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Abstract 
 
Autofluorescence is a long-standing problem that has hindered the analysis of images of 
tissues acquired by fluorescence microscopy. Current approaches to mitigate 
autofluorescence in tissue are lab-based and involve either chemical treatment of sections or 
specialized instrumentation and software to ‘unmix’ autofluorescent signals. Importantly, 
these approaches are pre-emptive and there are currently no methods to deal with 
autofluorescence in acquired fluorescence microscopy images. To address this, we developed 
Autofluorescence Identifier (AFid). AFid identifies autofluorescent pixels as discrete objects 
in multi-channel images post acquisition. These objects can then be tagged for exclusion from 
downstream analysis. We validated AFid using images of FFPE human colorectal tissue stained 
for common immune markers. Further, we demonstrate its utility for image analysis where 
its implementation allows the accurate measurement of HIV-Dendritic Cell interactions in a 
colorectal explant model of HIV transmission.   
 

 
Availability and implementation: https://ellispatrick.github.io/AFid 
Contact: ellis.patrick@sydney.edu.au 
Supplementary information: Supplementary Figs. 1-13 
 

Introduction 
 
Immunofluorescence microscopy (IF) is a powerful tool for simultaneously visualising the 
localisation of multiple proteins in situ. Additionally, several methods have been developed 
that push the number of parameters visualised in a single section to well beyond traditional 
3-4 colour IF1–7. This allows for the definition of multiple cell types, complex subsets, and 
also cellular states in situ. Despite these advances the utility of IF, particularly for 
quantitative measurements, has been hampered by the longstanding issue of 
autofluorescence. 
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Autofluorescence is present in all tissues and has many sources including components of 
structural and connective tissues, cellular cytoplasmic contents and also fixatives used to 
preserve tissue8–11. Autofluorescent substances have their own excitation and emission 
profiles that can span the entire visible and even infra-red spectrum and therefore 
significantly overlap with standard microscope excitation/emission filter setups10 
(Supplementary Fig. 1). This presents a major obstacle to image analysis, particularly any 
kind of automated analyses, as ‘real’ vs ‘autofluorescent’ regions of interest (ROIs) cannot 
be readily distinguished.  An example of this is shown (Supplementary Fig. 2) where the 
accurate quantification of CD3 labelling in human colon tissue is severely hampered by 
autofluorescent signals. 
 
Several methods have been developed to address the issue of autofluorescence. The oldest 
and most widely used are chemical methods to quench autofluorescence. These include 
exposing samples to either UV radiation or a chemical solution prior to or during staining9,12–

14. Although these methods can be effective, there are several disadvantages including 
quenching of desired signal from endogenous reporters or fluorescent probes, and also that 
there is no general recipe with specific protocols required to quench specific types of 
autofluorescence 9,14. However, the primary limitation is that the quenching must take place 
prior to imaging, so if autofluorescence is detected after image acquisition it is too late to 
remove it. This can be frustrating as autofluorescence is highly variable between tissue 
sections.  
 
Digital methods of autofluorescence mitigation have also been developed such as spectral 
unmixing and algorithmic subtraction of a background reference image acquired either prior 
to staining2,15–17. These methods are robust and have the capacity to resolve signal vs 
autofluorescence. As such they represent an important pre-processing step to ensure 
accurate image analysis. However, there are several limitations to these approaches. 
Spectral unmixing requires the use of specialised instrumentation and proprietary software 
which limits its generalised use15. Similarly background subtraction using a customised filter 
setup requires a microscope with tuneable filters and expertise beyond that of the average 
researcher17. The alternative background subtraction method requires that entire tissue 
sections are imaged at a pre-defined resolution prior to staining, whereby the user must 
perform intensity scaling and pixel-perfect registration, again representing a major hurdle to 
the average researcher2.  
 
Taken together, there is an unmet need for the development of alternative, user-friendly and 
open-source methods to tackle the longstanding issue of autofluorescence. Based on the long 
excitation/emission wavelengths of autofluorescence10 (Supplementary Fig. 1) and the 
observation that in many cases the majority of interfering autofluorescence is spatially 
distinct from signal of interest (examples shown in figures throughout this paper),  we 
reasoned that we could develop a post-acquisition approach to identify and exclude 
autofluorescence thereby improving image analysis accuracy. To this end, we developed 
‘Autofluorescence Identifier’ (AFid), an algorithm which is able to detect autofluorescent 
pixels as discrete objects within multi-channel IF images of tissue. AFid requires only the 
information from two fluorescent channels, where bright fluorescent ROIs are located and 
classified as ‘real’ or ‘autofluorescent’ based on measures of pixel correlation, distribution 
and dynamic range. Identified autofluorescent objects can then be tagged for exclusion from 
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downstream analysis. A key advantage of this method is that it is applied to images post-
acquisition and can therefore be used to filter existing image data sets. In this paper we 
describe the steps of the AFid algorithm, validate its usage on FFPE human colorectal tissue 
and also demonstrate its utility for image analysis where its implementation allows the 
accurate measurement of HIV-Dendritic Cell (DC) interactions in a colorectal explant model 
of HIV transmission.  
 

