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Abstract 1 

 2 

Visual object recognition seems to occur almost instantaneously. However, not only does 3 

it require hundreds of milliseconds of processing, but our eyes also typically fixate the 4 

object for hundreds of milliseconds. Consequently, information reaching our eyes at 5 

different moments is processed in the brain together. Moreover, information received at 6 

different moments during fixation is likely to be processed differently, notably because 7 

different features might be selectively attended at different moments. Here, we introduce a 8 

novel reverse correlation paradigm that allows us to uncover with millisecond precision 9 

the processing time course of specific information received on the retina at specific 10 

moments. Using faces as stimuli, we observed that processing at several electrodes and 11 

latencies was different depending on the moment at which information was received. Some 12 

of these variations were caused by a disruption occurring 160-200 ms after the face onset, 13 

suggesting a role of the N170 ERP component in gating information processing; others 14 

hinted at temporal compression and integration mechanisms. Importantly, the observed 15 

differences were not explained by simple adaptation or repetition priming, they were 16 

modulated by the task, and they were correlated with differences in behavior. These results 17 

suggest that top-down routines of information sampling are applied to the continuous visual 18 

input, even within a single eye fixation.19 
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1 

1 Introduction 20 

Visual object recognition is a process that seems to occur almost instantaneously. 21 

However, this is just an impression: not only does our brain process the object for hundreds 22 

of milliseconds, but we will typically fixate it for hundreds of milliseconds too. Of course, 23 

light reflected on the object continually hits our retina throughout this fixation. The light 24 

reaching our eyes at each specific moment will then be processed in the brain. Since 25 

processing takes some time, light reaching our eyes at different moments during the 26 

fixation will typically be processed in the brain at the same moment (but possibly at 27 

different processing levels; Figure 1). The brain activity evoked by the perception of an 28 

object is a combination of the brain responses to information received on the retina at 29 

different moments. 30 

 31 

Figure 1. At any given point in time (any horizontal imaginary line in the above graphs), information received 32 
at different moments during fixation is simultaneously processed in the brain (possibly at different processing 33 
levels). A) Processing is identical for information received at different moments. B) Processing is different 34 
for information received at different moments. 35 

We can expect visual information received at different moments to be processed 36 

differently (Figure 1b). This is partly because of the limited processing capacity of higher 37 

visual areas1-2, which prevents too much information from being processed simultaneously. 38 

One strategy that can be applied by the visual system to overcome this limitation is to use 39 
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visual information received in different time windows to process different features (e.g., 40 

different regions of space, colors or spatial frequencies). This is often referred to as top-41 

down attention being guided from one feature to another3-4, as a visual routine5, or simply 42 

as a sampling of different features across time. 43 

The use of the information received at specific moments to process specific features 44 

may arise because this is a more efficient strategy for some tasks than using information 45 

received at any moment to process any feature5. Moreover, specific strategies may be more 46 

efficient than others. For example, it may be computationally more efficient to process 47 

coarse information before finer noisier features, when recognizing objects or scenes6-7, and 48 

so, high visual areas might process coarse information received early and fine information 49 

received late but not fine information received early. It follows that relatively stable 50 

strategies may occur in individuals, or even across individuals. Other biases may also result 51 

in stable strategies: for example, a tendency to process the most informative features in the 52 

information received first (which is probably an evolutionarily sensible strategy), or an 53 

attempt to compensate anatomical limitations (e.g., process color from the information 54 

received earlier because color is processed more slowly8-9). These strategies are likely to 55 

depend on the expected input and on the task. 56 

 How information received at different moments within a fixation is processed for 57 

object recognition is rarely investigated, possibly in part because the distinction between 58 

stimulus presentation time and processing time is not often discussed or appreciated (but 59 

see 10). Still, a few behavioral studies have examined this question, either by randomly 60 

revealing image features across time9,11-14 or by adding noise that is randomly varying 61 

across time15-16, and by correlating the samples with the subject’s response. These methods 62 
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and similar ones (e.g., randomly varying inter-stimulus intervals with high resolution) have 63 

been employed several times in the related literature on attention and detection 64 

mechanisms17-22. Using such methods in object recognition paradigms has led to multiple 65 

demonstrations of how observers use the information received at different moments to 66 

categorize an object. Interestingly, these strategies often seem stable across individuals. 67 

For example, as it was hypothesized, correct responses correlate with high spatial 68 

frequency, or fine, information received late, and with low spatial frequency, or coarse, 69 

information received early and late12-13,23 (see also 24-25). These strategies also seem to be 70 

contingent on the task at hand26. 71 

 While studies have been conducted on the effects of stimulus onset asynchrony27, 72 

duration28-29, and ordering30 on brain activity, the processing by the brain of information 73 

received at specific moments during a fixation has, to our knowledge, never been 74 

investigated. This a fundamentally different endeavor: decomposing the processing time 75 

course of an object according to the moment at which information is received should inform 76 

us about the neural mechanisms underlying the differential sampling and integration of 77 

information across time. It should allow us to disentangle the sampling and the processing 78 

of visual information, which are both unraveling through time. 79 

 In this study, we aimed to perform such a decomposition. To do so, we randomly 80 

sampled the features of a face across time while subjects were performing a gender or 81 

expression recognition task9,14 (Figure 2; Movies S1-S4) and while their EEG activity was 82 

recorded. Faces were chosen as stimuli because they are important social stimuli that 83 

human brains are wired by evolutionary pressures to process efficiently; moreover, faces 84 

are particularly well suited to a spatial sampling of information as they all are composed 85 
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 6 

of the same spatial features with essentially the same spatial configuration. To ensure that 86 

subjects could initiate a potential top-down sampling strategy on time, face stimuli 87 

occurred at predictable moments. We then reverse correlated brain activity at all time points 88 

to information presented in different time windows. We had three main hypotheses: 1) the 89 

processing time course of information received at different moments will be different; 2) 90 

this modulation of processing by the time at which information is received will itself be 91 

modulated by the task; and 3) variations in the processing of information received at 92 

different moments will correlate to variations in the behavioral use of this information for 93 

the task. 94 

 95 

 96 

2 Materials and Methods 97 

 98 

2.1 Participants 99 

 Twenty-four neurotypical adults (mean age = 23.0 years; SD = 2.9) were recruited 100 

on the campus of the University of Montreal. Participants did not suffer from any 101 

psychiatric or psychological disorder and had no known history of head concussions. The 102 

experimental protocol was approved by the ethics board of the Faculty of Arts and Sciences 103 

of the University of Montreal and the study was carried in accordance with the approved 104 

8.3 ms 16.7 ms 25 ms 200 ms

...

