression and 

localization in mammalian cells while simultaneously tuning kinetics, photocurrents, and spectral 

properties6.  

Diverse ChRs have been published, including variants discovered from nature11,12, variants 

engineered through recombination9,13 and mutagenesis14,15, as well as variants resulting from 

rational design16. Studies of these coupled with structural information17 and molecular dynamic 

simulations18 have established some understanding of the mechanics and sequence features 

important for specific ChR properties1,16. Despite this, it is still not possible to predict the 

functional properties of new ChR sequences and therefore not trivial to design new ChRs with a 

desired combination of functional properties.  

Our approach has been to leverage the significant literature of ChRs to train statistical models that 

enable design of new, highly-functional ChRs. These models take as their input the sequence and 

structural information for a given ChR variant and then predict its functional properties. The 

models use training data to learn how sequence and structural elements map to ChR functional 

properties. Once known, that mapping can be used to predict the functional behavior of untested 

ChR variants and to select variants predicted to have optimal combinations of desired properties. 

We trained models in this manner and found that they accurately predict the functional properties 

of untested ChR sequences. We used these models to engineer 30 ‘designer’ ChR variants with 

specific combinations of desired properties. A number of variants identified from this work have 

unprecedented photocurrent strength and light sensitivity. We have characterized these low-light 

sensitive, high-photocurrent ChRs for applications in the mammalian brain and demonstrate their 

potential for minimally-invasive activation of populations of neurons in the brain enabled by 

systemic transgene delivery with the engineered AAV, rAAV-PHP.eB19. This work demonstrates 
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how a machine learning-guided approach can enable engineering of proteins that have been 

challenging to engineer using existing methods.  

Results 

Dataset of ChR sequence variants and corresponding functional properties for 

machine learning 

In previous work, we explored structure-guided recombination20,21 of three highly-functional ChR 

parents [CsChrimsonR (CsChrimR)11, C1C217, and CheRiff22] by designing two 10-block 

recombination libraries with a theoretical size of ~120,000 (i.e. 2x310) ChR variants9. Measuring 

expression, localization, and photocurrent properties of a subset of these chimeric ChRs showed 

that these recombination libraries are a rich source of functionally diverse sequences9. That work 

produced 76 ChR variants with measured photocurrent properties, the largest single source of 

published ChR functional data. In subsequent work, we generated an additional 26 ChR variants 

selected from the same recombination libraries8, which we have now characterized for functional 

properties. Together, these 102 ChR variants from the recombination libraries provide the 

primary dataset used for model training in this work. We supplemented this dataset with data 

from other published sources including 19 ChR variants from nature, 14 single-mutant ChR 

variants, and 28 recombination variants from other libraries (Dataset 1). As the data produced by 

other labs were not collected under the same experimental conditions as data collected in our 

hands, they cannot be used for comparison for absolute ChR properties (i.e. photocurrent 

strength); however, these data do provide useful binary information on whether a sequence 

variant is functional or not. Thus, we used published data from other sources when training binary 

classification models for ChR function.  

Our primary interest was modeling and optimization of three ChR photocurrent properties: 

photocurrent strength, wavelength sensitivity, and off-kinetics (Figure 1a). Enhancing ChR 

photocurrent strength would enable reliable neuronal activation even under low-light conditions. 

As metrics of photocurrent strength, we use peak and steady-state photocurrent (Figure 1a). As a 

metric for the ChR activation spectrum, we use the normalized current strength induced by 

exposure to green light (560 nm) (Figure 1a). Different off-rates can be useful for specific 

applications: fast off-kinetics enable high-frequency optical stimulation23, slow off-kinetics is 

correlated with increased light sensitivity3,14,15, and very slow off-kinetics can be used for 

constant depolarization (step-function opsins [SFOs]14). We use two parameters to characterize 
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the off-kinetics: the time to reach 50% of the light-activated current and the photocurrent decay 

rate, τoff (Figure 1a). In addition to opsin functional properties, it is also necessary to optimize or 

maintain plasma-membrane localization, a prerequisite for ChR function8. 

As inputs for the machine-learning models, we consider both ChR sequence and structure. ChR 

sequence information is simply encoded in the amino acid sequence. For structural comparisons, 

we convert the 3D crystal-structural information into a ‘contact map’ that is convenient for 

modeling. Two residues are considered to be in contact and potentially important for structural 

and functional integrity if they have any non-hydrogen atoms within 4.5 Å in the C1C2 crystal 

structure17.  

Training Gaussian process (GP) classification and regression models 

Using the ChR sequence/structure and functional data as inputs, we trained Gaussian process 

(GP) classification and regression models (Figure 1). GP models have successfully predicted 

thermostability, substrate binding affinity, and kinetics for several soluble enzymes24, and, more 

recently, ChR membrane localization8. For a detailed description of the GP model architecture 

and properties used for protein engineering see refs 8, 23. Briefly, these models infer predictive 

values for new sequences from training examples by assuming that similar inputs (ChR sequence 

variants) will have similar outputs (photocurrent properties). To quantify the relatedness of inputs 

(ChR sequence variants), we compared both sequence and structure. We defined the sequence 

and structural similarity between two chimeras by aligning them and counting the number of 

positions and contacts at which they are identical24.  

We trained a binary classification model to predict if a ChR sequence will be functional using all 

102 training sequences from the recombination library as well as data from 61 sequence variants 

published by others (Dataset 1). A ChR sequence was considered to be functional if its 

photocurrents were >0.1 nA upon light exposure, a threshold we set as an approximate lower 

bound for current necessary for neuronal activation. We then used this trained classification 

model to predict whether uncharacterized ChR sequence variants were functional (Figure 1a). To 

verify that the classification model is capable of accurate predictions, we performed 20-fold cross 

validation on the training data set and measured an area under the receiver operator curve (AUC) 

of 0.78, indicating good predictive power (Table 1). 
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Next, we trained three regression models, one for each of the ChR photocurrent properties of 

interest: photocurrent strength, wavelength sensitivity of photocurrents, and off-kinetics (Figure 

1a). For these, we exclusively used data collected from our ChR recombination libraries (Dataset 

2). Once trained, these models were used to predict photocurrent strength, wavelength sensitivity 

of photocurrents, and off-kinetics of new, untested ChRs sequence variants. Again, to test 

whether these models make accurate predictions, we performed 20-fold cross validation on the 

training dataset and observed high correlation between predicted and measured properties as 

indicated by Pearson correlations between 0.77 – 0.89 for all models (Table 1).  

Selection of designer ChRs using trained models 

A ‘designer’ ChR is a ChR predicted by the models to have a useful combination of properties. 

We used a tiered approach (Figure 1b) to select designer ChRs. The first step was to eliminate all 

ChR sequences predicted to not localize to the plasma membrane or predicted to be non-

functional. To do this, we used the ChR function classification model along with the previously 

published ChR localization classification model8 to predict the probability of localization and 

function for each ChR sequence in the 120,000-variant recombination library. Not surprisingly, 

most ChR variants were predicted to not localize and not function. To focus on ChR variants 

predicted to localize and function, we set a threshold for the product of the predicted probabilities 

of localization and function; any ChR sequence above that threshold would be considered for the 

next tier of the process. We selected a conservative threshold of 0.4. 