Results 
 
Algorithm overview 
 
The steps for the AFid algorithm are summarised in Fig. 1. First, thresholds are applied to 
the two fluorescent channels and an ‘intersection mask’ is created to detect the ROIs that 
are fluorescing in both channels (Fig. 1a, left). Second, we then measure ROIs in the 
‘intersection mask’ for multiple textural features (Fig. 1a, middle). To select these features, 
we make a key assumption that the fundamental topology of pixel intensities for an 
autofluorescent ROI is conserved across channels. This makes sense as sources of 
autofluorescence tend to have long excitation and emission profiles. As such, any measure 
of pixel behaviour within an ROI will be linearly correlated across channels (Supplementary 
Fig. 3a-c). Therefore, to identify autofluorescence we measure multiple features including 
pixel correlation (Pearson’s correlation coefficient), dynamic range (Standard Deviation) and 
distribution (Kurtosis). Third, ROIs can be clustered using the textural features as inputs to 
identify a distinct cluster with high correlation values that consists mainly of autofluorescent 
ROIs (Fig. 1a, right). Here we have used a k-means clustering algorithm with automated 
choice of k. Finally, these autofluorescent ROIs can be excluded from downstream analysis 
or can be subtracted from the raw images for visualisation (Fig. 1b,c). 
 
Custom dilation function to outline autofluorescent objects 
 
For optimal visualisation, and to aid in downstream analysis, we have also developed a 
novel algorithm which expands from autofluorescent objects to capture their full perimeter. 
Due to variations in intensity scale within an image and across different images, 
conventional thresholding algorithms rarely capture the entire perimeter of autofluorescent 
ROIs (Supplementary Fig. 4a-c). This can represent a limitation for automated 
autofluorescence exclusion, as several threshold parameters need to be tested beforehand 
for each image, and then assessed by eye to determine appropriateness. To overcome this 
limitation we developed a custom dilation function that works in tandem with thresholding 
to automatically outline the full body of autofluorescent ROIs, regardless of shape and 
intensity (Fig. 1c). In brief this works by skeletonising ROIs and evenly distributing points 
throughout the skeleton (Supplementary Fig. 4d). We then expand from these points until 
the gradient of pixel intensities from the ROI boundary outwards begins to increase, 
indicating the end of the object or the beginning of a neighbouring object (Supplementary 
Fig. 4e). Visually we can see that this method accurately captures the full perimeter of 
autofluorescent ROIs with minimal effect to neighbouring signals (Supplementary Fig. 4f). 
Further, we quantified the percentage of autofluorescence captured by AFid with and 
without custom dilation for varying threshold radii and cluster numbers k (Supplementary 
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Figure 4g). The results show that the custom dilation function identifies a higher percentage 
of autofluorescent pixels which is stable against variation of threshold radii and cluster 
number k, with minimal impact on neighbouring real signals (with the exception of small k 
values which are typically not selected by AFid). Accordingly, employment of the dilation 
function allows for efficient autofluorescence detection despite variation in choice of 
threshold radii. The final result is an image retaining only non-autofluorescent ROIs, which 
can then be used for visualisation and downstream analysis (Fig. 1c). 
 
Validation of AFid 
 
In order to establish both the efficacy and scope of utility for AFid we tested the algorithm 
with multiple types of input images. First, we tested whether the markers for detection in 
each channel could influence autofluorescence identification. To this end we defined three 
use-cases where input channels contained (1) non-co-expressed markers (CD11c and CD3), 
(2) a marker expressed on autofluorescent cells (FXIIIA+ Macrophages) and (3) co-expressed 
markers (CD3 and CD4). These three use-cases are shown for human colorectal tissue where 
sections were imaged before (Fig. 2a,d,g) and after staining (Fig. 2b,e,h). The unstained 
image was used for manual annotation of autofluorescent ROIs providing a ground truth for 
our classifier, and not used by AFid. We found that in all three use-cases the 
autofluorescence cluster was highly enriched for autofluorescent ROIs (mean =98.4%, SD = 
1.6%, n=9). (Supplementary Fig. 5a). We also achieved good coverage identifying on 
average 96.0% (SD = 4.0%, n=9) of all annotated autofluorescence, with a low false positive 
rate of 1.7% (SD = 1.7%, n=9) (Supplementary Fig. 5b). Pairwise plots for each use-case are 
shown (Supplementary Fig. 6-8), demonstrating g≥ood separation of autofluorescence 
(yellow) from non-autofluorescence (grey) by k-means. The final result of AFid, after 
applying the custom dilation function is shown (Fig. 2c,f,i), demonstrating near complete 
exclusion of autofluorescence in all three use-cases.  
 
We next sought to test AFid on different tissue types and image acquisition conditions. We 
found that AFid successfully identified autofluorescence across various tissue-types, 
including heart, skin and brain tissues where autofluorescence is a well-known problem 
(Supplementary Fig. 9). Additionally, AFid could specifically identify autofluorescent objects 
despite varying image quality, including variations in resolution, (Supplementary Fig. 10) 
and on images both pre- and post- deconvolution (Supplementary Fig. 11). Further, our 
algorithm is compatible with very large images that are inundated with autofluorescence, 
which allows large data sets with significant noise to be rescued for analysis 
(Supplementary Fig. 12).  
 