Figure 2. Example of a video stimulus used in a random trial. The three face features 
were smoothly revealed in random frames (1 frame each 8.3 ms) across 200 ms. See 
movies S1-S4. 
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 7 

guidelines. Written informed consent was obtained from all the participants after the 105 

procedure had been fully explained, and a monetary compensation was provided upon 106 

completion of each experimental session. 107 

 108 

2.2 Materials 109 

 The experimental program ran on a Ciara Discovery computer with Windows 7 in 110 

the Matlab environment, using custom scripts and functions from the Psychophysics 111 

Toolbox42-44. Stimuli were shown on an Asus VG278H monitor, calibrated to allow a linear 112 

manipulation of luminance, with a resolution of 1920 ´ 1080 pixels and a 120 Hz refresh 113 

rate. Luminance values ranged from 2.47 cd/m2 to 269 cd/m2. A chin rest was used to 114 

maintain a viewing distance of 76 cm. EEG activity was recorded using an ANT Neuro 115 

Waveguard 64-electrode cap with Ag/AgCl electrodes, using a sampling rate of 1024 Hz 116 

and a resolution of 12 bits. Linked mastoids served as initial common reference. Vertical 117 

electro-oculogram (vEOG) was bipolarly registered above and below the dominant eye and 118 

horizontal electro-oculogram (hEOG) at the outer canthi of both eyes. Electrode impedance 119 

was kept below 10 kW during recording. 120 

 121 

2.3 Stimuli and sampling 122 

 Two hundred and sixty-four color images of faces were selected from the image 123 

database Karolinska Directed Emotional Faces (KDEF)45; only faces facing the camera 124 

were chosen. These were composed of 66 different identities (33 women and 33 men) each 125 

performing a happy and a neutral expression; two different pictures of each facial 126 

expression were used. Faces were aligned on twenty hand-annotated landmarks averaged 127 
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 8 

to six mean coordinates for left and right eyes, left and right eyebrows, nose and mouth, 128 

using a Procrustes transformation. 129 

 We then created an uninformative face background by taking the mean of all 130 

aligned faces and applying a lightly smoothed elliptical mask (horizontal radius = 6 degrees 131 

of visual angle) to conceal the background, hair and shoulders. The areas including and 132 

surrounding the eyes and eyebrows were then covered by two lightly smoothed 133 

approximately circular masks; the area including and surrounding the mouth was covered 134 

by a lightly smoothed elliptical mask. The color of these masks was the mean color of the 135 

unmasked parts of the average face. The three feature masks were of equal area (within a 136 

<1% margin; since feature masks were smoothed, area covered was computed by summing 137 

the mask pixel values).  138 

For use in the sampled-face trials, the mean luminance and the contrast of all 139 

aligned faces (within the feature areas determined by the feature masks previously 140 

discussed) were equalized, separately for each color channel, using the SHINE toolbox46. 141 

The same procedure was applied but for the whole face (inside the elliptical mask), for use 142 

in the whole-face trials. 143 

 On each sampled-face trial, the face features of a randomly selected exemplar face 144 

were gradually revealed at random moments across a total duration of 200 ms; that is, 145 

masked feature areas of the uninformative face background were replaced by the features 146 

of an exemplar face (Figure 2; Movies S1-S4). A duration of 200 ms was chosen so that no 147 

saccade would occur during stimulus presentation on most trials. Specifically, on each trial, 148 

a random 3 ´ 72 sparse matrix composed of zeros and a few ones (the probability of each 149 

element being one was constant and was 0.025) was created; each row of 72 elements was 150 
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 9 

then convolved with a 1-D gaussian kernel, or “bubble”14,32, with a 1.8 frame (15 ms) 151 

standard deviation. Superfluous padding was removed so that the final smoothed matrix 152 

was 3 ´ 24 in size and thresholding was applied so that no value exceeded 1. We called 153 

this matrix sampling matrix and the value of each element determined the visibility of a 154 

given face feature through the feature background in a given video frame for this trial; more 155 

precisely, 𝒑"#$ = 	𝒇"$ ⋅ 𝑠"#$ + 𝑏 ⋅ (1 − 𝑠"#$), where pijk are the pixel values to be displayed 156 

for face feature i on frame j in trial k, fik are the original pixel values of face feature i of the 157 

exemplar face selected for trial k, sijk is the sampling matrix value for face feature i on 158 

frame j in trial k, and b is the feature background color. 159 

 160 

2.4 Experimental design 161 

Each participant came to the laboratory twice and filled in a personal information 162 

questionnaire (education, age, sex, hours of sleep, alertness, concussion history, mental 163 

illness history, etc.) on the first session. Participants completed a total of 1000 sampled-164 

face trials in each session; nine participants also completed in each session 100 additional 165 

whole-face trials in which a non-sampled exemplar face was shown for the same amount 166 

of time. Sampled-face and whole-face trials were randomly intermixed throughout the 167 

experiment. Each experimental session was divided in four equal-size blocks (of 250 or 168 

