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Background and Purpose: Accurate identification of acute ischemic stroke (AIS) patient 

cohorts is essential for a wide range of clinical investigations. Automated phenotyping methods 

that leverage electronic health records (EHRs) represent a fundamentally new approach cohort 

identification. Unfortunately, the current generation of these algorithms is laborious to develop, 

poorly generalize between institutions, and rely on incomplete information. We systematically 

compared and evaluated the ability of several machine learning algorithms and case-control 

combinations to phenotype acute ischemic stroke patients using data from an EHR. 

Methods: Using structured patient data from the EHR at a tertiary-care hospital system, we built 

machine learning models to identify patients with AIS based on 75 different case-control and 

classifier combinations. We then determined the models’ classification ability for AIS on an 

internal validation set, and estimated the prevalence of AIS patients across the EHR. Finally, we 

externally validated the ability of the models to detect self-reported AIS patients without AIS 

diagnosis codes using the UK Biobank. 

Results: Across all models, we found that the mean area under the receiver operating curve for 

detecting AIS was 0.963±0.0520 and average precision score 0.790±0.196 with minimal feature 

processing. Logistic regression classifiers with L1 penalty gave the best performance. Classifiers 

trained with cases with AIS diagnosis codes and controls with no cerebrovascular disease 

diagnosis codes had the best average F1 score (0.832±0.0383). In the external validation, we 

found that the top probabilities from a model-predicted AIS cohort were significantly enriched 

for self-reported AIS patients without AIS diagnosis codes (65-250 fold over expected).   

Conclusions: Our findings support machine learning algorithms as a way to accurately identify 

AIS patients without relying on diagnosis codes or using process-intensive manual feature 

curation. When a set of AIS patients is unavailable, diagnosis codes may be used to train 
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classifier models. Our approach is potentially generalizable to other academic institutions and 

further external validation is needed. 

 

INTRODUCTION 

Stroke is a complex disease that is a leading cause of death and severe disability for millions of 

survivors worldwide.1 Accurate identification of stroke etiology, which is most commonly 

ischemic but encompasses several other causative mechanisms, is essential for risk stratification, 

optimal treatment, and support of clinical research. While electronic health records (EHR) are an 

emerging resource that can be used to study stroke patients, identification of stroke patient 

cohorts using the EHR requires the integration of multiple facets of data, including medical 

notes, labs, imaging reports, and medical expertise of neurologists. This process is often 

manually performed and time-consuming, and can reveal mis-classification errors.2 One simple 

approach to identify acute ischemic stroke (AIS) is the diagnosis-code based algorithm created 

by Tirschwell and Longstreth.3  However, identifying every AIS patient using these criteria can 

be difficult due to the inaccuracy and incompleteness of diagnosis recording through insurance 

billing. 3–5 Additionally, this approach prevents the identification of AIS patients until after 

hospital discharge, thereby limiting the clinical usability of identification algorithms in time-

sensitive situations, such as in-hospital care management, research protocol enrollment, or acute 

treatment.  

 

Reproducibility and computability of phenotyping algorithms stem from the use of structured 

data, standardized terminologies, and rule-based logic.6 Phenotyping features from the EHR have 

been traditionally culled and curated by experts to manually construct algorithms, 7 but machine 
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learning techniques present the potential advantage of automating this process of feature 

selection and refinement.8,9 Recent machine learning approaches have also combined publicly 

available knowledge sources with EHR data to facilitate feature curation.10,11 Additionally, while 

case and control phenotyping using EHR data has also relied on a small number of expert curated 

cohorts, recent studies have demonstrated that ML approaches can identify such cohorts using 

automated feature selection and imperfect case definitions in a high-throughput manner.12-14 Two 

stroke phenotyping algorithms have also used machine learning to enhance the classification 

performance of a diagnosis-code based AIS phenotyping algorithm.15,16  However, while ML 

models present an opportunity to automate identification of AIS patients (i.e. phenotyping) with 

commonly accessible EHR data and develop new approaches to etiologic identification and 

subtyping, the optimal combination of cases and controls to train such models remains unclear. 