The model training data made clear that the higher the mutation level (mutation distance from one 

of the three parent proteins), the less likely it was that a sequence would be functional; however, 

we expect that more diverse sequences would also have the more diverse functional properties. 

We wanted to explore diverse sequences predicted to function by the classification models. We 

selected 22 ChR variants that passed the 0.4 threshold and were diverse multi-block-swap 

sequences (i.e. containing on average 70 mutations from the closest parent). After these 22 

sequences were synthesized, cloned in the expression vector, and expressed in HEK cells, their 

photocurrent properties were measured with patch-clamp electrophysiology. 59% of the tested 

sequences were functional (Figure 2a), compared to 38% of the multi-block swap sequences not 

selected by the model and having the same average mutation level. This validates the 

classification model’s ability to make useful predictions about novel functional sequences, even 

for sequences that are very distant from those previously tested. We then updated the models by 

including data from these 22 sequences for future rounds of predictions.  
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Of the 120,000-variant recombination library, 1,161 chimeric sequence variants passed the 

conservative 0.4 predicted localization and function threshold (Figure 1). For the second tier of 

the selection process, we used the three regression models trained on all functional variants 

collected up to this point to predict the photocurrent strength, wavelength sensitivity of 

photocurrents, and off-kinetics for each of these 1,161 ChR sequence variants (Dataset 3). From 

these predictions, we selected those ChRs predicted to have the highest photocurrent strength, 

most red-shifted or blue-shifted activation wavelengths, and those with a range of off-kinetics 

from very fast to very slow. We selected 28 designer ChRs with different combinations of 

properties that were all predicted to be highly functional (photocurrents > 0.2 nA) and capable of 

good membrane localization (Supplemental Figure 1-2).  

Genes encoding the 28 selected designer ChR variants were synthesized and cloned into 

expression vectors, expressed in HEK cells, and characterized for their photocurrent properties 

with patch-clamp electrophysiology. All 28 selected designer ChRs were functional: 100% of 

chimeras selected using the updated classification model above the 0.4 threshold both localize 

and function. For each of the designer ChR variants, the three measured photocurrent properties 

correlated very well with the model predictions (R>0.9 for all models) (Figure 2b, Table 1). This 

outstanding performance on a novel set of sequences demonstrates the power of this data-driven 

predictive method for engineering designer ChRs. As a negative control, we selected two ChR 

variant sequences from the recombination library that the model predicted would be non-

functional (ChR_29_10 and ChR_30_10). These sequences resulted from a single-block swap 

from two of the most highly functional ChR recombination variants tested. As predicted, these 

sequences were non-functional (Figure 3b), which shows that ChR functionality can be 

attenuated by incorporating even minimal diversity at certain positions. 

Sequence and structural determinants of ChR functional properties 

We used L1-regularized linear regression models to identify a limited set of residues and 

structural contacts that strongly influence ChR photocurrent strength, spectral properties, and off-

kinetics. We can assess the relative importance of these sequence and structural features by 

weighting their contributions using L2-regularized linear regression and have included important 

features and their weights in Dataset 4 and Supplemental Figure 3-4. For each functional 

property, we identified a set of important residues and contacts. Residues and contacts most 

important for tuning spectral properties are generally proximal to the retinal-binding pocket, with 

some exceptions (Supplemental Figure 4). Residues important for photocurrent strength reside 
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between transmembrane (TM) helix 1 and 7 (Supplemental Figure 3). The C1C2 crystal 

structure shows TM helices 1, 2 and 7 form a cavity which allows water influx for the cation-

translocation pathway. Interestingly, residues important for photocurrent strength also appear to 

be important for kinetic properties (Supplemental Figure 3), consistent with previous findings 

that light sensitivity is inversely proportional to off-kinetic speed3,14,15.  

Machine-guided search identifies ChRs with a range of useful functional properties 

We assessed photocurrent amplitude, wavelength sensitivity, and off-kinetics of the designer 

ChRs and the three parental ChRs (CsChrimR11, CheRiff22, and C1C217) (Figure 3). In addition 

to the 28 regression model-predicted ChRs, we also assessed the top performing ChRs from the 

classification models’ predictions [ChR_9_4 (predicted from the classification localization 

model) and ChR_25_9 (classification function model)], for a total of 30 highly-functional model-

predicted ChRs as well as the two negative control ChRs (ChR_29_10, ChR_30_10). Of the 30 

model-predicted ChRs, we found 12 variants with ≥2-times higher blue-light activated 

photocurrents than the top-performing parent (CsChrimR) (Figure 3b). Three variants exhibit 

≥1.7-times higher green-light activated photocurrents than CsChrimR (Figure 3b). Eight variants 

have larger red-light activated photocurrents when compared with the blue-light activated parents 

(CheRiff and C1C2), though none out-perform CsChrimR (Figure 3b). Both ChR variants 

predicted to be non-functional by the models produce <0.03 nA currents. 

Characterization of the 30 designer ChRs revealed that their off-kinetics span three orders of 

magnitude (τoff = 10 ms – >10 s) (Figure 3c). This range is quite remarkable given that all 

designer ChRs are built from sequence blocks of three parents that have very similar off-kinetics 

(τoff = 30 – 50 ms). We found that 5 designer ChRs have faster off-kinetics than the fastest parent, 

while 16 have >5-times slower off-kinetics (Figure 3c). The two fastest variants, ChR_3_10 and 

ChR_21_10 exhibit τoff = 13 ± 0.9 ms and 12 ± 0.4 ms, respectively (mean ± SEM). Four ChRs 

have particularly slow off-kinetics with τoff > 1 s, including ChR_15_10, ChR_6_10, and 

ChR_13_10 (τoff = 4.3 ± 0.1 s, 8.0 ± 0.5 s, and 17 ± 7 s, respectively). Two ChRs with very strong 

photocurrents, ChR_25_9 and ChR_11_10, exhibit τoff = 220 ± 10 ms and 330 ± 30 ms, 

respectively. Short 1 ms-exposures to blue light elicits distinct profiles from selected ChRs: 

ChR_21_10 turns off rapidly, ChR_25_9 and ChR_11_10 turn off more slowly, and ChR_15_10 

exhibits little decrease in photocurrent 0.5 s after the light was turned off (Figure 3c).  
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Three designer ChRs exhibit interesting spectral properties. ChR_28_10’s red-shifted spectrum 

matches that of CsChrimR, demonstrating that incorporating sequence elements from blue-shifted 

ChRs into CsChrimR can still generate a red-shifted activation spectrum (Figure 3e). Two of the 

designer ChRs exhibit novel spectral properties: ChR_11_10 has a broad activation spectrum 

relative to the parental spectra, with similar steady-state current strength from 400 – 560 nm light 

and even maintain strong currents (0.7 ± 0.1 nA) when activated with 586 nm light (Figure 3e). 