275 trials) and blocks were interleaved with breaks of approximately 5 minutes. In addition, 169 

after every 5 trials, the screen automatically showed text indicating that the participants 170 

could take a few seconds to blink and rest their eyes before pressing a key to continue the 171 

experiment (participants were instructed not to blink during the trials themselves). 172 
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On each trial, a central fixation cross was shown to the participants for 1500 ms, 173 

after which the video stimulus appeared during 200 ms, superposed to the fixation cross, 174 

again followed by the fixation cross until the participant responded (the next trial then 175 

followed after an additional constant 1500 ms); a mid-gray background was always present. 176 

A fixed inter-trial interval was used so that participants could predict the onset of the trials. 177 

Half of the participants had to categorize the sex of the faces while the other half had to 178 

categorize their expression (happy or neutral). Participants had to respond as accurately 179 

and rapidly as possible with two keys on the keyboard (half of the participants had to use 180 

the opposite key combination from the other half, to counterbalance any motor effect). 181 

 182 

2.5 Behavioral data analysis 183 

One session from one participant was removed from all analyses because its mean 184 

accuracy was 50%; a session from a different participant was removed because of 185 

prominent EEG artifacts on a large subset of trials. Finally, one 275-trial block from still 186 

another participant was lost due to a technical error. 187 

 Accuracies and response times were z-scored within each 250- or 275-trial block. 188 

Trials with a z-scored response time below -3 or above 3, or with an absolute response time 189 

below 100 ms or above 2000 ms, were excluded from further analyses. Sampling matrices 190 

weighted by z-scored accuracies were then averaged together for each session. (Such a 191 

weighted sum is equivalent to a linear regression here since sampling was random.) 192 

Resulting classification images were averaged together within each subject and then within 193 

each task. Analyses were repeated with randomly permuted accuracies 10,000 times and a 194 

statistical threshold (p < .05, one-tailed, pixel level, corrected for familywise error rate 195 
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(FWER)) was determined using the maximum statistic method47. Since we were only 196 

interested in which information was used to do the task, we only assessed positive 197 

correlations and performed a one-tailed test. 198 

 199 

2.6 EEG data preprocessing 200 

 All preprocessing was performed with the help of functions from the Fieldtrip 201 

toolbox48. EEG raw data from each session was segmented in trials, filtered between 1 and 202 

30 Hz with two successive 4th order Butterworth IIR filters, baseline corrected using the 203 

average activity between 500 ms and 250 ms before stimulus presentation, and down-204 

sampled to a 250 Hz sampling rate. Mastoid electrodes were removed due to poor signal-205 

to-noise ratio on most subjects and data was re-referenced to an average reference. 206 

Anomalous trials, trials in which eye movements were occurring during the stimulus and 207 

anomalous electrodes were identified and removed following careful visual inspection of 208 

the data (mean number of trials = 4.5 (0.5%), SD = 9.22 (0.9%)); bad channels were 209 

interpolated using a spherical spline (mean number of channels = 1.02, SD = 0.81) . An 210 

ICA using Hyvärinen's fixed-point algorithm49 was then performed to identify blink and 211 

eye movement artifacts. Bad components were identified and removed following careful 212 

visual inspection (mean number of components = 1.38, SD = 0.65). Finally, we computed 213 

single-trial current scalp density (CSD) waveforms using the spherical spline method 214 

(lambda = 1e-5, spline order = 4, degree of Legendre polynomials = 14)50-51; all further 215 

analyses were conducted on this CSD data. 216 

 217 

 218 
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2.7 EEG data analysis 219 

2.7.1 Falsely correct trials 220 

In every experiment in which performance is not at ceiling level, part of the trials 221 

initially labeled as correct are correct only by chance: e.g., if 20% of responses are 222 

incorrect, this means that another 20% was in fact correct only by chance (since there is a 223 

50% chance of being correct or incorrect when guessing). Here, we can verify which trials 224 

are comprised in this percentage of “falsely” correct trials by verifying which are the trials 225 

whose sampling matrices correlate the least to the behavioral classification image. Using 226 

this novel analysis method, we kept only true correct trials which were not correct merely 227 

by chance for further analyses. 228 

2.7.2 Regression analyses 229 

Trials with a z-scored response time below -3 or above 3, or with an absolute 230 

response time below 100 ms or above 2000 ms, were excluded from the regression 231 

analyses. For each session, electrode and time point, regularized (ridge) multiple linear 232 

regressions were performed between the standardized feature ´ presentation time sampling 233 

planes and the standardized EEG amplitudes (Figure S1a). Resulting regression 234 

coefficients were convolved with a Gaussian kernel (standard deviation of 3 time points, 235 

or 12 ms) in the EEG time dimension. Maps of regression coefficients were averaged 236 

within each subject and then across subjects within each task. Analyses were repeated with 237 

randomly permuted trials 1,000 times and statistical thresholds (p < .05, two-tailed, FWER-238 

corrected) at both the pixel and cluster (2D clusters across EEG time and presentation time; 239 

using the summed cluster values; arbitrary primary threshold of p < .01, two-tailed, 240 

uncorrected) levels were determined using the maximum statistic method47. Analyses were 241 
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restricted to time points between 30 ms and 600 ms from face onset. Results are displayed 242 

for representative PO7 (left occipito-temporal; LOT) and PO8 (right occipito-temporal; 243 

ROT) sensors but multiple comparison corrections were applied across all electrodes. 244 

Results were similar for most occipito-temporal sensors; data from all electrodes is 245 

available in an online repository (https://osf.io/3r782/). 246 

2.7.3 Task ´ stimulus moment ANOVA 247 

To investigate whether processing was significantly modulated by the presentation 248 

moment and the task, a task ´ presentation moment ANOVA was performed. Maps of 249 

regression coefficients for each subject, face feature and electrode were first linearly 250 

interpolated to a resolution of 0.1 ms, realigned to the feature onset instead of the face onset 251 