 

Given the limitations of manual and diagnosis-code cohort identification, we sought to develop 

phenotypic classifiers for AIS using machine learning approaches, with the objective of 

specifically identifying AIS patients that were missing diagnosis codes. Additionally, 

considering the challenge of identifying true controls in the EHR for the purpose of model 

training, we also attempted to determine the optimal grouping of cases and controls by selecting 

and comparing model discriminatory performance with multiple case-control group 

combinations. We also sought to contrast model training based on cases defined by diagnostic 

code with that using manually-curated cohorts. Our phenotyping method utilizes machine 

learning classifiers with minimal data processing to increase the number of stroke patients 

recovered within the EHR and reduce the time and effort needed to find them for research 

studies. 
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METHODS 

Study Design 

In this study, we developed several machine learning phenotyping models for AIS using 

combinations of different case and control groups derived from our institution’s EHR data. Use 

of patient data was approved by Columbia’s institutional review board. We also applied key 

methods to optimize number of features for generalizability, as well as calibration to ensure a 

clinically meaningful model output, and model robustness to missing data. To estimate the 

prevalence of potential AIS patients without AIS-related International Classification of Diseases 

(ICD) codes, we then applied the developed models to all patients in our institutional EHR. 

Finally, we externally validated our best-performing model in an independent cohort from the 

UK Biobank to evaluate its ability to detect self-reported AIS patients without the requisite ICD 

codes. Figure 1 shows the overall workflow of training and testing the models, the models' 

evaluation, and its testing in an independent test set. 

 

Data Sources 

We used data from patients in the Columbia University Irving Medical Center Clinical Data 

Warehouse (CUIMC CDW), which contains longitudinal health records of 6.4 million patients 

from CUIMC's EHR, spanning 1985-2018. This includes patients from the CUIMC stroke 

service (Figure 1, Table 1), that were part of a larger group of patients with acute cerebrovascular 

diseases and were prospectively identified and recorded as part of daily research activities by a 

CUIMC stroke physician between 2011 and 2018. Two researchers (PT and BK) each manually 

reviewed 50 patients' charts from this cohort to determine baseline false positive rates.  
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Patient Population 

We defined 3 case groups. We first included all patients from the CUIMC stroke service that 

were recorded as having AIS (cohort S). We then defined all patients in the CDW that met the 

Tirschwell-Longstreth (T-L) diagnosis code criteria for AIS (cohort T), which comprise 

ICD9CM codes 434.x1, 433.x1, 436 (where x is any number) and the code is in the primary 

diagnostic position. 3 Our dataset did not specify the diagnostic position of codes. We also 

included ICD10 code equivalents, I63.xxx or I67.89, with the ICD10 codes being determined 

from ICD9 from Centers for Medicaid and Medicare Services (CMS) General Equivalence 

Mappings.18 Because patients with cerebrovascular disease are also likely to have suffered AIS, 

but may not have an attached AIS-related diagnosis code, we also created a group of cases 

according to cerebrovascular disease-related ICD codes defined by the ICD-9-Clinical 

Modification (CM) Clinical Classifications Software tool (CCS), as well as their ICD10 

equivalents (cohort C).17  

We then defined 4 control groups (Figure 1, Table 1). First, we defined a control group of 

patients without AIS-related diagnosis codes (I). Due to the fact that cerebrovascular disease is a 

major risk factor for stroke,19 and to test a more stringent control definition than that of group (I), 

we also defined an additional group without any of the CCS cerebrovascular disease codes 

defined in cohort (C).  Then, we defined a control set using CCS cerebrovascular disease 

diagnosis codes other than AIS (CI). Because multiple clinical entities can present as AIS, we 

also defined a group of controls according to diagnosis codes for AIS mimetic diseases (N), 

including hemiplegic migraine (ICD9-CM 346.3), brain tumor (191.xx, 225.0), multiple sclerosis 
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(340), cerebral hemorrhage (431), and hypoglycemia with coma (251.0). Finally, we identified a 

control group culled from a random sample of patients (R).  

 
Model Features 

From the CDW, we gathered race, ethnicity, age, sex, diagnostic and procedure insurance billing 

codes as well as medication prescriptions for all patients. We dichotomized each feature based 

on its presence or absence in the data. Because Systematized Nomenclature of Medicine 

(SNOMED) concept IDs perform similarly to ICD9 and ICD10 codes for phenotyping, 20 we 

mapped diagnoses and procedure features from ICD9, ICD10, and Current Procedural 

Terminology 4 (CPT4) codes to SNOMED concept IDs, and used RxNorm IDs for medication 

prescriptions. We identified patients with Hispanic ethnicity using an algorithm combining race 

and ethnicity codes.21 The most recent diagnosis in the medical record served as the age end 

point and we dichotomized age as greater than or equal, or less than 50 years.  We excluded from 

our feature set any diagnosis codes that were used in any case or control definitions. Because 

approximately 5 million patients exist in the CUIMC CDW without a cerebrovascular disease 

diagnosis code, we addressed this large resultant imbalance in cases and controls by randomly 

sampling controls to create a balanced, or 1:1 case to control ratio. In addition, we set the 

maximum sample size to 16,000 patients in order to control the size of the feature set. 