AFid allows accurate assessment of HIV-Dendritic Cell interactions in an explant 
infection model 
 
Finally, we show that the presence of autofluorescence and its removal can have a major 
impact on down-stream analysis. In our own studies, we are interested in the early HIV-
target cell interactions that occur in human colorectal explants that we topically infect with 
HIV for up to 2h. However, these explants are prone to significant amounts of 
autofluorescence which impedes accurate analysis.  
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To assess the frequency and number of HIV+ DCs in an image we first ran AFid to generate a 
mask of autofluorescence within the image. We then used a spot counting algorithm18 to 
segment individual HIV particles, and subsequently segmented individual cells using their 
nuclei to generate single cell data. The fluorescent channels and masks of both the 
autofluorescence and HIV particles were then converted to FCS format for single cell 
analysis in FlowJo. Gating on putative CD11c+ DCs (Fig. 3a, top left) we then excluded 
autofluorescent cells, measured as the percentage of the cell body overlapping with the 
autofluorescence mask (Fig.3a, top right). After excluding cells containing autofluorescence 
we found that just 2% of DCs were HIV+ (contained at least 1 HIV particle) (Fig. 3a., bottom 
right) vs. 16% without excluding autofluorescent cells (Fig 3a., bottom left). This 
corresponded to a large difference in the total number of HIV+ DCs identified, 10 vs. 168 
cells (Fig. 3c). We visually inspected the co-ordinates of putative HIV+ DCs after 
autofluorescence exclusion and were able to confirm that these cells corresponded to 
legitimate HIV-DC interactions as shown in the zoomed in images in Fig. 3f. In contrast, false 
positive signals were almost all due to autofluorescent signals spanning multiple channels. 
Importantly, we found that it was not possible to simply circumvent autofluorescence by 
gating specifically on true HIV+ DCs. This was because they did not occupy a unique position 
on biaxial plots and therefore could not be gated on without also including autofluorescent 
cells (Fig. 3b). Therefore highlighting the necessity of a computational approach to tag false 
positive signals within a mixed population.  
Finally, we show that the presence of autofluorescence can mask spatial relationships which 
are then revealed by its exclusion. DCs are highly migratory and thought to be an important 
early target cell for HIV transmission19. To assess whether DCs may be specifically localising 
to HIV early post-exposure we divided an image into 100x100um2 quadrats and classified 
each as HIV- or HIV+ and then measured the density of CD11c labelling in each area to 
quantify expression. Prior to autofluorescence exclusion (setting pixel values to 0), the 
apparent CD11c expression did not significantly differ between HIV- and HIV+ areas (Fig. 
3d), whereas after exclusion CD11c expression was revealed as significantly higher in HIV+ 
areas compared to HIV- areas (Fig. 3e). This was due to a large amount of measured CD11c 
expression being derived from autofluorescence (Fig. 3f). Further, we found that CD11c, HIV 
and autofluorescent cells were differentially located. CD11c and HIV clustered toward the 
tip of the lamina propria where the majority of interactions took place (Fig. 3f, zoomed 
images), whilst autofluorescent cells were particularly clustered toward the base of the 
lamina propria, thus skewing the results. Together these data demonstrate how the 
presence of autofluorescence can drastically skew measurements, and that its post-
acquisition exclusion, here using AFid, can enable accurate image analysis.  
 

Discussion 
 
Here we have presented AFid,  a first of its kind method for identifying autofluorescence in 
multi-channel fluorescence microscopy images post-acquisition. We have shown that AFid is 
able to identify autofluorescence across tissue types, staining panels and image acquisition 
conditions. Importantly, we showed that the presence of autofluorescence can have a major 
impact on downstream analyses which can be mitigated through the use of AFid.  
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Our rationale for creating AFid lay in its necessity for accurately measuring HIV-cell 
interactions in our images of HIV-infected FFPE human colorectal tissues. In particular, our 
staining protocols were incompatible with chemical bleaching methods discussed in the 
introduction of this paper9,12–14, and we did not have the necessary resources to perform 
spectral unmixing15 or background subtraction2,16,17. Noting that the majority of interfering 
autofluorescence in our samples were bright, spatially distinct objects appearing across 
multiple channels we reasoned that they could be identified and excluded from 
downstream analyses by way of a computational approach. Indeed, as demonstrated here 
the application of AFid was sufficient to enable accurate quantitative measurements of HIV-
cell localisation. 
 
AFid has several distinct advantages. First, it is a post-acquisition algorithm. This is 
important because the user does not need to pre-emptively deal with autofluorescence. 
Additionally, it can be applied to existing microscopy datasets potentially mitigating the 
need for optimisation and repeat experimentation. Indeed, this is exemplified in our own 
case, where bulk image data sets from HIV-infected explants were probed using RNAscope 
and multiple immune markers (partially presented in Fig. 3, unpublished data) but 
quantification hindered by autofluorescence. In this case, even if further lab-based 
optimisations proved successful at mitigating the impact of autofluorescence for our specific 
tissues, repeating the experiments would require the use of precious samples and a 
significant investment of time and resources.  
The second key advantage of our algorithm is that its design allows for the generalised 
detection of autofluorescence across varying tissues and image acquisition conditions, as 
demonstrated here. In particular, we assume that due to the long excitation/emission 
wavelengths of autofluorescence10 (Supplementary Fig. 1), textural features of 
autofluorescent objects will exhibit a conserved topology across channels, and therefore 
occupy a unique position in the feature space, relative to other objects (as shown in 
Supplementary Fig. 6-8). Accordingly, the employment of clustering, here using k means 
with automated choice of k, is able to consistently isolate a cluster containing mainly 
autofluorescent objects, despite variations across tissues and image acquisition conditions.  
 
Despite the advantages that have been discussed there are several limitations to our 
approach. The major limitation is that AFid cannot identify autofluorescence that is largely 
overlapping with real signal. This situation may occur if the object of interest is inherently 
autofluorescent or localised to a highly autofluorescent area of the tissue. This maybe an 
advantage or a disadvantage depending on the nature of the measurements to be 
performed. For example, AFid would aid in object counting measurements by retaining 
objects with mixed real-signal and autofluorescence, whilst excluding objects that purely 
contain autofluorescence (e.g. autofluorescent macrophages, Fig. 2). However, it would not 
be suitable if precise fluorescence intensity measurements were required of a stained 
object that contained some autofluorescence. Another potential limitation is that the 
algorithm requires that autofluorescent signals are present, even if only faintly, across at 
least two acquired channels. In our experience this was true of all bright interfering 
autofluorescence in the various tissues used for this study and fits in with the well-known 
broad spectra of autofluorescence10 (Supplementary Fig. 1). However we cannot discount 
the possibility of specific types of autofluorescence having narrow spectral profiles that 
might appear in only one channel. For the limiting cases discussed here, optimisation of 
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chemical quenching9,12–14 or algorithmic background subtraction methods2,15–17 may be 
necessary. 
 