(e.g., the EEG activity for the first presentation moment stayed the same, while activity for 252 

the second one was shifted left by 8.3 ms, activity for the third one by 16.7 ms, and so on), 253 

and resampled to the original resolution of 4 ms. Task ´ presentation moment ANOVAs 254 

were then performed on individual subjects’ regression coefficients for each face feature, 255 

electrode, and latency from the feature onset (Figure S1b). Resulting F values were 256 

interpolated in topography space using biharmonic spline interpolation52. Analyses were 257 

repeated on the 1,000 null maps obtained by randomly permuting trials and statistical 258 

thresholds (p < .05, one-tailed, FWER-corrected) at both the pixel and cluster (3D clusters 259 

across EEG time and topography space; using the summed cluster values; arbitrary primary 260 

threshold of p < .01, one-tailed, uncorrected) levels were determined using the maximum 261 

statistic method47. A one-tailed test was performed given that F statistics are non-negative. 262 

Analyses were restricted to time points between 50 ms and 400 ms from feature onset. 263 

 264 
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2. 8 Mutual information between brain and behavior regression coefficients 265 

 For each subject, electrode and latency from feature onset, Gaussian copula mutual 266 

information53-54 was computed between the results of the behavior-stimulus weighted sum 267 

and the absolute values of the results of the EEG-stimulus regression, across stimulus 268 

moments (stimulus presentation time frames). Analyses were repeated with regression 269 

coefficients from the 1,000 null maps obtained by randomly permuting trials and statistical 270 

thresholds (p < .05, one-tailed, FWER-corrected) at both the pixel and cluster (3D clusters 271 

across EEG time and topography space; using the summed cluster values; arbitrary primary 272 

threshold of p < .01, one-tailed, uncorrected) levels were determined using the maximum 273 

statistic method47. A one-tailed test was performed given that mutual information is non-274 

negative. Analyses were restricted to time points between 50 ms and 400 ms from feature 275 

onset. 276 

 277 

 278 

3 Results 279 

 280 

3.1 Time course of information use  281 

Mean accuracy was 75.8% (s = 4.2%) in the gender task and 82.9% (s = 6.2%) in 282 

the expression task. Mean response time was 711 ms (s = 87 ms) in the gender task and 283 

662 ms (s = 100 ms) in the expression task. 284 

To identify which face features in which time frames led to accurate responses, we 285 

performed for each session a sum of sampling matrices (indicating the visibility of each 286 
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face feature at each time frame in the stimulus on each trial) weighted by accuracies. Mean 287 

results for each task are displayed in Figure 3. As we can see, both eyes were used  288 

at all except the earliest moments, while the mouth was used throughout the presentation 289 

to identify the expression of the face. These results replicate previous studies using a spatial 290 

sampling of the whole face9,31-33. 291 

 Note that these time points refer to the moment of presentation of the feature within 292 

the stimulus, and so, equivalently, to the moment at which information is received on the 293 

retina. To avoid any confusion with processing time (as assessed with EEG), we refer to 294 

this time dimension as stimulus time; to avoid any confusion with stimulus duration, we 295 

will usually refer to stimulus “moments”.  296 

 297 

 298 

3.2 Visual Evoked Potentials 299 

To verify if our sampling method elicited, on average, similar ERPs to whole 300 

unaltered faces, we computed the average of all trials with sampled and whole faces, for 301 

those subjects who performed the task on both kinds of trials. We display the ERPs of 302 

representative left and right occipito-temporal sensors (LOT and ROT), and the overall 303 

Figure 3. Behavioral results indicating, for each task, how each feature presented on each frame correlates 
with correct responses. Bold segments of line indicate frames that are significant (p < .05, one-tailed, FWER-
corrected). 
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topographies (Figure 4). As we can see, ERPs and their associated topographies are very 304 

similar between the conditions. We computed the difference between the ERPs and 305 

assessed its significance using a paired permutation test (500 permutations): there was no 306 

significant difference between the conditions at any time point on either sensor (p > .05, 307 

two-tailed, FWER-corrected with the maximum statistic method). This suggests that our 308 

sampling method did not greatly alter the average brain response to faces. 309 

 310 

3.3 Uncovering the processing of information received at different moments 311 

For each session, ridge regressions were performed between sampling matrices of 312 

correct trials and EEG amplitude on each time point and electrode (see Methods; Figure 313 

S1a). Although analyses were conducted on all electrodes (and appropriate corrections for 314 

multiple comparisons were applied), we will mostly focus on results from occipito-315 

temporal sensors (see also Figure S4 for summary scalp maps computed using global 316 

Figure 4. A) Mean ERPs for whole (green) and sampled (blue) faces on LOT and ROT. 
Shaded areas represent standard errors above and below the mean. B) Topographies for 
whole and sampled faces at selected latencies. 
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power). Mean maps of regression coefficients are displayed for representative left and right 317 

occipito-temporal sensors (LOT and ROT) on Figures 5 (gender task) and 6 (expression 318 

task). These maps show a complete portrait of what is happening during visual recognition: 319 

how information impinging the retina at different moments throughout fixation is 320 

simultaneously processed through time in the brain. 321 

We can immediately see on most maps (especially the ones for the mouth and the 322 

contralateral eyes) a clear diagonal trend: as it could be expected, information received on 323 

the retina x ms later is on average processed x ms later in the brain. This processing takes 324 

the form, in most cases, of a positive activation followed by a negative one and another 325 

positive one (analogous to the classic P1, N170 and P3 components). However, there also 326 

seem to be important differences in amplitude across stimulus moments. In the next section, 327 

we look at these differences in more details. 328 

 329 

3.4 Investigating differences in processing across stimulus moments 330 

To assess whether differences in processing across stimulus moments are 331 

statistically significant, we conducted a task ´ stimulus moment ANOVA on regression 332 

coefficients for each face feature, electrode and EEG latency, after having realigned each 333 

row of the previous maps so that the zero point on the x axis is the feature onset rather than 334 

the face onset (see Methods; Figure S1b).  335 
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 Significant modulation of processing by the stimulus moment is visible during 336 

almost all the analyzed time window (~50-360 ms; Figure 7). Differences are strongest on 337 