 

Model Development 

Using all 15 case-control combinations, we trained 75 models using logistic regression classifiers 

with L1 and elastic net regularization, as well as random forest, AdaBoost, gradient boosting, 

and neural network classifiers on the gathered features. We chose these classifiers to compare a 

variety of feature-to-outcome relationships: linear (logistic regression), ensemble (random forest, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/565671doi: bioRxiv preprint 

https://doi.org/10.1101/565671
http://creativecommons.org/licenses/by/4.0/


 8 

AdaBoost, gradient boosting), and non-linear (neural network). We tuned the models’ 

hyperparameters using 10-fold cross validation (Supplementary Methods). We then determined a 

probability threshold for each model using the training set. Within the validation set of each 

training fold, controls were bootstrapped to form a 100:1 control to case ratio to represent the 

prevalence of AIS in the general population.22 Precision and recall were then calculated from the 

bootstrapped set. To determine the optimal threshold to maximize precision and recall, we 

calculated maximum F scores at different 𝛽s using the following equation 

𝐹# = 	 (1 +	𝛽)) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙 

where ß takes the values 1.0, 0.5, 0.25, and 0.125 with increasing weight of precision. Using the 

probability threshold determined from cross-fold validation, we then calculated the maximum F1 

score, sensitivity, specificity, positive predictive value, negative predictive value, and precision 

on a holdout set of 1000 patients from the stroke service and 100,000 non-overlapping randomly 

selected patients. We chose this test ratio to imitate the prevalence of AIS in the general 

population. The models were evaluated on the test set with area under the receiver operating 

curve (AUROC) and average precision score (AP), a proxy for area under the precision-recall 

curve. All models were programmed using the Python sklearn scientific computing package 

(Python Software Foundation, www.python.org).23 We then aggregated common features found 

in the top ten in importance or beta coefficient weight for each model, and we evaluated the 

contribution of each feature to each model by comparing its prevalence in the cases with its 

prevalence in the controls and as a function of its importance (or weight) in the model. 

 

Internal Validation using All EHR Patients 
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To identify the number of patients classified as having AIS in our institutional EHR, we applied 

each of the 75 models to the entire patient population in the CUIMC CDW with at least one 

diagnosis code. We chose a probability threshold based on the maximum F1 score determined 

for each model from the training set. We also determined the percentage of patients that had AIS 

ICD9 codes as defined by T-L criteria and associated ICD10 codes. 

 

External Validation  

The UK Biobank is a prospective health study of over 500,000 participants, ages 40-69, 

containing comprehensive EHR and genetic data.24 Given that this dataset contains 2,959 

patients with an AIS related ICD10 code, similar to our T case cohort, and 870 patients with self-

reported AIS, without AIS related ICD10 codes, the UK Biobank is an ideal cohort to evaluate 

our machine learning models’ ability to recover potential AIS patients that lack AIS-related 

ICD10 codes. We chose the most accurate and robust case-control combination from our models 

(cases defined by the T-L AIS codes (T) and controls without codes for cerebrovascular disease 

(C) in a 1:1 case-control ratio as our training set) to train the phenotyping model using conditions 

specified by ICD10 codes, procedures specified by OCPS4 codes, medications specified by 

RxNorm codes, and demographics as features, excluding self-reported features as well as those 

that were used to create the cohorts. We then tested our models on the rest of the UK Biobank 

data which included self-reported AIS cases. We resampled the control set 50 times and 

evaluated the performance of the algorithm through AUROC, AP, and precision at the top 50, 

100, 500 and 870 patients (ordered by model probability). 

 

RESULTS 
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Study Cohort 

Table 1 presents the data and the total number of patients available for each set of cases and 

controls used in the training and internal and external validation parts of this study. Out of the 

CUIMC EHR, which has a total of 6.4 million patients, we extracted 4,844 stroke service 

patients, which we found to have a 4-16% false positive rate for stroke. Supplementary Table 2 

presents demographic characteristics. 

