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Abstract 
 
Complexity of cell-type composition has created much skepticism surrounding the interpretation 
of brain bulk-tissue transcriptomic studies. We generated paired tissue genome-wide gene 
expression data and immunohistochemistry data, enabling us to assess statistical methods for 
modeling and estimating cellular heterogeneity in the brain. We demonstrate that several 
algorithms that rely on single-cell and cell-sorted data to define cell marker gene sets yield 
accurate relative and absolute estimates of constituent cell-type proportions. 
 
Introduction 
 
The observed gene expression levels in tissues with high cellular heterogeneity are influenced by 
the proliferation or death of specific cell-types and also by molecular processes within cell-types.  
In the context of disease studies, this ambiguity in the origin of gene expression changes can 
generate spurious disease associations or reduce statistical power to detect true associations1. 
Accurately separating out the contributions of cell-type composition on gene expression, through 
a mathematical process known as deconvolution, should result in more accurate molecular 
measures of disease in heterogeneous tissue.  This potential has been experimentally validated in 
specific settings, for instance on immune cell subsets2. Such approaches have been described for 
DNA methylation data in the brain to predict proportions of glial vs neuronal populations3.   
 
Recent single-cell RNA-seq4,5 and cell-sorted datasets6 from human brain tissue can enhance the 
effectiveness of deconvolution methods through more accurate estimation of cell-type marker 
genes. Deconvolution algorithms are being adapted for application to gene expression in the 
brain using these cell markers to infer and adjust for glial cell subsets with higher granularity7-9. 
However, because of lack of availability of high-resolution benchmark datasets across multiple 
individuals, their accuracy and resolution is not well understood. Therefore, using a large cohort 
we have constructed a gold-standard brain dataset that can be used to contrast deconvolution 
method performance to estimate cell-type proportions and identify regulation within specific 
cell-types.  
 
To establish a gold standard for cell-type proportions in heterogamous tissue, we used 
immunohistochemistry (IHC) to experimentally measure the proportion of neurons, astrocytes, 
microglia, oligodendrocytes and endothelial cells from dorsolateral prefrontal cortex (DLPFC) 
tissue of 70 older individuals.  These samples are a subset of the larger ROSMAP cohort with 
bulk RNAseq (n=508) from same region10; donors showed a range of cognitive function, from 
healthy to Alzheimer’s dementia, which likely enhances the heterogeneity of cell-type 
proportions.  
 
To generate IHC-based cell-type proportions, antibodies were chosen to identify neurons 
(NeuN), astrocytes (GFAP), microglia (IBA1), oligodendrocytes (OLIG2) and endothelial cells 
(PECAM). Automated image analysis was used to identify cells by DAPI staining and the cells 
that were positive for a particular cell-type marker (Figure 1A). Testing the quality of the IHC 
data, first, we observed that the proportion of the five major cell populations per subject 
approximately sums to one, despite separate staining for each cell-type marker (Figure 1B). In 
addition to indicating the accuracy of the counts, this observation also implies that the five cell-
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types measured make up the bulk of the DLPFC, and no major population is unmeasured. 
Second, the IHC estimates correlate with expression levels of gene modules that are enriched for 
cell-type specific markers that were previously defined from this data11 (Figure S1). In total, 
IHC-based estimates of cell-type proportions explained ~8% of the variation in gene expression 
levels, indicating the data is a relevant testbed for deconvolution, as many genes correlate with 
the heterogeneity in cellular proportions (Figure 1C).  
 
Using the IHC data as a standard, we compared the accuracy of popular deconvolution methods.  
Methods fell into two classes: 1) “supervised” reference-based methods, which included non-
negative least squares (NNLS)12, CiberSort13 and dtangle 7 and 2) “semi-supervised” reference-
based, exemplified by DSA14. Both classes rely on pre-defined marker genes (also referred to as 
signature gene lists) for each cell-type; the distinction is that supervised approaches also require 
cell-specific expression profiles (derived from cell-specific gene expression datasets) for the 
marker genes.  
 
In conjunction with the methods comparison, we used three typical sources for cell-type marker 
genes: (1) human single-cell RNA-seq data15, (2) human cell-sorted RNA-Seq data16, and (3) a 
curated collection of cell-sorted microarray data and In-Situ Hybridization from mouse 
(Neuroexpresso)17. For each marker gene data source, differential gene expression analysis 
identified sets of marker genes that are preferentially expressed in each of the five cell-types. 
Results for a given method were consistent across different sources of marker genes, with 
greatest variability in the estimates for endothelia and microglia (Figure S2). For simplicity we 
focus on results from single-cell RNA-Seq based markers (others shown in supplement).  
 