occipito-temporal sensors, but they are also present on central and frontal sensors, 338 

especially at higher latencies (e.g., there is a significant effect of stimulus moment peaking 339 

between 300 and 350 ms on frontal Fpz sensor). 340 

 On occipito-temporal sensors, variations in the amplitude of the first positive 341 

activation across stimulus moments are leading to significant differences around a latency 342 

of 80-100 ms: specifically, this activation is stronger at late stimulus moments or at all 343 

except intermediate stimulus moments (Arrow 1, Figures 5-6). The last positive activation 344 
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Figure 5. Mean maps of regression coefficients for each face feature (rows) on LOT and ROT sensors 
(columns) for the gender task. Within each map, each row refers to the EEG activity (across time) related to 
the presentation of the face feature on a given frame within the stimulus, i.e. the processing of information 
received on the retina at a specific moment. Gray outlines indicate significance at the cluster level and black 
outlines indicate significance at the pixel level (p < .05, two-tailed, FWER-corrected). Dashed lines illustrate 
components with slopes different from one. Arrows point toward some results of interest: (1) an increase in 
early activity for information received later; (2) late activity is maximal for information received mid-fixation; 
(3) additional negative peak for information received at the fixation onset; (4) large latency shift for activity 
related to information received early on ipsilateral electrodes; and (5) increased latency of negative activity 
for information received at the end of fixation. 
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peaking at intermediate stimulus moments is also a source of significant variations around 345 

300 ms (Arrow 2, Figures 5-6).  346 

 347 

3.4.1 An additional negative peak for early stimulus moments 348 

 Interestingly, significant differences in amplitude around 150 ms for the 349 

contralateral eyes in the gender task are partly driven by the presence of an apparent 350 

additional peak, for the early stimulus moments (Arrow 3, Figure 5). We verified whether 351 

these two peaks represented two distinct components with different topographies. To do 352 

so, we used the maps of regression coefficients for individual sessions and looked at the 353 

topographies (one value for each electrode) associated with both peaks (at the same 354 
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Figure 6. Mean maps of regression coefficients for each face feature (rows) on LOT and ROT sensors (columns) 
for the expression task. Within each map, each row refers to the EEG activity (across time) related to the presentation 
of the face feature on a given frame within the stimulus, i.e. the processing of information received on the retina at 
a specific moment. Gray outlines indicate significance at the cluster level and black outlines indicate significance at 
the pixel level (p < .05, two-tailed, FWER-corrected). Dashed lines illustrate components with slopes different from 
one. Arrows indicate results of interest : (1) an increase in early activity for information received later; (2) late 
activity is maximal for information received mid-fixation; (5) increased latency of negative activity for information 
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stimulus moment); we analyzed the 12 subjects performing the gender task. We thus had 355 

four topographies per subject and per eye: one for each peak in each session. For each 356 

subject, we computed a cosine similarity metric (1 - the absolute value of the cosine angle) 357 

between the topographies associated to the same peak on different days and averaged them: 358 

this is the within-peak similarity. Next, we computed the same metric for topographies 359 

associated to different peaks on different days and averaged them: this is the between-peaks 360 

similarity. We finally performed t-tests between these similarity metrics: the within-peak 361 

similarities were significantly greater for the right eye (t(11) = 4.76, pBonf = .002) but not 362 

for the left eye (t(11) = 1.38, pBonf > .10). When using the topographies associated to 363 

different peaks on the same day to compute the similarity metric, we still obtained 364 

significantly greater within-peak similarities for the right eye but not for the left eye (left 365 

eye: t(11) = 0.97, pBonf > .10; right eye: t(11) = 3.07, pBonf =.042). In other words, for the 366 

right eye feature at least, topographies associated with the same peak obtained on different 367 

days are more similar than topographies associated to different peaks, even when these are 368 

obtained on the same day. Consequently, each peak represents a distinct activation with its 369 

own topography and neural generators, with the first one being especially sensitive to the 370 

onset and stopping being receptive after only about 20 ms. 371 

 372 

3.4.2 Variations in latencies across stimulus moments 373 

 Other variations on occipito-temporal sensors seem to be driven by increases or 374 

decreases in the latency of a component across stimulus moments. To investigate this, we 375 

computed, for each major component, task and feature, the peak latency at each significant 376 

stimulus moment on LOT and ROT (significance at the cluster level; ignoring activations 377 
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past 500 ms from the face onset). We then fitted a line across these latencies (see dashed 378 

lines on Figures 5 and 6) and tested (one-sample t-test) whether the slope of the line was 379 

significantly different from 1. Here, a slope of 1 would mean that the feature takes the same 380 

time to be processed at all stimulus moments, whereas a larger slope would mean that the 381 

feature takes increasingly longer to be 382 

processed with increasing stimulus 383 

moment, and a smaller slope that the 384 

feature takes an increasingly shorter 385 

time to be processed with increasing 386 

stimulus moment; a slope of 0 would 387 

mean that features are processed at the 388 

same moment irrespectively of when 389 

they were received on the retina. In 390 

most cases, the latency of the first 391 

positive component from the feature 392 

onset was approximately constant (i.e. 393 

same processing duration for all 394 

stimulus moments; slopes between 0.90 395 

and 1.04, R2adj > .96, df ³ 11, t < 2.92, 396 

pBonf > .10) except in the case of the 397 

right eye on LOT in the gender task, 398 

where it was slightly increasing (slope 399 

= 1.08, R2adj = .99, t(22) = 3.24, pBonf = 400 
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Figure 7. Effect of stimulus moment on EEG activity, for each 
face feature. F values are shown for all latencies (from the 
feature onset) for LOT (blue) and ROT (green) sensors; bold 
segments indicate time points significant at the pixel level (p < 
.05, FWER-corrected across sensors and time). These F values 
indicate how much activity at a given latency is influenced by 
the exact moment at which information is presented within the 
stimulus. These time courses are superposed to the mean 
magnitudes (across stimulus moments) of the regression 
coefficients (in smaller point and less saturated color). Higher F 
values do not necessarily coincide with higher average activity. 
Topographies depict the temporal progression of the effect of 
presentation moment across the whole scalp: latencies of 100, 
150 and 250 ms are shown. Lighter colors indicate higher F 
values; white curves indicate areas significant at the pixel level 
and gray curves indicate areas significant at the cluster level (p 
< .05, one-tailed, FWER-corrected across topography and time). 
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.049) and in the case of the eyes on ipsilateral electrodes in the gender task where it was 401 