 

Algorithm Performance 

We trained 75 models using all combinations of cases, controls, and model types after excluding 

15 neural network models due to poor performance. Logistic regression classifiers with L1 

penalty gave the best AUROC performance (0.913-0.997) and the best average precision score 

(0.662-0.969), followed by logistic regression classifiers with elastic net penalty (Figure 2, 

Supplementary Table 3).  

Across all classifier types, the models using the T-C case-control combination had the best 

average F1 score (0.832±0.0383), whereas logistic regression models with L1 penalty (LR) and 

elastic-net penalty had the best classifier average F1 score (0.705±0.146 and 0.710±0.134 

respectively) (Figure 2B, Supplementary Table 6). Use of cases from the CUIMC stroke service 

gave the highest average precision (0.932±.0536), while cases identified through AIS diagnosis 

codes and controls without cerebrovascular disease or AIS-related diagnosis codes (TC, TI) gave 

high precision as well (0.896±0.0488 and 0.918±0.0316, respectively). The sensitivity of the 

models ranged widely, between 0.18 and 0.96, while specificity narrowly ranged between 0.993-

1.0 (Supplementary Table 7). 
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Feature Importance  

We found the most commonly chosen features associated with stroke diagnosis were procedures 

used in evaluation of AIS, including extra- and intra-cranial arterial scans, CT scans and MRIs of 

the brain, and MR angiography (Figure 3A). We also found that all 75 models relied on 

incremental contributions from many different features (Figure 3B, Supplementary Figures 20-

34).  

 
Internal Validation in Institutional EHR 

We applied the 75 models to the entire CUIMC EHR with at least one diagnosis code, totaling 

between 5,324,725 and 5,315,923 patients depending on the case/control set. We found that the 

results varied widely across models, but most predicted a prevalence of between 0.2-2% of 

patients in the EHR were AIS patients. The models with controls with cerebrovascular disease 

codes but no AIS codes predicted the lowest prevalence of AIS patients, and found 50.3-100% of 

the proposed patients had AIS diagnosis codes. The models with the best performance and 

robustness, 1) stroke service cases and controls without cerebrovascular disease codes and 2) 

cases with AIS codes and controls without cerebrovascular disease codes with 1) Logistic 

Regression and L1 Penalty classifier and 2) Adaboost classifier, had sensitivities between 0.822-

0.959, specificities 0.994-0.999, and estimated AIS prevalence in the EHR ranging between 1.3-

2.0% (Supplementary Table 7, Table 2). Within these proposed AIS patients, 37.7-41.4% had an 

AIS diagnosis code (Table 2). 

 
External Validation 

We evaluated the performance of the TC models on identifying 870 patients with self-reported 

AIS. The top 50, 100, 500, and 870 probabilities had a precision of over 13%, and up to 50% 
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(Figure 4). Since within the test set only 0.2% of the patients had self-reported AIS, this 

translates to a 60-250-fold increase in AIS detection over random choice. 

 
DISCUSSION 

Using a feature-agnostic, data-driven approach with minimal data transformation, we developed 

models that identify acute ischemic stroke (AIS) patients from commonly-accessible EHR data at 

the time of patient hospitalization without making use of AIS-related ICD9 and ICD10 codes as 

defined by Tirschwell and Longstreth. In demonstrating that AIS patients can be recovered from 

other EHR-available structured clinical features without AIS codes, this approach is in contrast 

to previous machine learning phenotyping algorithms, which have relied on manually curated 

features or use AIS-related diagnosis codes as the sole nonzero features in their models. 15,16,3  

 

Cases and controls for training of phenotyping algorithms can be challenging to identify and 

define given the richness of available EHR data. From the sparsity of diagnosis codes in the 

EHR, it follows that patients lacking an AIS-related diagnosis code may not always be 

considered as a control in stroke cohorts. Similarly, it is difficult to determine whether patients 

with cerebrovascular diseases, which can serve as risk factors for AIS, or share genetic and 

pathophysiologic underpinnings with AIS should be considered controls. Additionally, due to the 

prevalence of AIS mimics, cohort definitions based on diagnosis code criteria may be unreliable. 

