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Summary 14 

 15 
Insights into animal behaviour play an increasingly central role in species-focused conservation practice. 16 
However, progress towards incorporating behaviour into regional or global conservation strategies has been 17 
far more limited, not least because standardised datasets of behavioural traits are generally lacking at wider 18 
taxonomic or spatial scales. Here we make use of the recent expansion of global datasets for birds to assess the 19 
prospects for including behavioural traits in systematic conservation priority-setting and monitoring 20 
programmes. Using IUCN Red List classification for >9500 bird species, we show that the incidence of threat 21 
can vary substantially across different behavioural syndromes, and that some types of behaviour—including 22 
particular foraging, mating and migration strategies—are significantly more threatened than others. When all 23 
factors are included in a combined model, behavioural traits have a weaker effect than well-established 24 
geographical and ecological factors, including range size, body mass and human population pressures. We 25 
also show that the association between behavior and extinction risk is partly driven by correlations with these 26 
underlying factors. Overall, these results suggest that a multi-species approach at the scale of communities, 27 
continents and ecosystems can be used to identify and monitor threatened behaviours, and to flag up cases of 28 
latent extinction risk, where threatened status may currently be underestimated. Our findings also highlight 29 
the importance of comprehensive standardized descriptive data for ecological and behavioural traits, and 30 
point the way forward to a deeper integration of behaviour into quantitative conservation assessments.   31 
 32 
 33 
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1. Introduction 34 
 35 

Conservation biologists and behavioural ecologists have repeatedly called for closer links between their 36 
respective fields on the grounds that behavioural insights can contribute significantly to the success of 37 
conservation action (Clemmons & Buchholz 1997; Caro 1999; Caro & Sherman 2011; Greggor et al. 2016). 38 
However, this cross-disciplinary integration has progressed slowly, in part because the methods and central 39 
questions of behavioural ecology do not align closely with the needs of conservation practitioners (Greggor et 40 
al. 2016). For example, much of behavioural ecology focuses at the level of the individual, and identifies 41 
selective mechanisms acting on genes or organisms, whereas conservation typically operates at the level of 42 
populations (Caro 2007). This misalignment is perhaps most pronounced at macroecological scales where 43 
global analyses are playing a vital role in conservation science and policy (e.g. Newbold et al. 2015) but 44 
generally include only the most basic behavioural information. 45 

One reason for the low profile of behaviour in comprehensive broad-scale analyses is because it is 46 
difficult and costly to measure standardised behavioural traits across species, space and time (Anthony & 47 
Blumstein 2000). The major contributions of behavioural research to conservation have dealt with factors such 48 
as individual movements, sensory ecology or animal personality, and the extent to which they mediate 49 
various kinds of human pressures, including disturbance, habitat loss and hunting (Greggor et al. 2016). The 50 
key behavioural metrics under this framework are context-dependent, highly plastic both within and between 51 
individuals, and typically estimated through detailed observation and experimentation. They are often 52 
inappropriate for quantitative assessments at the wider level of communities or ecosystems because they are 53 
(1) only available for a small fraction of species, and (2) not readily incorporated into species-level analyses. 54 
For instance, the case-dependent intricacies of how behaviour influences Effective population size (Ne) are 55 
useful to conservation (Anthony & Blumstein 2000) but we are decades away from having these data available 56 
for comprehensive global studies. 57 

Global or regional conservation assessments are largely restricted to comprehensive species-level 58 
datasets accessible at the relevant scale (see figure 1). Most macroecological analyses have therefore tested 59 
whether species conservation status is predicted by human impacts, biogeographical factors such as latitude 60 
or range size, and environmental factors such as climate or habitat (Bennett & Owens 1997, Owens & Bennett 61 
2000, Cardillo et al. 2004, Cardillo et al. 2005, Lee & Jetz 2011, Keinath et al. 2017), or reversed the process to 62 
predict the conservation status of poorly known species (Jetz & Freckleton 2015, Santini et al. 2019). Using 63 
freely available GIS layers, these socio-economic, biogeographical and environmental variables can be 64 
extracted for specimen localities or geographical range polygons, which in some vertebrate groups are 65 
reasonably accurate. The other main components of macro-scale assessments have been demographic factors, 66 
including population size and density, and rates of population decline, all of which are theoretically related to 67 
extinction risk (Keinath et al. 2017; Santini et al. 2019). In general, only crude population estimates are 68 
included in global-scale analyses because very few attempts have been made to quantify population sizes and 69 
trends across entire global ranges (Tobias & Seddon 2002, Tobias & Brightsmith 2007). Previous studies have 70 
shown that both extrinsic biogeographic and demographic factors are correlated with extinction risk, leading 71 
to their widespread inclusion in regional and international conservation status assessments. 72 