Nonetheless, here it is demonstrated that AFid has major utility for quantitative 
measurements in human gut tissue stained for common immune markers, and have shown 
that it is able to identify autofluorescence in various other tissue types. With the rise of 
quantitative image analysis, particularly single cell cytometry pipelines as shown here, there 
is an increasing need for image processing algorithms to filter out artefacts and enable 
accurate measurements. Accordingly, AFid provides a major leap forward in the extraction 
of useful data from images plagued by autofluorescence by offering an approach that is 
easily incorporated into existing workflows in ImageJ, Matlab and R, and that can generalise 
to various samples, staining panels and image acquisition methods.  

Methods: 
 
Immunofluorescence staining. Tissues were fixed in 4% paraformaldehyde (Electron 
Microscopy Sciences) for 18-24h at room temperature then immersed in 70% ethanol prior 
to paraffin embedding. 4um paraffin sections were adhered to glass slides (SuperFrost Plus, 
Menzel Glazer), baked at 60°C for 40 min, dewaxed in xylene followed by 100% ethanol then 
air dried. All wash steps described herein were carried out by immersing slides in three 
successive Coplan Jars of Tris-buffered saline (Amresco, Cat: 0788) on a rotator for a total of 
10 minutes. Antigen retrieval was then performed using a pH9 antigen retrieval buffer 
(DAKO) in a decloaking chamber (Biocare) for 20 min at 95oC. Slides were then washed in 
TBS. To acquire unlabelled background images (Fig. 2, Supplementary Figs. 2 and 9), 
sections were stained with 1ug/ml DAPI (Roche) for 3 minutes, mounted under coverslips 
with SlowFade-Diamond Antifade (Molecular Probes) and the whole section imaged on an 
Olympus VS120 microscope (see Image acquisition below). Coverslips were then floated 
away in TBS and sections on slides were blocked for 30 min (0.1% saponin, 1% BSA, 10% 
donkey serum, diluted in TBS) at room temperature. Sections were then washed in TBS and 
incubated with primary antibodies overnight at 4oC. Antibodies for primary detection 
include: Abcam: - rabbit CD11c (EP1347Y), mouse CD3 (F7.2.38), rabbit CD8 (polyclonal, 
ab4055); DAKO – rabbit CD3 (polyclonal, A045229-2); Affinity Biologicals – sheep FXIIIA 
(polyclonal). Sections were then washed in TBS and incubated with secondary antibodies for 
30min at room temperature. Donkey secondary antibodies (Molecular Probes) against 
rabbit, mouse or sheep were used and were conjugated to either Alexa Fluor 488 or 546. 
Sections were stained with DAPI (if not already performed in a previous step) and mounted 
with SlowFade-Diamond Antifade. 
 
HIV explant infection. Healthy Inner foreskin explants were infected with either HIVBal or 
Transmitted/Founder HIV-1 Z3678M using an explant setup as previously described20. A 
TCID50 of 3500 (titrated on TZMBLs as previously described21) was used to infect all explants. 
Tissues were then fixed and paraffin embedded as described above. 
 
RNAScope. Detection of HIV RNA was performed using the ‘RNAscope 2.5HD Reagent Kit-
RED’ and following the manufacturer’s protocol (Cat: 322360, ACD Bio) with custom probes 
(consisting of 85 zz pairs) against HIV-1BaL (REF: 486631, ACD Bio) spanning base pairs 1144-
8431 of HIV-1BaL sequence. Following the RNAscope protocol, sections were stained from 
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the blocking step as detailed above.  
 
Microscopy. Imaging was performed using an Olympus VS120 Slide Scanner with ORCA-
FLASH 4.0 VS: Scientific CMOS camera. VS-ASW 2.9 Olympus software was used for 
acquisition of images and conversion of raw vsi files to tiff format for downstream 
processing. Objectives used are indicated in figure legends and include: x10 (UPLSAPO 10X/ 
NA 0.4, WD 3.1 / CG Thickness 0.17), x20 (UPLSAPO 20X/ NA 0.75, WD 0.6 / CG Thickness 
0.17) and x40 (UPLSAPO 40X/ NA 0.95, WD 0.18 / CG Thickness 0.11–0.23). Channels used 
include: DAPI (Ex 387/11-25 nm; Em: 440/40-25 nm), FITC (Ex:485/20-25 nm; Em: 525/30-25 
nm), TRITC (Ex:560/25-25 nm; Em: 607/36- 25 nm) and Cy5 (Ex: 650/13-25 nm; Em: 700/75-
75 nm). For x40 images, Z-stacks were acquired 3.5um above and below the plane of focus 
with 0.5um step sizes. Huygens Professional 18.10 (Scientific Volume Imaging, The 
Netherlands, http://svi.nl) CMLE algorithm, with SNR:20 and 40 iterations, was used for 
deconvolution of Z-stacks. For images where the unstained background was acquired prior 
to staining, images were aligned using the ImageJ plugin multiStackReg vs1.45 with the DAPI 
channel serving as a reference for alignment. 
 