decreasing (slopes < .44, R2adj > .27, df ³ 17, t > 8.84, pBonf < 1.2 ´ 10-6). The small slope 402 

for the eyes on ipsilateral electrodes illustrates the striking fact that this component always 403 

occurs about 220 ms after the face onset or later; information received the earliest is thus 404 

processed at about the same time as information received 50-75 ms later (Arrow 4, Figure 405 

5). Regarding the middle negative component, its slope across stimulus moments was not 406 

different from 1 in most cases (slopes between 0.60 and 1.44, R2adj > .45, df ³ 16, t < 3.00, 407 

pBonf > .08) except for the left eye on ROT in the gender task and for the mouth on ROT in 408 

the expression task (slopes > 1.69, R2adj > .78, t(22) > 3.68, pBonf < .02). In both these cases, 409 

the slope was significantly larger than 1. This is mostly a consequence of an increase in 410 

latency in the last stimulus moments (Arrow 5, Figures 5 and 6). Finally, in the case of the 411 

last positive component, the slope was significantly smaller than 1 for the eyes on the 412 

contralateral electrodes in the gender task and for the mouth on LOT in the expression task 413 

(slopes between 0.26 and 0.66, R2adj > .66, df ³ 13, t > 5.98, pBonf < 2.0 ´ 10-4) and it was 414 

approximately constant for the mouth in the gender task and on ROT in the expression task 415 

(slopes = 0.67 and 0.79, R2adj > .66, df ³ 11, t < 3.45, pBonf > .07). 416 

  417 

3.5 Investigating top-down modulations 418 

3.5.1 Effect of the amount of information presented beforehand 419 

 The differences in processing across stimulus moments that we uncovered cannot 420 

be caused by differences in what has been seen before during a trial since sampling was 421 

random; however, how much was seen could have an influence, since the probability of 422 

already having shown information in a trial is greater in the last stimulus frame than in the 423 
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first one. Thus, the observed differences could be caused in part by bottom-up effects such 424 

as adaptation or repetition priming. To investigate this possibility, we repeated the previous 425 

regressions only with trials in which just one bubble was revealed: despite a greatly reduced 426 

number of trials, results were remarkably similar (Pearson correlation of .95 between the 427 

maps of regression coefficients; Figures S2 and S3), suggesting that the previously 428 

observed effects are not caused by 429 

differences in the amount of information 430 

presented beforehand. 431 

 432 

3.5.2 Interaction between stimulus 433 

moment and task 434 

The previous result alone does not 435 

completely exclude the possibility of 436 

bottom-up effects. To investigate whether 437 

differences in activity across stimulus 438 

moments could be explained at least in 439 

part by top-down mechanisms, we 440 

verified for each face feature, time point 441 

and location, whether there was a 442 

significant interaction between stimulus 443 

moment and task, i.e. if the moment at 444 

which information is received modulates 445 

processing differently depending on the 446 
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Figure 8. Interaction of stimulus moment and task on EEG 
activity, for each face feature. F values are shown for all 
latencies (from the feature onset) for LOT (blue) and ROT 
(green) sensors; bold segments indicate time points 
significant at the pixel level (p < .05, FWER-corrected across 
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task. There was a significant interaction at several time points and locations, again mostly 447 

on occipito-temporal electrodes but also in more anterior locations. Contrary to what we 448 

observed with the main effect of stimulus moment, there is almost no significant interaction 449 

around 100 ms, but the peak effects are similarly around 150 and 250 ms on right occipito-450 

temporal sensors (Figure 8). Note that on some more anterior sensors such as CP1, 451 

significant interactions peaked after 300 ms. 452 

 453 

3.6 Relating sampling in the brain and in behavior 454 

 We evaluated where and when variations in brain activity across stimulus moments 455 

are related to variations in the behavioral use of information. Since differences in brain 456 

activity are likely related to the behavioral use of information in complex nonlinear ways, 457 

the mutual information (MI) metric was used. MI was computed across stimulus moments 458 

between coefficients resulting from the accuracy-weighted sums of sampling matrices 459 
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Figure 9. Mutual information (MI) between behavioral and brain coefficients, for selected latencies, for 
both tasks and all face features. High values indicate that the variations in EEG activity across stimulus 
moments relate to variations in behavioral accuracy across stimulus moments. Areas significant at the 
cluster level are outlined by gray lines (p < .05, one-tailed, FWER-corrected across topography and time). 
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(behavioral results) and the magnitudes of brain regression coefficients for each subject, 460 

face feature, latency from feature onset and electrode. Importantly, computing MI 461 

separately for each face feature allowed us to isolate the contribution of within-feature 462 

variations across stimulus moments. We observe significant MI mostly on occipito-463 

temporal sensors at early and late latencies, but also in more anterior locations at later 464 

latencies (Figure 9). Regarding the eyes, significant MI is present early (<130 ms) and late 465 