ChR_25_9, on the other hand, exhibits a narrow activation spectrum relative to the parental 

spectra, with a peak at 485 nm light (Figure 3e). 

We assessed the light sensitivity of the designer ChRs with enhanced photocurrents by measuring 

photocurrent strength at various irradiances (Figure 3d). We refer to these high-photocurrent 

ChRs as ‘high-performance’ ChRs. Compared with CsChrimR, CheRiff, and C1C2, all high-

performance ChRs have ≥9-times larger currents at the lowest intensity of light tested (10-1 mW 

mm-2) as well as larger currents at all intensities of light tested. The high-performance ChRs also 

demonstrate minimal decrease in photocurrent magnitude over the range of intensities tested (10-1 

– 101 mW mm-2), suggesting that photocurrents were saturated at these intensities and would only 

attenuate at much lower light intensities (Figure 3d). The high-performance ChRs are expressed 

at levels similar to the CsChrimR parent (the highest expressing parent) indicating that the 

improved photocurrent strength of these ChRs is not solely due to improved expression 

(Supplemental Figure 5-6).  

We also compared high-performance designer ChRs with ChR2(H134R)6,25, an enhanced 

photocurrent single mutant of ChR2 commonly used for in vivo optogenetics, and CoChR (from 

Chloromonas oogama)11, which was reported to be one of the highest conducting ChRs activated 

by blue light. Three of the top high-performance ChRs (ChR_9_4, ChR_25_9, and ChR_11_10) 

show significantly larger peak and steady-state currents compared with ChR2 and significantly 

larger steady-state currents when compared with CoChR when exposed to 2 mW mm-2 485 nm 

light (Supplemental Figure 7d,f). Although CoChR produced peak currents of similar 

magnitude to the high-performance ChRs, CoChR decays to a much lower steady-state level 

(Supplemental Figure 7d,f). At lower light intensities (6.5x10-2 mW mm-2), the high-

performance ChRs produce significantly larger photocurrents than both ChR2(H134R) and 

CoChR (Supplemental Figure 7e,g). These high-performance opsins have the potential for 

optogenetic activation with very low light levels. The increased low-light sensitivity of these 

high-performance ChRs is likely due in part to their relatively slow off kinetics leading to the 

increased accumulation of the open state under low-light conditions14. 
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Validation of designer ChRs for neuroscience applications 

For further validation in neurons we selected three of the top high-conductance ChRs, ChR_9_4, 

ChR_25_9, and ChR_11_10, and renamed them ChRger1, ChRger2, and ChRger3, respectively, 

for channelrhodopsin Gaussian process-engineered recombinant opsin (Supplemental Figure 8). 

For validation in cultured neurons and acute brain slices, ChRger1-3 and ChR2(H134R) were 

cloned into AAV vectors with either a hSyn or CaMKIIa promoter, Golgi export trafficking 

signal (TS) sequence5, and enhanced yellow fluorescent protein (eYFP) marker and packaged in 

the engineered rAAV-PHP.eB capsid19 (Figure 4a and Supplemental Table 1). When expressed 

in cultured neurons under the hSyn promoter, the ChRgers display robust membrane localization 

and expression throughout the neuron soma and neurites (Figure 4a). We assessed neuronal spike 

fidelity with varying irradiance using ChR2(H134R) for comparison and observed a 10 – 100-

fold decrease in the light intensity required to induce reliable spiking by 1 and 5 ms 485 nm light 

pulses (Figure 4b,c). These results demonstrate that the designer ChRgers require 1 – 2 orders of 

magnitude lower light intensity than ChR2(H134R) for neuronal activation.  

Next, we performed direct intracranial injections into the mouse prefrontal cortex (PFC) of 

rAAV-PHP.eB packaging either ChRger1, ChRger2, ChRger3, or ChR2(H134R) under the hSyn 

promoter. After 3 – 5 weeks of expression, we measured light sensitivity in ChR-expressing 

neurons in acute brain slices. Consistent with the pervious experiments, we observed a large 

increase in the light sensitivity for the ChRgers compared with ChR2(H134R) (Figure 4d,e). The 

ChRgers exhibit >200 pA photocurrent at the lowest irradiance tested, 10-3 mW mm-2, while at 

the equivalent irradiance ChR2(H134R) exhibits undetectable photocurrents (Figure 4d,e). The 

ChRgers reach >1 nA photocurrents with ~10-2 mW mm-2 light, a four-fold improvement over 

ChR2(H134R)’s irradiance-matched photocurrents (Figure 4d). Our characterization of 

ChR2(H134R)’s light sensitivity and photocurrent strength is consistent with previously 

published results from other labs6,22.  

Designer ChRs and systemic AAVs enable minimally-invasive optogenetic excitation  

We investigated whether these light-sensitive, high-photocurrent ChRs could provide optogenetic 

activation coupled with minimally-invasive gene delivery. Previous reports of ‘non-invasive 

optogenetics’ relied on invasive intracranial virus delivery, which results in many copies of virus 

per cell and thus very high expression levels of the injected construct26. Recently, we described 

the novel AAV capsid rAAV-PHP.eB19 that produces broad transduction throughout the central 
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nervous system with a single minimally-invasive intravenous injection in the adult mouse27,28. 

Systemic delivery of rAAV-PHP.eB vectors results in brain-wide transgene delivery with 

expression throughout large brain volumes without the need for invasive intracranial 

injections19,27,28. The use of rAAV-PHP.eB for optogenetic applications has been limited, 

however, by the lower multiplicity of infection with systemically delivered viral vectors than with 

direct injection. This results in insufficient opsin expression and light-evoked currents to evoke 

neuronal firing with commonly-used channels (e.g. ChR2).  

We hypothesized that the ChRgers could overcome this limitation and allow large-volume 

optogenetic excitation following systemic transgene delivery. We systemically delivered rAAV-

PHP.eB packaging either ChRger1-TS-eYFP, ChRger2-TS-eYFP, or ChR2(H134R)-TS-eYFP 

under the hSyn promoter and observed broad expression throughout the brain with expression 

strongest in the cortex (Figure 4f). We then measured the fraction of opsin-expressing cells with 

sufficient opsin-mediated currents for light-induced firing (Figure 4g). Only 1/36 neurons 

expressing ChR2(H134R) produced light-induced firing, while 8/9 neurons expressing ChRger1 

produced light-induced activity and 9/9 neurons expressing ChRger2 produced light-induced 

activity. We also observed high spike fidelity with low light levels in ChRger1 and ChRger2, 

consistent with observations in neuronal cultures (Figure 4h). These results demonstrate the need 

for light-sensitive and high-photocurrent opsins for applications where systemic delivery is 

desired.  