Acquisition of Autofluorescence Spectra. Autofluorescence spectra of unstained tissue 
samples (Supplementary Fig. 1) were acquired using an Olympus FV1000 laser scanning 
confocal microscope with a x20 objective. The excitation lasers lines 405nm, 473nm and 
559nm were used and emission spectra were acquired using a 20nm wide bandpass filter, 
shifted in 20nm intervals from 415-795nm, 490-790nm and 575-795nm respectively.  
 
Generation of Intersection Mask. A mask of the intersection of the two channels was used 
for autofluorescence removal. This is termed the ‘intersection mask’. The intersection mask 
contains only signals present in both channels and therefore contains the autofluorescent 
ROIs among other objects such as co-stained markers and dim background stromal 
fluorescence. The intersection mask was generated by the following procedure. Each 
channel was Gaussian blurred with a sigma of 2. A Niblack threshold was then applied to 
each channel (threshold radius 30 pixels) to generate binary masks. The intersection (‘AND’ 
operation) of these masks was then taken and used for autofluorescence classification by 
clustering as detailed below. 
 
Clustering for autofluorescence identification. Within the objects defined by the 
intersection mask we measured multiple features in each of the two channels on non-
Gaussian blurred images. These features included standard deviation, kurtosis, as well as 
the inter-channel Pearson’s correlation coefficient of corresponding pixels. These features 
were transformed by taking the natural log (standard deviation, skewness and kurtosis) or 
the inverse tanh transformation (correlation). All features were standardised by dividing by 
the standard deviation of the transformed feature values. k-means clustering was then 
performed on these features to identify a cluster of ROIs which are likely to be 
autofluorescent. The cluster with the highest average correlation value was defined as the 
cluster containing autofluorescent ROIs. A well-chosen number of clusters (k) is important 
for detecting a homogeneous cluster of autofluorescent ROIs. As such we developed an 
automated approach for optimal choice of k (high sensitivity and specificity). The procedure 
is as follows. 1. k-means is performed iteratively with 3-20 clusters 2. A two-tailed t-test is 
performed on the arctanh transformed correlation values of the two clusters with highest 
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average correlation values. 3. The test statistic values are then plotted against k, which 
produces an asymptotically decreasing function (Supplementary Fig. 13). 4. We developed 
an ‘elbow method’ approach to finding the optimal cluster number. A straight line is drawn 
connecting the statistic value for the lowest k, to that of the highest k. The perpendicular 
distance of each plotted point to the line is measured and the optimal k is estimated to 
correspond to the point with the greatest distance below the line. This method is illustrated 
in (Supplementary Fig. 13). The intersection mask is then modified, keeping only the objects 
identified as autofluorescence. 

 
Custom dilation function to outline autofluorescent ROIs. After clustering and creating a 
mask of autofluorescent objects we then employed a custom dilation function to outline the 
full body of autofluorescent objects for removal. The essence of the algorithm is to evenly 
distribute points within an amorphous object and then to expand out from these points in 
all directions until a halting condition is met.  
To distribute points the following approach was developed: 1. ROIs in the autofluorescence 
mask were skeletonised, reducing objects to a line of 1 pixel-width that follows the 
morphological gradient of the original object. 2. End-node pixels for each object in the 
image were first identified, defined as having only one neighbour. If there were no end-
nodes for an object, as in the case of an annulus, the top-left-most pixel was defined as the 
end-node. 3. A skeleton tracing algorithm was employed that starts from the end nodes and 
moves throughout the skeleton, distributing centres for expansion every 20 pixels 
(illustrated in Supplementary Fig. 4d). Tracing of pixels to neighbours occurred as long as 
the neighbouring pixel was in the skeleton and had not yet been traced by another point. 
Once these conditions were no longer met, tracing for a given object was halted. 
Expansion from distributed centres was carried out as follows: 1. Lines of length 60 pixels 
emanating from centres were drawn in all directions separated by an angle of theta where  
theta was defined by the law of cosines. 2. Pixel values of the Gaussian blurred image  
for each channel were measured beginning from the point of intersection of the line and  
perimeter of the object in the intersection mask, to the end of the line. 3. The co-ordinates  
of the first point where pixel values increased were recorded for each line. 4. A new outline  
of the object was created by combining these co-ordinates (Supplementary Fig. 4e). 5. Pixel 
values of the new outline of the object were set to 0. 
 
Assessment of custom dilation function robustness with varying parameters. This section 
specifically details the methods for generating data for Supplementary Fig. 4g, which 
assesses both the utility of the custom dilation function for capturing autofluorescent pixels 
and its robustness against varying parameters. For this figure whole-slide scanned images of 
colorectal tissue before antibody labelling and after CD11c/CD3 antibody labelling were 
used (data from Fig. 2a-c). AFid was run with or without use of the custom dilation function 
and using the CD11c and CD3 channels as inputs. This was performed for varying threshold 
radii and for varying cluster number k as shown in the graph. To assess coverage of 
autofluorescent pixels (true positive) and real signal pixels (false positive) upon parameter 
variation as shown in the graph, we generated ground-truth masks. To do this, we 
specifically used the CD3 channel due to the consistently high density of T cells across 
images, thus providing enough data to assess the false positive rate. We generated a mask 
of the unlabelled background image (autofluorescence only) and the CD3 channel after 
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staining (CD3+ T cells and autofluorescence). Our aim was to use the background image to 
parse out the autofluorescent pixels contained within the CD3 channel image.  
First, we performed a morphological watershed on the CD3 channel mask to separate 
touching T cells and autofluorescence. We then performed a binary reconstruct of the 
watershed CD3 mask with the background image mask. This generated an estimate mask of 
the autofluorescent pixels within the CD3 image which we used as a ground-truth for 
autofluorescence. We then generated the real-signal ground-truth mask by subtracting the 
autofluorescence ground-truth mask from the CD3 channel mask. The ground-truth masks 
were then manually inspected and objects were removed which did not clearly correspond 
to T cells in the real-signal mask or autofluorescence in the autofluorescence mask. 
 