Perhaps the most influential global assessment is the IUCN Red List (IUCN 2001), an indicator of 73 
biodiversity status and change linked to international convention targets (Butchart et al. 2005). The 74 
conservation status categories systematically generated by the Red Listing process are enshrined in legislation 75 
and widely used in macroecological research (Rodrigues et al. 2006). Previous assessments of predictors of 76 
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Red List status have generally focused on standard biogeographic or climatic variables, without delving far 77 
into behavioural or ecological factors. Indeed, the only ecological and behavioural traits incorporated into 78 
most global models of conservation risk are body mass, diet and habitat preferences (Lee & Jetz 2011; 79 
Newbold et al. 2015, Keinath et al. 2017). To convert these variables into species-level traits, body mass is 80 
typically averaged from small numbers of published estimates, while diet and habitat are classified into broad 81 
categories on the basis of published descriptions in secondary literature (Wilman et al. 2014). By contrast, the 82 
availability of many other behavioural or ecological variables is highly patchy at global scales, and limited by 83 
the difficulty of converting into species-level traits (figure 1).  84 
 The most relevant behavioural traits to conservation assessment include those that mediate sensitivity 85 
to habitat loss, fragmentation, and climate change (Greggor et al. 2016). Factors relating to dispersal behaviour 86 
are particularly pertinent because they impinge on the ability of species to cross unsuitable habitat and thus 87 
maintain interconnected metapopulations after habitat fragmentation (Lees & Peres 2009). Dispersal-related 88 
traits may also regulate the ability of species to track shifting geographical ranges in response to climate 89 
change (Early & Sax 2011, Howard et al. 2018), and predict susceptibility to threats like wind farms (Thaxter et 90 
al. 2017). In addition, behavioural dimensions of species interactions may be important determinants of 91 
responses to a variety of threats. For example, studies focused at the level of species pairs or communities find 92 
evidence that interspecific competition leads to population declines or local extinction following habitat loss 93 
and fragmentation (Bregman et al. 2015, Grether et al. 2017) while reproductive interference may threaten 94 
populations of closely related species interacting or hybridising when climate-driven range shifts lead to 95 
secondary contact (Hochkirch et al. 2007, Greggor et al. 2016). However, while standardised estimates of 96 
dispersal ability and interspecific competition are available for restricted samples of species, they are not 97 
readily available at macroecological scales, except in the form of extremely coarse categories (e.g. whether an 98 
organism can fly or not; Keinath et al. 2017).  99 
 Other variables potentially relevant to conservation status can be placed on a continuum from 100 
primarily ecological to primarily behavioural (figure 1). At the ecological end are aspects such as microhabitat 101 
preferences, while other factors such as foraging mode, migration, sexual selection, territoriality, reproductive 102 
strategy and nesting behaviour have an increasingly behavioural dimension. Previous research suggests that 103 
species sensitivity to land-use or climate change can be related to microhabitat (e.g. in the form of vertical 104 
stratum of vegetation), foraging behaviour (e.g. gregarious foraging), and reproductive strategy (e.g. breeding 105 
system) (Kokko & Brooks 2003, Bueno et al. 2018). Similarly, territorial strategy is linked to species sensitivity 106 
to habitat fragmentation (Ulrich et al. 2017), suggesting that elevated interspecific competition via behavioural 107 
mechanisms can increase threats associated with land-use and climate change (Jankowski et al. 2011, Grether 108 
et al. 2017). Until recently, such inferences were based on relatively restricted species sampling, but this 109 
constraint is changing as the compilation and dissemination of global trait datasets gathers pace.  110 
 To assess whether recent progress in data availability can pave the way for behavioral perspectives to 111 
be explicitly included in global conservation strategies, we compiled information on a variety of ecological 112 
and behavioural traits for all bird species, including estimates of sexual selection (Dale et al. 2015; Cooney et 113 
al. 2017), breeding system (Jetz & Rubenstein 2011), foraging strategy (Pigot et al. 2016, Felice et al. 2019), 114 
territorial behaviour (Tobias et al. 2016), and nest placement (Stoddard et al. 2017). We then ran multivariate 115 
models to evaluate the extent to which behaviour predicts IUCN Red List status at macroecological scales and 116 
in relation to a range of standard biogeographical and environmental variables. Our goal is to assess the 117 
current landscape of behavioural data availability and the prospects for more nuanced conservation 118 
assessments and priority-setting. 119 
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 120 