We also systemically delivered rAAV-PHP.eB packaging ChRger1-3 under the CaMKIIa 

promoter. With systemic delivery of ChRger2, we observed photocurrent strength similar to 

results observed after direct injection into the PFC (Figure 4d). When expressed in pyramidal 

neurons in the cortex, ChRger2 and ChRger3 enabled robust optically-induced firing at rates 

between 2 – 10 Hz, although spike fidelity was reduced at higher frequency stimulation (Figure 

4i,j). ChRger2 performed best with higher frequency stimulation while ChRger1 performed worst. 

The ChRgers also produced robust light-induced spiking with short pulse-width stimulation (e.g., 

0.5 ms pulse width; Figure 4i). 

We next evaluated the optogenetic efficiency of ChRger2 after systemic delivery using a well-

established behavioral paradigm: optogenetic intracranial self-stimulation (oICSS) of 

dopaminergic neurons of the ventral tegmental area (VTA)29. We used systemic delivery of 

rAAV-PHP.eB packaging a double-floxed inverted open reading frame (DIO) containing either 

ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP into Dat-Cre mice (Figure 5a and Supplemental 
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Table 1). Three weeks after systemic viral delivery and stereotaxic implantation of fiber-optic 

cannulas above the VTA, mice were placed in an operant box and were conditioned to trigger a 

burst of 447 nm laser stimulation via nose poke. Animals expressing ChRger2 displayed robust 

optogenetic self-stimulation in a frequency-dependent and laser power-dependent manner. Higher 

frequencies (up to 20 Hz) and higher light power (up to 10 mW) promoted greater maximum 

operant response rates (Figure 5a). Conversely, laser stimulation failed to reinforce operant 

responding in ChR2(H134R)-expressing animals (Figure 5a); these results were consistent with 

results in acute slice where the light-induced currents of ChR2(H134R) are too weak at the low 

copy number produced by systemic delivery for robust neuronal activation.  

In order to determine if ChRger2 would enable both minimally-invasive transgene delivery and 

minimally-invasive optical excitation, we assayed directional control of locomotion in freely 

moving animals by optogenetic stimulation of the right secondary motor cortex (M2), a well-

established behavioral paradigm previously used to validate optogenetic tools30. In this assay, 

unilateral stimulation of M2 disrupts motor function in the contralateral lower extremities, 

causing mice to turn away from the stimulation side. We systemically administered rAAV-

PHP.eB packaging either ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP under a CaMKIIa 

promoter for transgene expression in excitatory pyramidal neurons in the cortex (Figure 5b, and 

Supplemental Table 1). We observed broad expression throughout the cortex for both ChRger2 

and ChR2(H134R) injected animals (Supplemental Figure 9). We secured a fiber-optic cannula 

guide to the surface of the thinned skull above M2 without puncturing the dura and therefore 

leaving the brain intact (Figure 5b), which we consider to be minimally invasive. Despite the 

presence of the highly optically scattering calavarial bone, stimulation with 20 mW 447 nm light 

induced left-turning behavior in animals expressing ChRger2 but not in animals expressing 

ChR2(H134R) (Figure 5b and Supplemental Video 1-2). Left-turning behavior terminated upon 

conclusion of optical stimulation (Supplemental Video 1). Behavioral effects were seen at 

powers as low as 10 mW, but the most consistent turning phenotypes were seen with 20 mW laser 

power. In order to ensure that turning behavior was not due to unexpected visual stimuli or 

heating caused by the stimulation laser, we repeated treadmill experiments using 671 nm light, 

which is outside the excitation spectrum of both opsins. 20 mW 671 nm light failed to induce 

turning in both ChRger2 and ChR2(H124R). Overall, these experiments demonstrate that 

ChRger2 is compatible with minimally-invasive systemic gene delivery and can enable 

minimally-invasive optogenetic excitation.  
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Discussion 

We have outlined and demonstrated a data-driven approach to engineering ChR properties that 

enables efficient discovery of highly functional ChR variants based on data from relatively few 

variants. In this approach we approximate the ChR fitness landscape and use it to efficiently 

search sequence space and select top-performing variants for a given property10,24. By first 

eliminating the vast majority of non-functional sequences, we can focus on local peaks scattered 

throughout the landscape. Then, using regression models, we predict which sequences lie on the 

fitness peaks.  

Designing useful ChRs for in vivo applications requires simultaneous optimization of multiple 

properties; machine learning provides a platform for such optimization and allows us to identify 

designer variants with combinations of properties that follow engineering specifications. Using a 

limited sequence space of ~120,000 chimeric ChRs, we were able to generate variants with large 

variations in off-kinetics (10 ms to >10 s) and photocurrents that far exceed any of the parental or 

other commonly used ChRs. We also use the machine-learning models to identify the residues 

and contacts most important for ChR function. Application of this machine-learning pipeline 

(limited data collection from diverse sequences, model training and validation, and prediction and 

testing of new sequences) is likely to generate other new and improved protein-based 

neuroscience tools, e.g., anion-conducting ChRs12, calcium sensors, voltage sensors31, and 

AAVs27. 

We have designed high-performance ChRs (ChRger1, ChRger2, and ChRger3) with 

unprecedented light sensitivity and have validated ChRger2’s application for in vivo optogenetics. 

The high-photocurrent properties of these ChRs have overcome the limitation of low per-cell 

copy number after systemic delivery. ChRger2 enabled neuronal excitation with high temporal 

precision without invasive intracranial surgery for virus delivery or fiber optic implantation for 

superficial brain areas, extending what is currently possible for optogenetics experiments. 

Coupling ChRgers with recently reported upconversion nanoparticles may allow for non-invasive 

optogenetics in deep brain areas with systemic transgene delivery and tissue-penetrating near-

infrared (NIR) light for neuronal excitation26.   
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Online methods 

Construct design and characterization: 

The design, construction, and characterization of the recombination library of chimeras is 

described in detail in Bedbrook et al.9. The 10-block contiguous and 10-block noncontiguous 

recombination libraries were designed and built using SCHEMA recombination9. Software 

packages for calculating SCHEMA energies are openly available 

at cheme.che.caltech.edu/groups/fha/Software.htm. Selected ChR variant genes were inserted into 

a constant vector backbone [pFCK from Addgene plasmid #5169322] with a CMV promoter, 

Golgi export trafficking signal (TS) sequence (KSRITSEGEYIPLDQIDINV)5, and fluorescent 

protein (mKate). All ChR variants contain the SpyTag sequence following the N-terminal signal 

peptide for the SpyTag/SpyCatcher labeling assays used to characterize ChR membrane 

localization9,32. The C1C2 parent for the recombination libraries is mammalian codon-optimized. 