We assessed the concordance between IHC estimates and deconvolution algorithms in two ways: 
1) based on the correlation between the inferred and measured relative proportions for each cell-
type across individuals and 2) based on the population-level absolute proportion across cell-
types. Four trends emerge from these analyses. First, correlations between IHC and 
deconvolution estimates were typically significant, with moderate effect sizes, but variable 
results for endothelial cell proportions (Figure 2A, S3A). Secondly, we observe the importance 
of robust multi-gene markers for accurate deconvolution. Specifically, the endothelial results 
point to noise in the available signature gene sets, as single-cell-based defined marker genes for 
endothelial cells performed worse than those defined based on cell-sorted data and the semi-
supervised approach (Figure 2A, S1, S3). At the same time, we find potentially weaknesses in 
‘single marker’ approaches, as ENO2 typically used for approximating the proportion of neurons 
is not predictive of the overall proportions of neurons, as compared to estimates provided by 
deconvolution algorithms. Third, the various algorithmic approaches yield highly correlated 
estimates as assessed more robustly across a larger set of 508 ROSMAP samples (Figure S4). 
However, Cibersort and NNLS were “outliers” in this respect for estimation of microglia cells, 
which may stem from their difficulty in estimating such low abundant cell-types (Figure 2, S3). 
Fourth, of practical importance, we observed that IHC proportions across cell-types were highly 
concordant with absolute proportions estimated by the deconvolution algorithms (Figure 2B, 
S3B), with NNLS generally providing the worst performance. The across cell-type concordance 
implies that the estimated proportions are not confounded by the variability in the total amount 
of RNA across different cell-types, as one may suspect. We also assessed the robustness of these 
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results with respect to variability in marker gene set size, and found the results to be robust for a 
wide range (Figure S5). 
 
Additionally, we applied the same approach to predict cell-type proportions across 9 brain 
regions based on GTEx data18, with prediction that cell-type proportions vary strongly across 
these nine regions (Figure S6), with adjacent regions tending to yield similar proportions, which 
indicates the stability of the methods.  Although not much is conclusively known about the 
variation in cell type proportions across human brain regions19, encouragingly, when data were 
available, these predictions matched what was expected based on cell counts using single-cell 
RNA-seq data4 (Figure S7).  
 
To demonstrate the utility of cell-type deconvolution in the brain, we used the predicted cell-type 
proportions to perform cell-type-specific eQTL analysis20. First, we hypothesized that 
deconvolution algorithms that utilize groups of marker genes should yield more accurate 
prediction of cell-type proportions, and hence increase the statistical power for cell-type specific 
eQTL analysis compared to single marker type approaches. Indeed we confirmed a significant 
gain in sensitivity in detecting cell-type specific eQTLs when we used deconvolution algorithms 
as opposed to single markers (Figure 3A). For instance, single marker based proxies of cell-
types produced 7 cell-type specific eQTLs, while DSA produced 232.  As one example, we 
found SNPs near STMN4 were significantly associated with its expression but the correlation 
was dependent on the proportion of oligodendrocytes (Figure 3B). Fittingly, STMN4 is highly 
expressed in oligodendrocytes.  
 
In summary, we generated IHC data and used image analysis to quantify cell-type proportions in 
the brain. This provided an independent dataset for validation of cell-type deconvolution 
algorithms for bulk brain transcriptomic data. Our analysis concludes that several deconvolution 
algorithms yield predictions that are significantly correlated with quantifiable cell-type 
proportions, and with each other. 
 
Supplementary Methods 
 
IHC image acquisition. Six μm sections of formalin-fixed paraffin embedded tissue have been 
stained for NeuN (Millipore), GFAP (Dako), Iba1 (Wako), Olig2 (Sigma) and PECAM-1 (Novus 
biologicals) using antigen retrieval Buffer (Citrate Buffer pH 6.0) for each marker. Sections have 
been blocked with blocking medium containing 3% BSA and incubated with primary antibodies 
for overnight at 4oC. Sections have been washed three times with PBS before incubation with 
Fluorophore-conjugated secondary antibody (Thermofisher) for one hour and coverslipped with 
anti-fading reagent containing Dapi (P36931, Life technology). Using fluorescence upright 
microscope (Zeiss Axio), 30 images have been captured in grey matter for each section at 
magnification x20 with a set exposure time in a systematic zigzag pattern to ensure that all layers 
of the cortex have been included in quantification.   
 
 
IHC image analysis. EBImage21 was used for all image analysis including background 
correction, thresholding and segmentation. Automated image analysis was used to identify cell 
nuclei by DAPI staining and the cells that were positive for a particular cell-type marker. For 
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each particpant, proportions were estimated as the average proportion of cell marker positive 
nuclei across the replicate images. R scripts with the parameters used for estimating the 
proportions are located on https://github.com/ellispatrick/CortexCellDeconv as well as the 
corresponding IHC images. 
 