2. Methods 121 

 122 
(a) Data 123 

 124 
We assembled data on species threat status from the 2016 Red List (IUCN 2016) along with a range of 125 
potential drivers of variation in status, including biogeographic, ecological and behavioural traits, as well as 126 
the exposure of each species to human impacts. Geographic range size is consistently identified as the 127 
strongest predictor of threat status (Lee & Jetz 2011; Jetz & Freckleton 2015). We estimated range size for each 128 
species based on expert opinion extent of occurrence maps of species breeding distributions (BirdLife 129 
International, 2012). Human population pressure is also known to influence extinction risk (Cardillo et al. 130 
2004; Scharlemann et al. 2005; Davies et al. 2006). To quantify the exposure of species to human impacts, we 131 
first extracted polygon range maps onto an equal area grid (resolution of 110 km ≈ 1° at the equator) and used 132 
this grid to sample human population density, human appropriation of net primary productivity and night-133 
time light intensity, an indicator of urbanisation and development. We calculated the mean value of each 134 
metric, averaged across all grid cells overlapping with each species range. 135 

We collated data on a selection of ecological traits, including mean species body mass (g), habitat type, 136 
diet and island dwelling, all of which have been linked to extinction risk (Bennett & Owens 1997; Owens & 137 
Bennett 2000; Cardillo et al. 2005; Lee & Jetz 2011; Jetz & Freckleton 2015). We assigned species to one of ten 138 
dietary categories: aquatic animals, aquatic plants, terrestrial invertebrates, terrestrial vertebrates, terrestrial 139 
carrion, nectar, seeds, fruit, other terrestrial plant matter (e.g. leaves) and omnivore, based on the dominant 140 
resource present in their diet (see Supplementary material). Data on proportional resource use were first 141 
obtained from Wilman et al. (2014), and then modified and updated based on comprehensive literature 142 
searches. Our dietary classification differs from Wilman et al. (2014) in that we subdivided each animal or 143 
plant-based resource type into separate aquatic and terrestrial categories (see Felice et al. 2019). This helps us 144 
to avoid highly heterogenous categories such as invertivores, which spans a wide variety of species from 145 
insectivorous warblers to squid-eating albatrosses and crustacean-eating flamingos (Wilman et al. 2014). Our 146 
approach separates warblers (diet: “terrestrial invertebrates”) into a different category from albatrosses and 147 
flamingos (diet: “aquatic animals”). Using literature to score habitat use, we assigned species to broad habitat 148 
categories (coastal, terrestrial, freshwater, sea) according to the predominant habitat utilised across their 149 
geographic distribution. We included habitat type as a predictor in our main models but also used this 150 
variable along with a measure of forest dependency (obtained from BirdLife International: 151 
http://datazone.birdlife.org/home) to subset our data and perform additional analysis focusing on terrestrial 152 
species (n = 8433) or those with medium to high forest dependency (n = 5646). Using the geographical range 153 
polygons described above, we classified species as island dwelling if more than 25% of their geographic range 154 
occurred on small islands (landmass <2000 km2). Further details of data compilation methods are given in 155 
supplementary materials.  156 