For characterization in neurons, selected ChR variants [ChRger1, ChRger2, ChRger3, CoChR11, 

and hChR2(H134R)] were inserted into a pAAV-hSyn vector backbone [Addgene plasmid 

#26973], a pAAV-CamKIIa vector backbone [Addgene plasmid #51087], and a pAAV-CAG-

DIO vector backbone [Addgene plasmid #104052]. In all backbones, each ChR was inserted with 

a Golgi export trafficking signal (TS) sequence (KSRITSEGEYIPLDQIDINV)5, and fluorescent 

protein (eYFP). ChR variant sequences used in this study are documented in Dataset 2. All 

selected ChR genes were synthesized and cloned in the pFCK mammalian expression vector by 

Twist Bioscience. HEK293T cells were transfected with purified ChR variant DNA using 

FuGENE®6 reagent according to the manufacturer’s (Promega) recommendations. Cells were 

given 48 hours to express the ChRs before photocurrent measurements. Imaging of ChR variants 

expression in HEK cells was performed using an Andor Neo 5.5 sCMOS camera and Micro-

Manager Open Source Microscopy Software. Imaging of ChR expression in neuronal cultures 

and in brain slices was performed using a Zeiss LSM 880 confocal microscope and Zen software.  

Primary neuronal cultures 

Primary hippocampal neuronal cultures were prepped from C57BL/6N mouse embryos 16-18 

days post-fertilization (E16-E18 Charles-River Labs) and cultured at 37 oC in the presence of 5% 

CO2 in Neurobasal media supplemented with glutamine and B27. Cells were transduced 3 – 4 

days after plating with rAAV-PHP.eB packaging ChR2(H134R), ChRger1, ChRger2, or ChRger3. 

Whole-cell recordings were performed 10 – 14 days after transduction. 
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Patch-clamp electrophysiology  

Whole-cell patch-clamp and cell-attached recordings were performed in transfected HEK cells, 

transduced neurons, and acute brain slices to measure light-activated inward currents or neuronal 

firing. For electrophysiological recordings, cultured cells were continuously perfused with 

extracellular solution at room temperature (in mM: 140 NaCl, 5 KCl, 10 HEPES, 2 MgCl2, 2 

CaCl2, 10 glucose; pH 7.35) while mounted on the microscope stage. For slice recordings, 32 oC 

artificial cerebrospinal fluid (ACSF) was continuously perfused over slices. ACSF contained 127 

mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 12 mM d-glucose, 0.4 mM 

sodium ascorbate, 2 mM CaCl2, and 1 mM MgCl2 and was bubbled continuously with 95% 

oxygen / 5% CO2. 

Patch pipettes were fabricated from borosilicate capillary glass tubing (1B150-4; World Precision 

Instruments) using a model P-2000 laser puller (Sutter Instruments) to resistances of 3–6 MΩ. 

Pipettes were filled with K-gluconate intracellular solution containing the following (in mM): 134 

K gluconate, 5 EGTA, 10 HEPES, 2 MgCl2, 0.5 CaCl2, 3 ATP, and 0.2 GTP. Whole-cell patch-

clamp and cell-attached recordings were made using a Multiclamp 700B amplifier (Molecular 

Devices), a Digidata 1440 digitizer (Molecular Devices), and a PC running pClamp (version 10.4) 

software (Molecular Devices) to generate current injection waveforms and to record voltage and 

current traces. Access resistance (Ra) and membrane resistance (Rm) were monitored throughout 

recording. 

Patch-clamp recordings were done with short light pulses to measure photocurrents. Light pulse 

duration, wavelength, and power were varied depending on the experiment (as described in the 

text). Light pulses were generated using a Lumencor SPECTRAX light engine and quad band 

387/485/559/649 nm excitation filter (SEMROCK, Part Number: FF01-387/485/559/649-25). To 

evaluate normalized green photocurrent, we measured photocurrent strength at three wavelengths: 

(red) 650 ± 13 nm LED with 643 – 656 nm filter, (green) 560 ± 25 nm LED with 547 – 572 nm 

filter, and (cyan) 485 ± 20 nm LED with 475 – 495 nm filter with a 0.5 s light pulse. Light 

intensity was matched for these measurements, with 485 nm light at 2.3 mW mm-2, 560 nm light 

at 2.8 mW mm-2, and 650 nm light at 2.2 mW mm-2. For full spectra measurements depicted in 

Figure 3e, we measured photocurrents at seven different wavelengths: (red) 650 ± 13 nm LED, 

(yellow) 586 ± 20 nm LED, (green) 560 ± 25 nm LED, (teal) 513 ± 22 nm LED, (cyan) 485 ± 20 

nm LED, (blue) 438 ± 29 nm LED, and (violet) 395 ± 25 nm LED with a 0.5 s light pulse for 

each color. Light intensity is matched across wavelengths at 1.3 mW mm-2. 
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Photocurrents were recorded from cells in voltage clamp held at -60 mV. Neuronal firing was 

measured in current clamp mode with current injection for a -60 mV holding potential. For cell 

culture experiments, the experimenter was blinded to the identity of the ChR being patched but 

not to the fluorescence level of the cells. For acute slice recordings, the experimenter was not 

blinded to the identity of the ChR. 

Electrophysiology data were analyzed using custom data-processing scripts written using open-

source packages in the Python programming language to perform baseline adjustments, find the 

peak and steady state inward currents, perform monoexponential fits of photocurrent decay for 

off-kinetic properties, and quantify spike fidelity. Only cells with an uncompensated series 

resistance between 5 and 30 MΩ, Rm > 90 MΩ, and holding current >-150 pA (holding at −60 

mV) were included in data analysis. The photocurrent amplitude was not adjusted for expression 

level since both expression and conductance contribute to the in vivo utility of the tool. However, 

comparisons of expression with photocurrent strength for all ChR variants tested are included in 

Supplemental Figures 5-7. 

Plotting and statistical analysis were done in Python and GraphPad Prism 7.01. For statistical 

comparisons, we performed non-parametric Kruskal-Wallis test with Dunn's multiple 

comparisons post hoc test. 

AAV production and purification 

Production of recombinant AAV-PHP.eB packaging pAAV-hSyn-X-TS-eYFP-WPRE, pAAV-

CAG-DIO[X-TS-eYFP]-WPRE, and pAAV-CaMKIIa-X-TS-eYFP-WPRE (X = ChR2(H134R), 

ChRger1, ChRger2, and ChRger3) was done following the methods described in Deverman et 

al.33 and Challis et al.28. Briefly, triple transfection of HEK293T cells (ATCC) was performed 

using polyethylenimine (PEI). Viral particles were harvested from the media and cells. Virus was 

then purified over iodixanol (Optiprep, Sigma; D1556) step gradients (15%, 25%, 40% and 60%). 

Viruses were concentrated and formulated in phosphate buffered saline (PBS). Virus titers were 

determined by measuring the number of DNase I–resistant viral genomes using qPCR with 

linearized genome plasmid as a standard. 

Animals 
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All procedures were approved by the California Institute of Technology Institutional Animal Care 

and Use Committee (IACUC). Dat-Cre mice (006660) and C57Bl/6J mice (000664) were 

purchased from Jackson Laboratory.  