Algorithm performance assessment. The performance of our algorithm was tested using 
three different staining panels on human colonic tissue as shown in Fig. 2. To benchmark 
performance assessment, we manually annotated regions of the intersection mask (see 
‘Generation of Intersection Mask’ above) as belonging to ‘real’ or ‘autofluorescent’ signals. 
Delineation of the two types of signal was achieved using the ‘unstained background image’ 
as a reference (see ‘Immunofluorescent Staining’ above). In total 400 ROIs, 200 for each 
category, were annotated. The actual annotation was performed using the Cell Counter 
Plugin in ImageJ. Results were exported as a csv file, where each row indicated an individual 
ROI, its category and x,y co-ordinates. 
The two fluorescent channels, intersection mask and spreadsheet of annotated ROI co-
ordinates were fed in to R. k-means clustering with estimated k was then performed as 
described above. The true positive rate and false positive rate were thus determined as the 
proportion of ROIs in each category that resided in the ‘autofluorescence cluster’, which 
was the cluster with highest average correlation values (Supplementary Fig. 5 and 13).  
 
HIV spot segmentation. Spot counting was performed using a custom MATLAB script 
implementing the spot counting technique presented by Battich et al. (2013). First, a 
manual threshold was performed on the HIV RNA channel to identify areas that have HIV 
stain present. The IdentifySpots2D function by Battich et al. was then used to identify the 
number of spots, with the detection threshold set to a generous value of 0.01 and the 
number of deblending steps equal to 2. Finally, any spots identified were excluded if they 
were not present in the threshold mask obtained previously. 
 
Single cell segmentation. To perform single cell segmentation, a custom MATLAB script was 
used. Briefly, a Gaussian filter with a full-width at half maximum of 10 pixels was applied to 
the DAPI image to ensure that each nucleus has only one locally maximum pixel intensity. 
Further, the imordfilt2 function is used to ensure that maxima are not less than 7 pixels 
apart. Watershed segmentation is performed using the watershed function to identify 
nuclear boundaries. Objects with diameters less than 10 pixels or greater than 50 pixels 
were discarded, and the nuclear objects are dilated by 6 pixels to estimate the cell body. 
The regionprops function was finally used to measure the mean pixel intensities of other 
image channels within each identified cell boundary, as well as the number of HIV RNA 
spots identified within each cell. The data was exported as a .csv and was analysed using 
FlowJo. 
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Code availability 
 
This algorithm has been implemented with user interfaces in Fiji (Madison Version), R (3.5.3) 
and Matlab (r2017b) to accommodate the diverse image analysis community. The code and 
user documentation are available https://ellispatrick.github.io/AFid. 
 
Data availability 
 
Data sets used in this study are available from the corresponding author upon reasonable 
request. 
 