Defining cell-type markers. Three datasets were used to define marker genes and cell-type 
reference profiles. Cell-specific reference profiles were collected from single-cell RNA 
sequencing data (Darmanis)15 and RNA sequencing profiles of purified populations of cells 
(Zhang)16 and a set of curated markers from Neuroexpresso17. For Darmanis and Zhang, samples 
were TMM normalized and then voom22 was used to define marker genes. The markers were 
selected as the 100 genes with largest fold-change after filtering for genes with false discovery 
rate less than 0.05. (Performance with respect to varying marker set size is shown in 
Supplementary Figure S5.) 
 
Description of the Deconvolution Algorithms. Four cell-type deconvolution algorithms were 
applied to the data; Cibersort 13, dtangle 7, DSA 14 and NNLS 12. These algorithms were applied 
to the 508 RNA-seq samples from ROSMAP cohort, processed as previously described11. Briefly 
RNA-seq data was adjusted for known technical and biological factors, including age, sex, PMI, 
PH, and batch. For each of the deconvolution algorithm tested, we used the package provided as 
part of the primary paper and glmnet 23 was used for NNLS. Cibersort, dtangle and NNLS each 
require both cell-type reference profiles and marker genes while DSA just requires marker genes. 
For assessing correlations between gene expression and IHC, speakeasy clustering24, an 
unsupervised approach, was also evaluated using a set of predefined gene coexpression 
modules10 as well as the individual marker genes used in the IHC. As CD31 wasn’t expressed in 
the gene expression data, CD34 was used as the gene marker for endothelial cells instead. See 
above for the details of the marker set selection approach and https://github.com/ellispatrick/ 
CortexCellDeconv for R scripts.  
 
Cell-type specific eQTL analysis. We used the approach described by Westra and colleagues20 to 
identify cell-type specific eQTLs. This approach tests for the statistical significance of a linear 
interaction model as follows: 

𝑦𝑦 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾(𝑔𝑔 × 𝑐𝑐) 
where y is a vector of gene expression levels, g is the genotype for the test SNP, c is the 
proportion of test cell-type, and g x c is the interaction term between genotype and the proportion 
of cell-type. The statistical significance of the interaction term, modeled by 𝛾𝛾 , implies the 
existing of a cell-type-by-genotype effect. As suggested by Westra and colleagues, to reduce the 
burden of multiple testing, only cis-SNPs previously found to be a cis xQTL (main effect), with a 
window of 1Mb around TSS, where tested. The cell-type estimates from the DSA algorithm 
where used. Global false discovery rate (FDR) threshold of 0.1 (correcting for all SNP-gene pairs 
and cell-types tested) was used to identify significant cell-type-by-genotype eQTLs.   
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Figure	1.	Estimation	of	cell	type	proportions	by	IHC.	(A)	Figure	depicts	example	images	used	to	
quantify	cell	type	proportions.	(B)	Each	bar	represents	an	individual,	y-axis	shows	the	estimated	
proportion	of	each	of	the	five	cell	types.	(C)	P-value	distribution,	showing	the	p-values	for	the	
correlation	between	gene	expression	levels	(all	expressed	genes)	and	IHC-based	cell	type	
proportions	estimates	across	70	individuals	with	paired	data.	
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Figure	2	

(A)	 (B)	

Figure	2.	Comparison	of	deconvolution	algorithms.	(A)	Figure	shows	the	Pearson	correlation	
coefficient	between	IHC-based	cell	type	estimate	and	four	deconvolution	algorithms,	in	addition	to	
the	“single	marker”	based	approach.		For	the	single	marker	based	approach,	we	used	the	
expression	of	the	widely	used	marker	genes:	ENO2	for	neurons,	GFAP	for	astrocytes,	CD68	for	
microglia,	CD34	for	endothelial,	OLIG2	for	oligodendrocytes.	(B)	Estimates	of	absolute	proportions	
of	each	cell	types	according	to	the	four	algorithms	tested,	and	IHC	(experimentally	measured	in	
this	study).	Box	plots	depict	the	range	of	proportions	across	70	individuals.		For	both	(A)	and	(B),		
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Figure	3.	Discovery	of	cell-type	specific	eQTLs.	(A)	Figure	shows	the	number	of	associations	for	
several	p-value	thresholds.	Number	of	associations	found	based	on	the	DSA	estimates	are	shown	
in	blue,	and	those	based	on	single	cell	marker	genes	are	shown	in	yellow.	(B)	An	example	of	cell-
type	specific	eQTL	for	oligodendrocytes.	Figure	shows	the	relationship	between	proportion	of	
oligodendrocytes	(as	predicted	by	DSA)	and	expression	levels	of	the	STMN4	gene.	The	different	
colors	depict	the	different	genotype	groups	(0,1,2)	for	the	associated	SNP	rs10481349.	
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