(>250 ms) in both tasks, but it is present at intermediate latencies (~150-250 ms) only in 466 

the gender task. Interestingly, significant MI for the mouth is visible throughout the time 467 

course, for both tasks. While we did not uncover a significant behavioral use of the mouth 468 

in the gender task in our study, other studies have observed it, sometimes only when 469 

correlating feature visibility with response times instead of accuracy31-33. These results 470 

show that the origin of the variations in the use of information across stimulus moments 471 

can be traced back to variations in occipito-temporal activity at early and late latencies, and 472 

to variations in frontal activity at later latencies. 473 

 474 

4 Discussion 475 

 476 

When we fixate an object, light impinges on our retinas in a continuous fashion, implying 477 

that our brain simultaneously processes information that is received at different moments, 478 

through time and cortical space. This is not typically considered in studies investigating 479 

the processing of visual objects, and so the processing uncovered in those studies 480 

corresponds to a combination of responses to information received at different moments. 481 

In our experiment, we randomly sampled the features of a face across time14 while brain 482 
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activity was being measured to decompose this processing and uncover for the first time 483 

the brain activity related to information received at specific time points during a single eye 484 

fixation.  485 

We first observed that information is processed differently depending on when it is 486 

received on the retina during the fixation. One of the most striking differences is seen in 487 

the ipsilateral representation of the eyes on occipito-temporal sensors in the gender task. 488 

The lateralized anatomy of the visual system tells us that each eye should be processed by 489 

the contralateral hemisphere first34-35: the ipsilateral representation is likely to have been 490 

transferred from an early contralateral representation36. Here, the contralateral 491 

representation appears to peak at a relatively constant offset of ~175 ms after information 492 

is received on the retina, independently of when it is received during the stimulus 493 

presentation (see the diagonal linear trend of the negative activations in Figure 5). 494 

However, the ipsilateral representation appears to be gated: all information received in the 495 

first 50 ms of fixation is represented at the same time, around 220 ms from face onset, 496 

while information received after 50 ms is represented with a fixed offset of ~120 ms, 497 

representation moment increasing linearly with stimulus moment as for the contralateral 498 

representation. Bearing in mind the fact that ipsilateral features must be first processed by 499 

the contralateral hemisphere, this suggests that around 220 ms, broadly consistent with the 500 

tail end of the classical N170 ERP event (see Figure 4), a channel is opened through which 501 

features can be transmitted across hemispheres. The N170 has been demonstrated to reflect 502 

cross-hemispheric transfer of visual features, with the peak ipsilateral representation of the 503 

eyes occurring after the contralateral peak of the N170 event36. The linear relationship 504 

between stimulus moment and representation moment after this gating event suggests that 505 
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the channel remains open during the remainder of fixation. Despite the same experimental 506 

stimuli, this gating phenomenon is only seen in the gender task, suggesting that it is specific 507 

to lateralized task-relevant features (the eyes being used almost exclusively for the gender 508 

task). In a recent study, the N170 also appeared to filter out task-irrelevant features: while 509 

both task-relevant and task-irrelevant features were processed prior to 170 ms, only task-510 

relevant features were processed afterwards37. Of note, the cause of this gating cannot be 511 

repetition priming because it is also visible in trials where only one feature is revealed once. 512 

Another notable result is the occurrence of two negative peaks instead of one in the 513 

contralateral representation of the eyes in the gender task, with the first one sensitive to 514 

only a narrow time window after the stimulus onset. Interestingly, in the case of the right 515 

eye, these two peaks have significantly distinct topographies, suggesting distinct neural 516 

generators. These generators might resemble the generators of the N170 since the 517 

activations are similarly peaking around 170 ms after the reception of eye information. 518 

Other studies have observed multiple peaks at the expected timing of the N17040-41; these 519 

are likely corresponding to activity from different generators. In one study, negative peaks 520 

around 160 ms have been found to originate from the fusiform gyrus while negative peaks 521 

around 180 ms have been localized as originating from the intraparietal sulcus41. 522 

Interestingly, if we exclude the first peak and only look at the biggest negative cluster, we 523 

notice a pattern that is similar to the positive cluster on the ipsilateral electrodes: all 524 

information received in the first ~50 ms is processed at about the same moment (peak 525 

around 200 ms) while information received afterwards is processed with a relatively 526 

constant (but slightly increasing) offset of 150-170 ms, representation moment increasing 527 

with stimulus moment. It is possible that a gating event occurs here too, preventing 528 
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processing by the sources of this component to start before ~200 ms after the face onset. 529 

This gating occurs at about the same latency as the ipsilateral gating, at the expected timing 530 

of the classical N170 ERP component. 531 

Other differences in processing across stimulus moments are also visible. For 532 

example, the negative activation on ROT has an increased latency for late stimulus 533 

moments for some feature/task combinations (that is, this activation peaks after a longer 534 

time interval following the reception of information, if this information is received later). 535 

This may be a consequence of the prioritization of information received earlier. The visual 536 

system is likely to prioritize information received early since it might be unknown for how 537 

long information from that stimulus will reach the retina. Thus, the processing of 538 

information received late is likely to be delayed or processed more slowly. The opposite 539 

phenomenon was visible for the last positive activation in some cases: its latency was 540 

greater at early stimulus moments. In other words, there was “temporal compression”: 541 

information received earlier was “maintained” for a longer time and all information was 542 

processed at almost the same moment independently of when it was received on the retina. 543 

It is expected that information received at different moments is processed simultaneously 544 

at some point in the brain if it is to be integrated together by higher level areas. The 545 

temporal compression we observe may be a consequence of this process of accumulation 546 

and integration of information. This is consistent with other studies reporting a component 547 

at similar latencies associated with accumulation of evidence and temporal integration38-39. 548 

Although adaptation or priming to previously seen features can be ruled out as a 549 

source of these differences because they are also present in trials with only one bubble, a 550 

bottom-up cause still might have been possible. For instance, different parts of the visual 551 
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field may always be processed at specific moments during fixation. To investigate whether 552 

there were top-down origins to the effects we observed, we verified whether the task 553 

modulated them. We found significant interactions between information stimulus moment 554 

and task on several sensors at many latencies. In other words, the differences observed in 555 

the processing of information received at different moments were not the same depending 556 

on the task: consequently, these differences are at least partly top-down in origin. 557 