In light of the problems in defining patient cohorts from EHR data, we found marked differences 

in classifying performance across 15 different case-control training sets. While training with 

cases from the CUIMC stroke service cases identified stroke patients most accurately and with 

the highest precision and recall, we also found that training with cases identified from AIS codes 

with controls from either 1) no cerebrovascular disease or 2) no AIS codes afforded high 
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precision (Supplementary Table 3). These findings suggest that a manually curated cohort may 

not be necessary to train the phenotyping models, and the AIS codes may be enough to define a 

training set. Using these models, we also increased our AIS patient cohort by 60% across the 

EHR, suggesting that the AIS codes themselves are not sufficient to identify all AIS patients. 

 

We found that stroke evaluation procedures, such as a CT scan or MRI, were important features 

in many of the models. Since none of these models use AIS diagnosis codes as features, this 

suggests that procedures may serve as proxies for them. In some cases, the AIS code will only be 

added during outpatient follow up. For example, while in the stroke service set, 13.5% of cases 

did not have AIS codes in the inpatient setting but did in the outpatient setting, and 90% of these 

patients had had a CT scan of the head. We also found evidence that procedures provided a 

significant contribution to classification in the models in supplementary analysis (Supplementary 

Methods, Results, and Supplementary Figure 4). 

 

We found that as measured by AUROC and AP, discriminatory performance of the random 

forest, logistic regression with L1 and elastic net penalties, and gradient boosting models was 

robust, even when up to 95% of the training set was removed. These findings showed that a 

training set size as small as 70-350 samples can maintain high performance, depending on the 

model. 

 

Our results from traditional model performance and robustness evaluations show that our best 

machine learning phenotyping algorithm used Logistic Regression with L1 penalty or AdaBoost 

classifiers trained with controls without any cerebrovascular disease-related codes and a stroke 
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service case population. However, we found that a similar model performed comparably well 

using cases identified by AIS-related diagnosis codes, suggesting that these models do not 

require manual case curation for high performance. In addition, our validation study in the UK 

Biobank detected AIS patients without ICD10 codes up to 250-fold better than random selection.  

This study has several limitations. First, we relied on noisy labels and proxies for training our 

models, as evidenced by the false positive rate of 4-16% that was determined by manual review. 

Without a gold standard set of cases, model performance is difficult to definitively evaluate. 

Second, we used only structured features contained within standard terminologies across the 

patients' entire timeline, and did not use clinical notes. While clinical notes may contain much 

highly relevant information, they may also give rise to less reproducible and generalizable 

feature sets. Additionally, each feature contributed incrementally to high performance of the 

models and required minimal processing to acquire. Third, due to limitations of time and 

computational complexity, we did not exhaustively explore all possible combinations of cases 

and controls, including other potential AIS mimetic diseases. Despite these limitations, precision 

in the internal validation using the held-out set was high, and when applied to an external 

validation cohort, the developed models improved detection of AIS patients between 65 and 250-

fold over random patient identification. Fourth, we did not study clinical implementation of the 

models. However, the discriminatory ability of the classifiers in the external validation suggest 

that although these models have not been implemented clinically, they may potentially be useful 

for improving the power of existing clinical and research study cohorts. 

 

Our study benefits from several strengths. First, to address the current deficiencies in developing 

phenotyping algorithms, we developed an approach that demonstrates comparable discriminatory 
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ability of identifying patients with AIS to past methods but has the added benefit of using EHR 

data that is generally available during inpatient hospitalization. Second, our model features were 

composed of structured data that encompass a larger feature variety than purely ICD-code based 

algorithms. Third, because our model incorporated structured data from standard terminologies, 

they therefore may be generalizable to other health systems outside CUIMC, whereas recent 

studies have relied on manually curated feature sets.15 Fourth, we examined several different 

combinations of cases, controls and classifiers for the purposes of training phenotyping models. 

Fourth, our phenotype classifiers assign probability of having had an AIS, which moves beyond 

binary classification of patients to develop a more granular description of patient’s disease state.  

SUMMARY 

In addition to research tasks such as cohort identification, future models could focus on timely 

interventions such as care planning prior to discharge and risk stratification. We showed that 

structured data may be sufficiently accurate for classification, allowing for widespread usability 

of the algorithm. We also demonstrated the potential for using machine learning classifiers for 

cohort identification, which achieve high performance with many features acquired through 

minimal processing. In addition, patient cohorts derived using AIS diagnosis codes may obviate 

the need for manually-curated cohorts of patients with AIS, and procedure codes may be useful 

in identifying patients with AIS that may not have been coded with AIS-related diagnosis codes. 