Ethics for use of human tissue samples 
 
This study was approved by the Western Sydney Local Area Health District (WSLHD) Human 
Research Ethics Committee (HREC); reference number (4192) AU RED HREC /15 WMEAD/11. 
Human colorectal and skin tissues used for this study were approved by this committee and 
all patients were consented prior to sample collection. Brain and Heart tissue images were 
donated data. 
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Fig. 1: Steps of the AFid algorithm. a, k-means clustering on a set of textual features of 
objects in an intersection mask of two channels. Autofluorescent ROIs can then be tagged 
for exclusion in downstream analysis (b), or a custom dilation function can be employed to 
estimate the perimeter of autofluorescent ROIs, which are then excluded from the image 
(pixel values set to 0) (c). 
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Fig. 2: Application of AFid to various staining panels. Sections of fixed human colorectal 
tissue prior to (a,d,g) and after labelling (b,e,h) with antibodies targeting the indicated 
markers. c,f,i, labelled images after identification and exclusion of autofluorescencent 
objects using AFid. White arrows indicate some autofluorescent objects that have been 
excluded by the algorithm. The red arrow in the middle row indicates an autofluorescent 
macrophage which was not identified by AFid. In the the middle row, ‘FITC’ is the FITC 
channel, which was imaged but not used to detect any markers. Images are representative 
of 3 donors for each staining panel. 
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Fig. 3: AFid facilitates analysis of early HIV-target cell interaction. Human colorectal 
explants were topically infected with HIVBal for 30min, fixed, sectioned and then stained for 
CD11c, HIV RNA and DAPI. a, Single cell segmentation and HIV spot segmentation were 
performed followed by FCS file generation for analysis using FlowJo. The figure shows a 
gating strategy for identifying CD11c+ cells that contain at least one HIV particle, either 
with, or without first gating-out cells containing autofluorescence. The autofluorescence 
parameter shows the percentage of the cell body overlapping with the autofluorescence 
mask generated by AFid. b, Overlay of CD11c+HIV+ cells after gating out autofluorescence, 
showing that they cannot be specifically gated-on without first excluding autofluorescent 
cells. c,  Total number of CD11c+HIV+ cells before and after autofluorescence exclusion, as 
gated on in part a. d,e, A whole tissue image from one donor was divided into 100x100um2 
quadrats, each classified as HIV- or HIV+, and CD11c labelling was measured before (d) and 
after (e) autofluorescence exclusion. CD11c expression was measured per um2 of DAPI. 
Quadrats with DAPI staining less than 1/10th their area (non-tissue areas) were excluded. 
Boxplots show the min, first quartile, median, third quartile and max values.  f, A cropped 
area of a whole-tissue image of HIV-infected colorectum before (left) and after (right) 
autofluorescence exclusion from the CD11c channel. Zoomed images of the boxes show 
interactions of HIV with CD11c+ cells (white arrows) in the image after autofluorescence 
exclusion. The broken white line indicates the base of the lamina propria. A two-tailed Mann 
Whitney test was performed in part a and b. ns =  not significant; ***p=0.0002.  
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Supplementary Figure 1: Excitation and emission spectra of autofluorescence in various 
tissues. The intensity of pixels corresponding to autofluorescent structures measured at 
20nm intervals upon excitation with laser lines 405nm, 473nm or 559nm in human colon, 
skin and brain tissues, as well as rat heart tissue. Results shown as the intensity of the 
autofluorescent object minus the intensity of the stromal background for each wavelength. 
Results are shown for a single image for each tissue type.  
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Supplementary Figure 2: Autofluorescence inhibits assessment of CD3 labelling in the 
human colorectum. Fixed human colorectal tissue sections imaged prior to (left) and after 
labelling with mouse anti human CD3 and donkey anti-mouse AF488 (right). Red arrows 
indicate some autofluorescent cells and white arrows indicate CD3+ cells. Images are 
representative of 6 unique donors where CD3 staining was performed.  
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Supplementary Figure 3: Features of autofluorescence are highly correlated between 
fluorescent channels. Fixed human colorectal tissue sections were stained for mouse anti 
CD3 and rabbit anti CD4, detected using donkey anti-mouse AF488 and donkey anti-rabbit 
AF546 respectively. An intersection mask was created using the two fluorescent markers 
(Fig. 1) and measurements performed on objects in the intersection mask. An unstained 
background image was used as a reference to manually annotate autofluorescent objects in 
the stained image. a, The arctanh transformed Pearson’s correlation coefficient values of 
autofluorescent objects vs non-autofluorescent objects within the intersection mask. The 
boxplots contain data from thousands of individual objects for each category. Boxplots show 
the min, first quartile, median, third quartile and max values. b,c, standard deviation (SD) 
and kurtosis (Kurt) measurements of autofluorescent objects in each channel (CH1 and CH2) 
used to create the intersection mask. A subsample of 200 autofluorescent objects, among 
thousands, is shown. A line of best fit is shown for both graphs. These graphs are 
representative of 13 total images used for this work.  
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Supplementary Figure 4: Custom dilation function to estimate the correct perimeter of 
autofluorescent ROIs. a, Fixed colorectal tissue sections were stained for rabbit CD11c and 
mouse CD3, followed by donkey anti rabbit AF488 and donkey anti mouse AF546. b, 
Fluorescent channels used to detect CD11c and CD3 were thresholded, binary masks 
created and the composite image displayed. Yellow indicates the overlapping area 
corresponding to the intersection mask. c, Image from part a with the pixels in the 
intersection mask from part b set to 0. d, Identified autofluorescent objects within the 
intersection mask in part b are skeletonised and points for outward expansion (blue) are 
distributed along the skeleton every 20 pixels. e, Thousands of equiangular lines are drawn 
outwards from the expansion centres identified in part d, each line propagating until it 
encounters a pixel brighter than the previous pixel, as measured in either the CD11c or CD3 
channel. A mask of the identified autofluorescence body is thus generated for each 
fluorescent channel. f, Pixels corresponding to the identified AF body in each channel in part 
e, are set to 0. Yellow arrows indicate some autofluorescent objects. g, Measurement of 
overlap of autofluorescent pixels defined by AFid, with ground-truth masks of 
autofluorescence and real signal (CD3 antibody labelled) pixels. Measurements were 
performed with (red and green lines) and without (blue and purple) employing the custom 
dilation function and for varying cluster number k and varying threshold radii. 
Representative data of 3 images is shown. See methods for additional details.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/566315doi: bioRxiv preprint 

https://doi.org/10.1101/566315


 
 