Intravenous injections, stereotactic injections, and cannula implantation 

Intravenous administration of rAAV vectors was performed by injecting the virus into the retro-

orbital sinus at viral titers indicated in the text. There were no observed health issues with animals 

after systemic injection of virus at the titers presented in the paper. Mice remain healthy >6 

months after systemic delivery of ChR2 and ChRgers. With slice electrophysiology, we did not 

observe any indication of poor cell health due to viral-mediated expression, which we quantified 

by measuring the membrane resistance [Rm], leak current [holding at −60 mV], and resting 

membrane potential. Local expression in the prefrontal cortex (PFC) was performed by direct 

stereotactic injection of 1 µl of purified AAV vectors at 5x1012 vg ml-1 targeting the following 

coordinates: anterior-posterior (AP), −1.7; media-lateral (ML), +/− 0.5; and dorsal-ventral (DV), 

−2.2. For stimulation of the VTA, 300 µm outer diameter mono fiber-optic cannulae (Doric 

Lenses, MFC_300/330-0.37_6mm_ZF1.25_FLT) were stereotaxically implanted 200 µm above 

the VTA bilaterally targeted to the following coordinates: AP, −3.44 mm; ML, +/−0.48 mm; DV, 

4.4 mm. For stimulation of the right secondary motor cortex (M2), 3 mm long, 400 µm mono 

fiber-optic cannulae (Doric Lenses, MFC_400/430-0.48_3mm_ZF1.25_FLT) were surgically 

secured to the surface of the skull above M2 (unilaterally) targeted to the following coordinates: 

AP, 1 mm; ML, 0.5 mm. The skull was thinned ~40 – 50% with a standard drill to create a level 

surface for the fiber-skull interface. Light was delivered from either a 447 nm or 671 nm laser 

(Changchun New Industries [CNI] Model with PSU-H-LED) via mono fiber-optic patch cable(s) 

(Doric Lenses, MFP_400/430/1100-0.48_2m_FC-ZF1.25) coupled to the fiber-optic cannula(e). 

Fiber-optic cannulae were secured to the skull with Metabond (Parkel, SKU S396) and dental 

cement.  

Analysis of behavioral experiments was performed using the open-source MATLAB program 

OptiMouse34 to track mouse nose, body, and tail position while the mouse was running on the 

treadmill. Optogenetic intracranial self-stimulation was performed using a mouse modular test 

chamber (Lafayette Instruments, Model 80015NS) outfitted with an IR nose port (Model 

80116TM). 

Gaussian process modeling 
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Both the GP regression and classification modeling methods applied in this paper are based on 

work detailed in ref 8 and 23. For modeling, all sequences were aligned using 

MUltiple Sequence Comparison by Log-Expectation (MUSCLE) 

(https://www.ebi.ac.uk/Tools/msa/muscle/). For modeling, aligned sequences were truncated to 

match the length of the C1C2 sequence, eliminating N- and C-terminal fragments with poor 

alignment quality due to high sequence diversity (Dataset 1 and Dataset 2). Structural encodings 

use the C1C2 crystal structure (3UG9.pdb) and assume that ChR chimeras share the contact 

architecture observed in the C1C2 crystal structure. For a given ChR, the contact map is simply a 

list of contacting amino acids with their positions. For example, a contact between alanine at 

position 134 and methionine at position 1 of the amino acid sequence would be encoded by 

[(‘A134’), (‘M1’)]. Both sequence and structural information were one-hot encoded. 

Regression models for ChR properties were trained to predict the logarithm of the measured 

properties. All training data was normalized to have mean zero and standard deviation one.  

Gaussian process regression and classification models require kernel functions that measure the 

similarity between protein sequences. Learning involves optimizing the form of the kernel and its 

hyperparameters (Supplemental Table 2). The Matérn kernel was found to be optimal for all 

ChR properties (Table 1).  

GP regression 

In regression, the goal is to infer the value of an unknown function !(!) at a novel point !∗ given 

observations !  at inputs ! . Assuming that the observations are subject to independent and 

identically distributed Gaussian noise with variance !!!, the posterior distribution of !∗ = !(!∗) 
for Gaussian process regression is Gaussian with mean 

!∗ = !∗! ! + !!!! !!!  (1) 

and variance 

!∗ = !(!∗, !∗) − !∗! ! + !!!! !!!∗ (2) 

Where ! is the symmetric, square covariance matrix for the training set: !!" = !(!! , !!) for !! 
and !! in the training set. !∗ is the vector of covariances between the novel input and each input 

in the training set, and !∗! = !(!∗, !!). The hyperparameters in the kernel functions and the noise 

hyperparameter !! were determined by maximizing the log marginal likelihood:  

log ! ! ! = − !
! !

! ! + !!!! !!! − !
! log ! + !!

!! − !
! log 2!  (3) 
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where ! is the dimensionality of the inputs. Regression was implemented using open-source 

packages in the SciPy ecosystem35-37. 

GP classification 

In binary classification, instead of continuous outputs ! , the outputs are class labels !! ∈
{+1,−1}, and the goal is to use the training data to make probabilistic predictions ! !∗ =
!(!∗ = +1|!∗) . We use Laplace's method to approximate the posterior distribution. 

Hyperparameters in the kernels are found by maximizing the marginal likelihood. Classification 

was implemented using open-source packages in the SciPy ecosystem35-37. 

GP kernels for modeling proteins 

Gaussian process regression and classification models require kernel functions that measure the 

similarity between protein sequences. A protein sequence ! of length ! is defined by the amino 

acid present at each location. This can be encoded as a binary feature vector !!" that indicates the 

presence or absence of each amino acid at each position resulting in a vector of length 20! (for 

20 possible amino acids). Likewise, the protein's structure can be represented as a residue-residue 

contact map. The contact map can be encoded as a binary feature vector !!" that indicates the 

presence or absence of each possible contacting pair. We used both the sequence and structure 

feature vectors by concatenating them to form a sequence-structure feature vector.  

We considered three types of kernel functions ! !! , !! :!polynomial kernels, squared exponential 

kernels, and Matérn kernels. These different forms represent possible functions for the protein’s 

fitness landscape. The polynomial kernel is defined as: 

! !, !! = ! !!!+!!!!!!′
!

  (4) 

where !!  and !!  are hyperparameters. We considered polynomial kernels with ! = 3 . The 

squared exponential kernel is defined as: 

! !, !! = !!!!exp! −
!!!! !

!

!   (5) 

where ! and !! are also hyperparameters and | ∙ |! is the L2 norm. Finally, the Matérn kernel with 

! = !
! is defined as: 

! !, !! = ! 1 +
! !!!! !!!

! + ! !!!! !
!

!!! exp! −
! !!!! !!

!   (6) 
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Where ! is once again a hyperparameter. 