We, and others, hypothesize that expanding cohort size by assigning a probability of disease may 

improve the power of heritability and genome-wide association studies.25–30 Utilizing the 

structured framework present in many current EHRs, along with machine learning models may 

provide a generalizable approach for expanding research study cohort size.  
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FIGURE LEGENDS 

Figure 1: Schematic of Model Training, Testing, Evaluation, and Application to UK Biobank. 

See methods for case/control abbreviations. Case: Control ratio was 1:1 and models included 

Random Forest (RF), Logistic Regression with L1 penalty (LR), Neural Network (NN), Gradient 

Boosting (GB), Logistic Regression with Elastic Net Penalty (EN) and Adaboost (AB).  

AUROC: Area Under the Receiver Operating Curve, AUPR: Area under the Precision-Recall 

Curve, Sens: Sensitivity, Spec: Specificity, PPV: Positive Predictive Value, NPV: Negative 

Predictive Value. 

 

Figure 2: Performance of select models on holdout test set ((a): AUROC, (b): F1). Different 

combinations of cases and controls are shown on the y-axis. (LR) logistic regression with l1 

penalty, (RF) random forest, (AB) AdaBoost, (GB) gradient boosting, (EN) logistic regression 

with elastic net penalty. Different combinations of cases and controls are shown on the y-axis. 

Cases (first letter) may be one of cerebrovascular (C), T-L (T), or Stroke Service (S). Controls 

(second and third letters) may be one of random (R), cerebrovascular disease but no AIS code 

(CI), no cerebrovascular disease (C), no AIS code (I), or a stroke mimetic disease (N), See 

Methods and Supplementary Table 1 for definitions of sets. Threshold to compute the F1 score 

on the testing set was chosen as the threshold that yielded the maximum F1 in cross-validation 

on the training set (Methods, Supplementary Table 6). 

 

Figure 3: A: Common top 10 features in the models. After each of the 75 models were trained, 

we counted the number of times each feature was represented as one of the top ten by absolute 

coefficient weight, for methods like logistic regression, or by feature importance, for methods 
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like random forest. Above are features from this analysis along with the proportion of models in 

which they were in the top ten (% Models), the average frequency in the cases (Ave. Freq. 

Cases) and the average frequency in the controls (Ave. Freq. Controls). B: Prevalence of features 

in cases vs controls in the TC AB model. Axes were on a logarithmic scale. Increasing size of 

blue dot correlates with higher feature importance or beta coefficient weight, depending on the 

classifier type. Gray dots are features with zero importance.  

 

Figure 4. Precision-fold over random sampling of self-reported acute ischemic stroke cases at 

top 50, 100, 500, and 870 patient probabilities assigned by machine learning algorithms. With 

95% confidence intervals in error bars. See Supplementary Table 1 for model abbreviations' 

definitions. 

 

Table 1: Select Structured Data and Sample Case/Controls for models available in CUIMC 

Common Data Warehouse. 

 

Table 2. Prevalence of acute ischemic stroke patients identified by each classifier across the 

EHR and proportion of those patients with T-L criteria. Prev=prevalence. See Supplementary 

Table 1 for case-control and model abbreviations' definitions. 
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TABLES 

Table 1: 

Variable Identification N Samples 

Total Patients CUIMC CDW Person ID 6,377,222 

Diagnosis Codes ICD9, ICD10, SNOMED 140,300,457 

Procedure Codes ICD9, ICD10, CPT, SNOMED 64,383,775 

Prescription Orders RxNorm 40,759,814 

Training Categories   

    Stroke Service Cases (S) Seen by NYP Stroke Service 4,484 

    Tirschwell Criteria AIS Cases (T) 
ICD9: 434.x1, 433.x1, ICD10: 

I63.xxx 
79,306 

    CCS Cerebrovascular Cases (C) 
ICD9: 346.6x,430, 431, 432.x, 

433.xx 
181,698 

    AIS Mimetic Diseases Controls (N) 
ICD9: 191.x, 225.x, 340, 250.0, 

431 
8,438 

    Without Stroke Controls (I) No (T) Codes 5,243,646 

    Without Cerebrovascular Disease 

Controls (C) 
No (C) Codes 5,149,975 

    With Cerebrovascular disease, w/o AIS 

Controls (CI) 
(T) codes, No (C) codes 102,435 

    Random set of patients Controls (R) 
With >=1 ICD9 or ICD10 

diagnosis code 
5,396,172 

UK Biobank   
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   Total Subjects 