To assess the association between IUCN threat status and key behavioural traits, we assembled data 157 
on foraging strategy, nest placement, breeding system, mating behaviour, the mean clutch size of broods, 158 
territoriality and migratory behaviour. Following the method described by Felice et al. (2019), we used 159 
literature searches to assign species to one of seven foraging strategies. We classified each species according to 160 
the predominant behavioural strategy used to acquire resources, and assigned species utilising multiple 161 
foraging strategies as generalists (see Supplementary material). Nest placement was scored into a simple 162 
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three-way system: ground, elevated or cavity (see Stoddard et al. 2017 for details). We used a binary score of 163 
breeding system based on a published classification of cooperative and noncooperative breeders (Jetz & 164 
Rubenstein 2011). Mating behaviour was scored as strict monogamy, monogamy with infrequent (<5% males) 165 
polygyny, monogamy with frequent (5-20% males) polygyny, and polygamy (>20% males and females). These 166 
categories are based on the index of sexual selection developed by Dale et al. (2015). Clutch size data was 167 
based on Jetz et al. (2008). Using data from Tobias et al. (2016), we assigned all species to three categories 168 
according to the degree of territoriality: ‘strong’ (territories maintained throughout year), ‘weak’ (weak or 169 
seasonal territoriality, including species with broadly overlapping home ranges or habitually joining mixed 170 
species flocks), and ‘none’ (never territorial or at most defending very small areas around nest sites). Finally, 171 
we assigned the migratory behaviour of species as either sedentary, partially migratory (minority of 172 
population migrates long distance or most individuals migrate short distances) and migratory (majority of 173 
population undertakes long-distance migration) (Tobias et al. 2016).  174 

Most variables were available for the vast majority (i.e.>99%) of species but the identity of species 175 
with missing values differed across variables. For categorical predictors, we imputed missing values using the 176 
modal class for each genus, if the genus contained at least 2 species and the modal class was present across at 177 
least 75% of species. If these conditions were not met, we used the same criteria to either impute missing 178 
values at the family level. After removing all species with any missing values, our final dataset included n = 179 
9576 species.  180 
 181 

(b) Statistical analysis 182 
 183 
To model the effects of each predictor variable on extinction risk, we treated threat as a binary variable (0, 1) 184 
according to the IUCN Red List categories. All species listed as Vulnerable, Endangered, Critically 185 
Endangered, Extinct (including Extinct in the Wild) were classified as Threatened; the remainder (Near 186 
Threatened, Least Concern and Data Deficient) were classified as non-Threatened. We modelled threat using a 187 
generalised linear mixed effects model, with a binomial error structure and including taxonomic family as a 188 
random effect to control for the phylogenetic non-independence of species when identifying predictors of 189 
threat. Predictor variables exhibiting right skew were log transformed prior to analysis. 190 

In contrast to previous assessments of the predictors of extinction risk in birds (e.g. Lee & Jetz 2011), 191 
we are particularly interested in how behaviour and its covariation with other putative drivers of extinction 192 
risk alter the incidence of threat. First, to assess the overall association between each predictor and threat, we 193 
fitted a series of single predictor (i.e. univariate) models. Second, we generated a series of multivariate models 194 
and calculated relative model fit according the Akaike Information Criterion (AIC). We assessed the relative 195 
importance of each behavioural trait relative to other predictors by excluding each variable in turn from the 196 
full model and calculating the difference in AIC (delta AIC). We then assessed the overall contribution of 197 
behavioural traits in predicting threat by calculating the AIC and r2 of a full model including all predictor 198 
variables, and comparing with a model excluding behavioural traits. Finally, we also calculated the AIC and r2 199 
of a model including only behavioural traits.  200 

When comparing univariate and multivariate models, we were particularly interested in testing how 201 
covariation between behavioural traits and ecological, geographical or socio-economic variables may modify 202 
the association between threat and behaviour. We identify three possible scenarios. First, when behaviour is 203 
weakly related to threat, we may nevertheless find strong variation in the incidence of threat across 204 
behavioural categories because of differences in other factors that drive variation in threat (i.e. ecology, 205 
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geography or human impacts), an example of an ‘enhanced’ effect. Second, the opposite pattern may emerge, 206 
if behaviour has a significant effect on threat, but this effect is ‘masked’ by countervailing effects of ecological, 207 
geographical or human impacts. Finally, the apparent effect of a given behaviour on threat could even be 208 
‘reversed’, when taking into account covariation with other factors. 209 