L1 regression feature identification and weighting 

We used L1 regression to identify residues and contacts in the ChR structure most important for 

each ChR functional property of interest. Using the concatenated sequence and structure binary 

feature vector for each of the training set ChR variants, we identified residues and contacts that 

covary. Each set of covarying residues and contacts was combined into a single feature. L1 linear 

regression was used to select the features that contribute most to each ChR functional property of 

interest. The level of regularization was chosen by maximizing the log marginal likelihood of the 

Gaussian process regression model trained on the features selected at that level of regularization. 

We then performed Bayesian ridge regression on the selected features using the default settings in 

scikit-learn38. Residues and contacts with the largest absolute Bayesian ridge linear regression 

weights were plotted onto the C1C2 structure (Supplemental Figure 3 – 4). 
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Figure 1. Machine learning-guided optimization of ChR photocurrent strength, off-kinetics, and 

wavelength sensitivity of activation. (a) Upon light exposure, ChRs open and reach a peak inward 

current; with continuous light exposure, ChRs desensitize reaching a lower steady-state current. 

We used both peak and steady-state current as metrics for photocurrent strength. To evaluate ChR 

off-kinetics we used the current decay rate (τoff) after a 1 ms light exposure and also the time to 

reach 50% of the light-exposed current after light removal. ChRs are maximally activated by one 

wavelength of light. ‘Blue shifted’ ChRs have a peak activation wavelength between ~450-480 

nm, while ‘red shifted’ ChRs have a peak activation wavelength between 520-650 nm. We used 

the normalized photocurrent with green (560 nm) light as a metric for wavelength sensitivity of 

activation. For variant selection, we trained classification models to predict whether ChRs would 

localize correctly to the plasma membrane and function (1) and then trained regression models to 

approximate the fitness landscape for each property of interest for the recombination library (2). 

Sequences predicted to localize and function by the classification models and predicted to have an 

optimized set of functional properties by the regression models were selected for further 

characterization, e.g., the 28 top variants. Models were trained with photocurrent properties for 

each ChR in the training set (plots show 20-fold cross validation on the training set). (b) The 

classification function model was trained with 102 recombination variants (Dataset 2) and 61 

previously-published ChRs (Dataset 1) and the regression models were trained with 124 

recombination variants (Dataset 2).  
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Figure 2. Training machine-learning models to predict ChR properties of interest based on 

sequence and structure enables design of ChR variants with collections of desirable properties. (a) 

Measurements of training set ChR and model-predicted ChR, peak photocurrent, off-kinetics, and 

normalized green current. Each gray-colored point is a ChR variant. Training set data are shaded 

in blue. Mean number of mutations for each set is above the plots. (b) Model predictions vs 

measured property for peak photocurrent, off-kinetics, and normalized green current of the 28 

designer ChRs shows strong correlation. Specific ChR variants are highlighted to show predicted 

and measured properties for all three models: blue, ChR_12_10, green, ChR_11_10, orange, 

ChR_28_10, pink, ChR_5_10.  
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Figure 3. The model-predicted ChRs exhibit a large range of functional properties often far 

exceeding the parents. (a) Current trace after 0.5 s light exposure for select designer ChR variants 

with corresponding expression and localization in HEK cells. Vertical colored scale bar for each 

ChR current trace represents 0.5 nA, and horizontal scale bar represents 250 ms. Different color 

traces are labeled with each variant’s name. The variant color presented in (a) is kept constant for 

all other panels. (b) Designer ChR measured peak and steady-state photocurrent with different 

wavelengths of light in HEK cells (n = 4–8 cells, see Dataset 2). 383 nm light at 1.5 mW mm-2, 

485 nm light at 2.3 mW mm-2, 560 nm light at 2.8 mW mm-2, and 650 nm light at 2.2 mW mm-2. 

(c) Designer ChR off-kinetics decay rate (τoff) following a 1 ms exposure to 485 nm light at 2.3 

mW mm-2 (n = 4–8 cells, see Dataset 2). Parent ChRs are highlighted in light gray. Inset shows 

current traces with 1 ms light exposure for select ChRs compared with CheRiff. (d) Selected ChR 

variants’ peak and steady-state photocurrent strength with varying light irradiances compared 

with parental ChRs (CheRiff, n = 5; CsChrimR, n = 5; C1C2, n = 4; 28_10, n = 5; 11_10, n = 5; 

25_9, n = 5). (e) Wavelength sensitivity of activation for select ChRs compared with parental 

ChRs (CheRiff, n = 6; CsChrimR, n = 5; C1C2, n = 4; 11_10, n = 6; 12_10, n = 7; 25_9, n = 5; 

10_10, n = 4). Top variants, ChR_9_4, ChR_25_9, and ChR_11_10 are named ChRger1, 

ChRger2, and ChRger3 in subsequent figures. Plotted data are mean ± SEM. 
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Figure 4. ChRger variants in cultured neurons and in acute brain slices outperform the commonly 

used ChR2(H134R). (a) ChRgers and the ChR2(H134R) control were cloned into an AAV vector 

with either the hSyn or CamKIIa promoter, a trafficking signal (TS), eYFP, and WPRE and then 

packaged into rAAV-PHP.eB for expression in culture and in vivo. Cultured neurons expressing 

ChRgers and ChR2(H134R) under the hSyn promoter. (b) Voltage traces of ChRgers and 

ChR2(H134R) at 2 Hz with 5 ms pulsed low-intensity blue light stimulation (3x10-2 mW mm-2) 

shows robust neuronal firing for ChRgers while ChR2(H134R) exhibits only sub-threshold light-

induced depolarization. (c) Spike fidelity with varying intensity light of ChRgers and 

ChR2(H134R) for 5 ms and 1 ms light-pulse width at 2 Hz stimulation (ChRger1, n = 6; ChRger2, 

n = 4; ChRger3, n = 6; ChR2, n = 7). (d) ChRgers and ChR2(H134R) photocurrent strength with 

varying light irradiances in acute brain slice after direct injection of rAAV-PHP.eB packaged 

hSyn-ChR constructs into the PFC (ChRger1, n = 11; ChRger2, n = 11; ChRger3, n = 11; ChR2, 

n = 9) or after systemic delivery of CamKIIa-ChRger2 (ChRger2, n = 6; 5x1011 vg/animal). (e) 

Current traces of ChRgers and ChR2(H134R) with a 300 ms light pulse at varying light 

irradiances in acute brain slice after direct injection. (f) Systemic delivery of rAAV-PHP.eB 

packaged hSyn-ChRger2 or hSyn-ChR2(H134R) resulted in broad expression throughout the 

cortex (5x1011 vg/animal). (g) The fraction of light excitable neurons in the PFC after systemic 

delivery of rAAV-PHP.eB packaged hSyn-ChRgers or hSyn-ChR2(H134R) measured by cell-

attached recording in acute slice targeting only neurons expressing the eYFP marker (1x1011 

vg/animal). (h) Spike fidelity with varying intensity light of hSyn-ChRgers after systemic 

delivery (1x1011 vg/animal) (ChRger1, n = 5; ChRger2, n = 8). (i) Spike fidelity with varying 

stimulation frequency of hSyn-ChRgers in cultured neurons (top) with 2 ms light-pulse width 