With diagnoses codes, procedure 

codes, medication prescriptions, 

or demographics 

384,208 

        Tirschwell Criteria AIS Cases (T) ICD10: I63.xxx 2,959 

        Without Cerebrovascular Disease 

Controls (C) 
No (C) Codes 312,500 

        Subjects with AIS but no diagnosis 

codes 
Self-reported AIS 870 

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2019. ; https://doi.org/10.1101/565671doi: bioRxiv preprint 

https://doi.org/10.1101/565671
http://creativecommons.org/licenses/by/4.0/


 26 

Table 2: 

Case/ 

Control 

Combo 

LR 

EHR 

Prev 

RF 

EHR 

Prev 

AB 

EHR 

Prev 

GB 

EHR 

Prev 

EN 

EHR 

Prev 

LR 

with 

AIS 

codes 

RF 

with 

AIS 

codes 

AB 

with 

AIS 

codes  

GB 

with 

AIS 

codes  

EN 

with 

AIS 

codes  

SN 0.7 0.7 1.0 1.3 0.7 41.3 32.2 35.6 29.0 26.4 

SI  1.1 2.0 1.5 1.7 1.1 40.5 23.0 35.7 29.8 27.1 

SC 1.3 1.7 1.5 1.8 1.3 37.7 25.4 37.9 30.8 28.5 

SCI 0.2 0.1 0.2 0.3 0.2 83.1 82.6 76.9 72.2 63.5 

SR 0.2 0.2 0.3 0.5 0.2 75.4 63.2 68.8 58.2 48.9 

TN  0.9 0.8 0.9 1.0 0.9 44.7 28.5 47.2 35.6 22.5 

TI 1.6 2.3 1.4 4.7 1.6 43.8 31.4 47.9 21.8 8.10 

TC 1.7 2.7 2.0 1.6 1.7 41.4 28.2 39.0 43.1 32.6 

TCI 0.1 0.0 0.1 0.1 0.1 94.6 96.1 85.9 95.3 79.0 

TR 0.8 0.8 0.8 0.4 0.8 46.1 40.0 44.0 61.4 31.1 

CN 1.3 1.3 1.3 1.0 1.3 34.0 17.1 33.5 31.5 21.4 

CI  2.0 3.3 1.9 1.9 2.0 37.5 24.2 39.5 39.8 39.9 

CC 2.3 3.3 2.2 2.1 2.3 35.6 25.3 37.2 37.1 29.9 

CCI 0.0 0.0 0.1 0.0 0.0 97.5 100 50.3 92.8 74.2 

CR 1.0 0.9 0.9 0.7 1.0 37.3 35.6 37.7 42.6 29.6 
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FIGURES 

Figure 1: 
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Figure 2: 
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Figure 3: 

 

  

Feature (SNOMED ID) % 
Models 

Ave. 
Freq. 
Cases  

Ave. 
Freq. 

Controls 
CT head or brain; no contrast (2211327) 64% 54% 14% 
Age > 50 57% 85% 50% 
Duplex scan of extracranial arteries; bilateral (2313975) 55% 28% 8% 
Aspirin (1112807) 44% 61% 18% 
MRI, Brain and Brain stem; no contrast (2211351)  37% 36% 7% 
Transcranial Doppler study intracranial arteries (2313977) 33% 12% 1% 
Atorvostatin (1545958) 32% 48% 11% 
Unspecified essential hypertension (44821949) 31% 64% 26% 
MR angiography, neck, no contrast (2211348) 27% 55% 4% 
Level IV- Surgical pathology, gross, and microscopic… 
(2213283) 27% 28% 24% 

Pulmonary congestion and hypostasis (44825477) 20% 30% 3% 
History of TIA or stroke w/o residual effect (45576200) 19% 6% 0.7% 
Convulsions (44823442) 16% 3% 2% 
Iatrogenic cerebrovascular infarction or hemorrhage (44834124) 13% 3% 0.3% 
�

A B

Feature with  
importance

Feature with 
no importance
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Figure 4: 
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