Supplementary Figure 5: Specificity and sensitivity of autofluorescence removal for 
various use-cases in Figure 2. Fixed human colorectal sections were imaged prior to, and 
after labelling with antibodies against markers for three separate panels, CD11c/CD3, 
FITC/FXIIIA and CD3/CD4. FITC indicates an unstained open channel that was imaged. An 
intersection mask was created using the two fluorescent channels for each panel (as in 
Figure 1). Textural features of objects within the intersection mask were then measured for 
each channel, including standard deviation, kurtosis, as well as the inter-channel Pearson’s 
correlation coefficient of corresponding pixels. k-means clustering was then performed 
using these features and the cluster with the highest average correlation values was defined 
as the cluster containing autofluorescent ROIs. A ground truth for the classification of 
objects as autofluorescence or real signals (stemming from antibodies) was established by 
manually annotating a subset of up to 200 ROIs each, using the unlabelled background 
image as a reference. a, percentage of the ‘autofluorescence cluster’ comprised of 
autofluorescent ROIs (specificity), where the total number of ROIs in the cluster is defined 
as the sum of autofluorescent ROIs and ROIs stemming from real signal. Each data point 
represents counts performed on a unique donor for each panel. Mean values across the 
three donors are indicated above each column. b, table summarising the proportion of 
manually annotated autofluorescence or real signal assigned to the ‘autofluorescence 
cluster’ (sensitivity). The last two columns indicate the total number of ROIs and the total 
number of ROIs classified as autofluorescence respectively. Each row corresponds to results 
for unique donors for each use-case.  
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Supplementary Figure 6: Pairwise plots of textural features used for k-means clustering of 
the non-co-expressed markers use-case. ROIs from k-means clustering on the CD11c/CD3 
use-case in Supplementary Figure 5 are shown. In the bottom half, ROIs in the 
autofluorescence cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + 
dim stromal background fluorescence) are coloured grey. The top half shows paired plots as 
a heatmap of correlation values. FCorr = Arctanh transformed Pearson’s correlation 
coefficient values. SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in 
channels 1 or 2. The plot is representative of clustering performed on 3 independent 
donors.  
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Supplementary Figure 7: Pairwise plots of textural features used for k-means clustering of 
the autofluorescent cells use-case. ROIs from K-means clustering on the FITC/FXIIIA use-
case in Supplementary Figure 5 are shown. In the bottom half, ROIs in the autofluorescence 
cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + dim stromal 
background fluorescence) are coloured grey. The top half shows paired plots as a heatmap 
of correlation values. FCorr = Arctanh transformed Pearson’s correlation coefficient values. 
SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in channels 1 or 2. 
The plot is representative of clustering performed on 3 independent donors.  
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Supplementary Figure 8: Pairwise plots of textural features used for k-means clustering of 
the co-expressed markers use-case. ROIs from K-means clustering on the CD3/CD4 use-case 
in Supplementary Figure 5 are shown. In the bottom half, ROIs in the autofluorescence 
cluster are coloured yellow, whilst non-autofluorescent ROIs (real signal + dim stromal 
background fluorescence) are coloured grey. The top half shows paired plots as a heatmap 
of correlation values. FCorr = Arctanh transformed Pearson’s correlation coefficient values. 
SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis values of ROIs in channels 1 or 2. 
The plot is representative of clustering performed on 3 independent donors.  
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Supplementary Figure 9: AFid performance across various tissue types. Unlabelled sections 
of fixed rat heart, human abdominal skin and human brain tissue are shown, prior to 
autofluorescence exclusion (left panel), with the boundary of autofluorescent structures 
identified by the algorithm (middle panel), and after exclusion by setting pixel values to 0 
(right panel). Note that the images the skin and brain samples were counterstained with 
DAPI for visualisation. The images are representative areas from one whole-tissue image for 
each tissue type that was used for autofluorescence identification and exclusion.  
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Supplementary Figure 10: AFid performance at varying image resolutions. Fixed colorectal 
tissue sections were imaged prior to labelling (left, unlabelled image) and after labelling for 
rabbit anti CD11c and mouse anti CD3, followed by donkey anti rabbit AF488 and donkey 
anti mouse AF546. Images of the same area were taken with x10, x20 and x40 objectives 
with an image resolution of 1.54, 3.08 and 6.17 pixels per um respectively. Images before 
autofluorescence removal (left panel), with a mask of the identified autofluorescence 
overlaid (middle panel) and after removal by setting pixel values to 0 (right panel) are 
shown. Images are representative of 3 unique donors where CD11c/CD3 staining was 
carried out and imaged at various magnifications.  
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Supplementary Figure 11: AFid performance before and after deconvolution. Fixed 
colorectal tissue sections were labelled with a sheep anti FXIIIA antibody followed by 
donkey anti sheep AF546. ‘FITC’ is the FITC channel, which was imaged but not used to 
detect any markers. Images are shown of the same area before (bottom row) and after (top 
row) deconvolution using Huygens deconvolution software, CMLE algorithm. Images before 
(left panel) and after (right panel) autofluorescence exclusion are shown. White arrows 
indicate some autofluorescence identified by the algorithm. Images are representative of 3 
unique donors stained for FXIIIA and processed using AFid before and after deconvolution. 
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Supplementary Figure 12: AFid performance on large images. Fixed colorectal tissue 
sections were imaged prior to and after labelling for rabbit anti CD11c and mouse anti CD3 
antibodies, followed by donkey anti rabbit AF488 and donkey anti mouse AF546. A large 
area of tissue was imaged and the results before (top panel) and after (middle panel) 
autofluorescence exclusion are shown. Zoomed in images of the area outlined are shown 
with an additional image of the unlabelled section outlining the distribution of 
autofluorescence. Image is representative of 3 unique donors where CD11c/CD3 staining 
was carried out.  
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Supplementary Figure 13: Estimation of optimal cluster number for k-means. k-means 
clustering as described in supplementary figure 5 was performed iteratively for 3-20 clusters 
and the distribution of paired true positive rate (TPR) and false positive rate (FPR) values for 
each cluster number is indicated by the red line for each use-case (top row). A high TPR or 
FPR corresponds to a high proportion of the ‘autofluorescence cluster’ comprising manually 
annotated autofluorescence or real signals respectively. The bottom row shows plots of the 
cluster number (k) versus, test statistic of a t-test (two-tailed) comparing Pearson’s 
correlation coefficient values of clusters with the highest (‘autofluorescence cluster’) and 
second highest average correlation values. An elbow method approach for estimation of 
optimal K is illustrated in the bottom left plot. A line (L) is drawn between the first and last 
plotted values. The line M indicates the plotted value that is below the line L, and has the 
greatest perpendicular distance to that line. The cluster number corresponding to this 
plotted point is estimated as the optimal cluster number. The points with optimal cluster 
number for each plot are indicated as a red *. The TPR/FPR of the optimal cluster number 
for each use-case is indicated by the black dot in the top row of plots. Data are 
representative of analysis performed on 3 unique donors for each use-case.  
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