(ChRger1, n = 9; ChRger2, n = 12; ChRger3, n = 7; ChR2, n = 8), or in acute brain slice after 

systemic delivery of CamKIIa-ChRgers (bottom; 1x1011 vg/animal) with 0.5 ms light-pulse width 

(ChRger1, n = 9; ChRger2, n = 5; ChRger3, n = 8). Spike fidelity in culture and in slice was done 

with 1 mW mm-2 intensity light. (j) Voltage traces with blue light–driven spiking at the indicated 

frequencies with 1 mW mm-2. vg, viral genomes. Plotted data are mean ± SEM. 
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Figure 5. Validation of high-performance ChRger2 for minimally-invasive optogenetic 

behavioral modulation. (a) Minimally-invasive, systemic delivery of rAAV-PHP.eB packaged 

CAG-DIO ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP (3x1011 vg/mouse) into Dat-Cre 

animals coupled with fiber optic implantation above the VTA enabled blue light-induced 

intracranial self-stimulation (ten 5 ms laser pulses) exclusively with ChRger2 and not 

ChR2(H134R) with varying light power and varying stimulation frequencies. ChRger2, n = 4; 

ChR2(H134R), n = 4. Images show fiber placement and opsin expression for ChR2(H134R) (top) 

and ChRger2 (bottom). (b) Minimally-invasive, systemic delivery of rAAV-PHP.eB packaged 

CaMKIIa ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP (5x1011 vg/mouse) into wild type (WT) 

animals coupled with surgically secured 2 mm long, 400 µm fiber-optic cannula guide to the 

surface of the skull above the right M2 that had been thinned to create a level surface for the 

fiber-skull interface. Three weeks later, mice were trained to walk on a linear-track treadmill at 

fixed velocity. Coronal slices show expression throughout cortex with higher magnification 

image of M2 (inset) for ChR2(H134R) (left) and ChRger2 (right). Unilateral blue light 

stimulation of M2 induced turning behavior exclusively with ChRger2 and not ChR2(H134R) (10 

Hz stimulation with 5 ms 447 nm light pulses at 20 mW). ChRger2, n = 5; ChR2(H134R), n = 5. 

No turning behavior was observed in any animal with 10 Hz stimulation with 5 ms 671 nm light 

pulses (20 mW). Plotted data are mean ± SEM. vg, viral genomes.  
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Tables 

Table 1. Evaluation of prediction accuracy for different ChR property models. Calculated AUC 

or Pearson correlation after 20-fold cross validation on training set data for classification and 

regression models. The test set for both the classification and regression models was the 28 ChR 

sequences predicted to have useful combinations of diverse properties. Accuracy of model 

predictions on the test set is evaluated by AUC (for classification model) or Pearson correlation 

(for the regression models). The Matérn kernel is with ! = !
!. 

Model type ChR property Kernel Cross validation  Test set 
GP classification function Matérn AUC = 0.78 AUC = 1.0 

GP regression current strength Matérn R = 0.77 R = 0.92 

GP regression off-kinetics Matérn R = 0.78 R = 0.97 

GP regression wavelength sensitivity Matérn R = 0.89 R = 0.96 

 

Datasets 

Dataset 1. ChR sequence and photocurrent data from published sources including 19 natural ChR 

variants, 14 point-mutant ChR variants, and 28 recombination variants from various 

recombination libraries. The source of the photocurrent data is included (‘Reference’). When 

possible, we use references with side-by-side measurements of multiple ChRs. For modeling, all 

sequences were aligned and truncated to match the length of the C1C2 sequence (Online 

methods). The truncated and aligned sequences are included (‘Aligned_amino_acid_sequence’) 

as well as the full-length sequence (‘Amino_acid_sequence’).  

Dataset 2. ChR chimera sequences and functional properties for designed variants from our ChR 

recombination libraries8,9. Functional properties were tested in HEK cells. Measurements of peak 

and steady-state photocurrent (nA) with 485 nm light at 2.3 mW mm-2 (‘cyan_peak’ & ‘cyan_ss’), 

560 nm light at 2.8 mW mm-2 (‘green_peak’ & ‘green_ss’), and 650 nm light at 2.2 mW mm-2 

(‘red_peak’ & ‘red_ss’) are included. The maximum peak (‘max_peak’) and maximum steady-

state (‘max_ss’) photocurrent (nA) obtained with any wavelength are included. Measurement of 

the time (ms) to reach 50% of the light-exposed photocurrent after light removal is included 

(‘kinetics_off’). The ratio of peak photocurrent with 560 nm light to maximum photocurrent was 
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calculated per each cell and average for each ChR variant (‘norm_green’). Off-kinetics 

(‘kinetics_off’) and spectral properties (‘norm_green’) were only included for ChR variants with 

steady-state photocurrent strength >0.02 nA. Each ChR recombination variant has a chimera 

identity (‘block_ID’) beginning with either ‘c’ or ‘n’ to indicate the contiguous or non-contiguous 

library8,9 followed by 10 digits indicating the parent that contributes each of the 10 blocks (‘0’: 

CheRiff, ‘1’:C1C2, and ‘2’:CsChrimR). Each ChR variant’s number of mutations away from the 

nearest parent (‘m’) is included. For modeling, all sequences were aligned and truncated to match 

the length of the C1C2 sequence (Online methods). The truncated and aligned sequences are 

included (‘Aligned_amino_acid_sequence’) as well as the full-length sequence 

(‘Amino_acid_sequence’).  

Dataset 3. ChR variants predicted to localize and function. 1,161 ChR variants from the 

recombination libraries are above the 0.4 threshold for the product (‘pp’) of the predicted 

probabilities of localization (‘p_loc’) and function (‘p_func’). For all remaining variants (i.e., 

variants that we have not yet measured), we include the regression models’ prediction of peak 

photocurrent in nA (‘mu_peak_nA’), off-kinetics (time [ms] to reach 50% of the light-exposed 

photocurrent after light removal; ‘mu_kin_ms’), and normalized photocurrent with 560 nm light 

(‘mu_green’). We also include ChR variants’ amino acid and nucleic acid sequences. 

Dataset 4. Limited set of amino acid residues and structural contacts important for model 

predictions identified with L1-regularized linear regression. The relative importance (‘weight’) of 

these sequence and structural features is learned using Bayesian ridge regression. We found a 

different limited set of features for each of the three functional properties of interest 

(‘norm_green’, ‘off_kinetics’, and ‘peak_photocurrent’). Features are either amino acid residues 

(i.e. a sequence feature [‘seq’]) or contacts. The feature position is indicated with numbering 

according to the aligned and truncated ChR sequence. We also include the parental features at 

each position with numbering according the parental sequence. Highly-weighted features 

highlighted in color in Supplemental Figure 3-4 are indicated by their corresponding color. 

Features not highlighted in Supplemental Figure 3-4 are listed as gray. 
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