Significant interactions were observed at electrodes and latencies similar to those of the 558 

significant effects of stimulus moment but started slightly later, a result that is expected for 559 

top-down modulations. Moreover, significant interactions were occurring in slightly 560 

different areas. For example, while the processing of the mouth was globally more 561 

modulated by stimulus moment on right occipital electrodes, the interaction with the task 562 

was stronger on central and left occipital electrodes. This suggests that bottom-up 563 

mechanisms and top-down sampling are taking place in different loci. 564 

That the brain processes information differently according to when it was received 565 

during fixation, that this occurs even when only one such information is revealed in the 566 

course of a trial, and that these differences are modulated by the task, all suggest that each 567 

time slot is assigned a different “role” in a top-down fashion. This is compatible with the 568 

idea of ballistic visual routines: different operations may be applied to the visual input in a 569 

sequential fashion, these operations may vary according to the goal of the computation, 570 

and the outcome of the first steps does not change the operations applied thereafter5,23. A 571 

non-uniform time course of the behavioral use of information in visual recognition has 572 

been observed in a few studies11,14,16; here, we demonstrate it in the brain for the first time 573 

and we show that it is at least partly top-down in origin. Moreover, the variations in 574 
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processing across stimulus moments relate to variations in behavior; that is, as it could be 575 

expected, how the brain (particularly occipito-temporal areas) processes information 576 

received at a specific moment relates to how this information will be used to perform the 577 

task. 578 

In summary, we uncovered in this study the neural response to specific information 579 

received at specific moments during fixation and we showed that when light is received on 580 

the retina matters: processing is modulated by the specific moment at which information is 581 

received, even within a single eye fixation. These differences can be quite striking, such as 582 

an additional delay of 100 ms for information received at some moments. Importantly, 583 

these variations remain even when we account for information perceived beforehand, and 584 

they are modulated by the task. Moreover, they correlate to differences in the use of 585 

information for the task. These results suggest that task-dependent visual routines of 586 

information sampling are applied top-down to the continuous visual input.  587 

The novel method introduced in this article also seems a promising avenue to shed 588 

light on the accumulation and integration of information occurring during object 589 

recognition: indeed, it should allow us to visualize the simultaneous processing, at a given 590 

time point and location, of information that was received on the retina at different time 591 

points. Future studies using more spatially resolved brain imaging methods such as MEG 592 

should investigate how information received at different moments is processed, 593 

accumulated, integrated and transferred across brain regions. This method could also be 594 

used with intrinsically dynamic stimuli such as dynamic facial expressions or naturalistic 595 

movies to investigate how an observer integrates evolving information. 596 

 597 
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Figure S2 758 
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 761 

Figure S3 762 
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Figure S4 765 
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Supplementary Figure Legends 767 

 768 

Figure S1. EEG data analyses. A) On each trial, a random sampling matrix determines 769 

how much each face feature is visible on each presentation moment (the samples). Only 770 

sampling matrices of truly correct trials (see Methods: EEG Data Analysis) are kept. On 771 

each corresponding trial, EEG activity is also recorded across the scalp for a certain period 772 

of time (examples are shown for one electrode). For each subject, samples (X; independent 773 

variable) and EEG activity (Y; dependent variable) are combined using a regularized 774 

(ridge) multiple linear regression, which allows us to uncover the EEG activity, across time 775 

and across the scalp (examples are shown for one electrode), related to the presentation of 776 

each specific face feature shown at each stimulus moment. These time courses of regression 777 

coefficients can be arranged in images (maps) for specific face features and electrodes 778 

where amplitude is now represented by color (see panel B or figures 5 and 6 of the 779 

manuscript). B) Prior to further analyses, maps of regression coefficients are rearranged so 780 

that the zero point is the onset of the feature instead of the whole face (note the change of 781 

the x-axis title). More specifically, EEG activity related to the presentation of a feature 8.3 782 

ms after the face onset is shifted left by 8.3 ms, EEG activity related to the presentation of 783 

a feature 16.7 ms after the face onset is shifted left by 16.7 ms, etc. (see Methods: EEG 784 

Data Analysis). Only the first 400 ms are kept so that there is the same number of time 785 

points associated with each stimulus moment. Each 24-element column of this realigned 786 

image (activity across stimulus moments for each latency from the feature onset) is then 787 

submitted to subsequent analyses (example illustrated for one column). In the task x 788 

presentation moment ANOVA, columns are compared across subjects and the effect of the 789 
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task (between-subject factor), the effect of the stimulus moment (within-subject factor), 790 

and the interaction between those factors are computed. Prior to the mutual information 791 

(MI) analysis, coefficients are transformed into their absolute values. For each subject, 792 

mutual information is then computed between the column of values and the vector of 24 793 

values obtained in the behavioral analysis (see Methods: Behavioral data analysis) 794 

associated to the same face feature. 795 

 796 

Figure S2. Mean maps of regression coefficients for the gender task, for LOT and ROT 797 

sensors (columns) and for each face feature (rows), when including only trials in which 798 

there was one bubble (one feature revealed once). See Figure 5 in the main manuscript. 799 

 800 

Figure S3. Mean maps of regression coefficients for the expression task, for LOT and ROT 801 

sensors (columns) and for each face feature (rows), when including only trials in which 802 

there was one bubble (one feature revealed once). See Figure 6 in the main manuscript. 803 

 804 

Figure S4. Global scalp regression coefficients for the gender and expression task 805 

(columns), for each face feature (rows). To compute these maps, we computed the global 806 

field power (standard deviation across sensors) of the regression coefficients for each task 807 

and face feature. 808 

 809 

 810 

 811 

 812 
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Supplementary Movie Legends 813 

 814 

Movie S1. Example of a random stimulus. 815 

 816 

Movie S2. Same as Movie S1; slowed down 10 times. 817 

 818 

Movie S3. Another example of a random stimulus. 819 

 820 

Movie S4. Same as Movie S3; slowed down 10 times. 821 
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