To examine how the definition of threat may influence the predictors of extinction risk, we repeated 210 
our analysis considering only threatened species (n = 1216), predicting lower (0 [Vulnerable]) or higher (1 211 
[Endangered, Critically Endangered, Extinct]) levels of threat. To assess how the predictors of threat may 212 
change across broad habitat types, we repeated our analysis on different subsets of our data including all 213 
species (n = 9576), terrestrial species (n = 8433) and forest dependent species (n = 5646).  214 
 215 
Results 216 
 217 
Our results identified a number of core predictors of threat status that align closely with previous assessments 218 
indicting that threat arises as a combination of geography, ecology and human impacts (Fig. 2). Specifically, 219 
the strongest predictor of threat status is geographical range size, with additional strong effects of body mass, 220 
island dwelling and the mean human population density across the species geographic range, a metric of 221 
exposure to human impact. In both univariate and multivariate models, the incidence of threat decreases with 222 
geographic range size and increases with body size (Table S1). When tested in isolation, the incidence of threat 223 
is higher on islands than on the mainland and in areas of low human population density (Table S1). However, 224 
in the full multivariate model, these effects are reversed, with a higher incidence of threat in areas of greater 225 
human population density, but a lower incidence of threat on islands (Table S1, see also Manne et al 1999).  226 
In addition to these core predictors, we also identified an effect of behaviour on extinction risk. A multivariate 227 
model including behavioural traits alone explains 7% of the variance in threat status. A full multivariate 228 
model including all predictors is significantly better supported than one excluding behavioural traits (delta 229 
AIC = 36) although the improvement in explanatory power is small (R2 excluding versus including behaviour 230 
= 0.49 versus 0.51 respectively). Behavioural traits receiving strong support for inclusion in the full 231 
multivariate model (delta AIC >2) were mating behaviour (monogamous or polygamous mating) and 232 
migration (Fig. 2). Behavioural traits receiving weak or no support for inclusion in the model (delta AIC <2) 233 
were foraging mode, breeding system, territoriality, nest placement and clutch size. The effects of behaviour 234 
were similar regardless of whether we conducted our analysis across all birds, only terrestrial species (Fig. 235 
S1a) or those restricted to forests (Fig. S1b). This is perhaps not surprising, given that forest dependent species 236 
comprise more than half of all birds. We note, however, that the role of behaviour in predicting threat does 237 
depend on the way in which threat is defined. Specifically, while behaviour is a significant predictor of 238 
whether a species is threatened or not (delta AIC = 36), it does not predict the level of threat (i.e. whether a 239 
species is Vulnerable versus Endangered, Critically endangered or Extinct) (delta AIC = -15, Fig. S2). 240 

Some behavioural traits were unrelated to threat, regardless of whether they were considered in 241 
isolation or in the full multivariate model. In particular, we found no effect of nest placement or breeding 242 
system in our models (Fig. 3, Table S1). In other cases, threat exhibited significant associations with behaviour, 243 
but with effects that varied depending on whether we accounted for other putative drivers of extinction risk 244 
(Fig. 3a, Table S1). In the case of foraging behaviour, we find that the incidence of threat varies substantially 245 
across foraging categories. For instance, >30% species that feed either by diving or by aerial attacks in aquatic 246 
habitats are threatened compared to <10% species that are foraging generalists or bark probing specialists in 247 
terrestrial habitats (Fig. 3a). However, our full multivariate model shows that most of this variation in the 248 
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incidence of threat is driven by covariation between foraging behaviours, ecological traits and exposure to 249 
human impacts (Fig. 4). In particular, species feeding at sea and with large body size are more threatened than 250 
land-based and small bodied species (Fig. S3). Having accounted for these confounding variables, only species 251 
feeding by aerial attacks in aquatic habitats have significantly higher levels of threat (i.e. an example of an 252 
‘enhanced’ effect) (Fig. 4, Table S1). A similar effect was also found for clutch size (Table S1). While the 253 
incidence of threat declines with increasing clutch size, this association is not significantly supported when 254 
accounting for confounding variables in the full multivariate model (Table S1). 255 
 Mating behaviour provides a possible example of a ‘masking’ effect. When tested in isolation, we 256 
found that polygamous species are no more likely to be threatened than monogamous species (Fig. 3b, Table 257 
S1). However, after accounting for the confounding effects of other predictors in the full multivariate model, 258 
we found that the probability of being threatened is significantly higher among polygamous than 259 
monogamous species (Fig. 4, Table S1). This effect of mating behaviour is masked when considered in 260 
isolation because polygamous species on average have a smaller body size than monogamous species, and this 261 
smaller body size nullifies the effect of mating behaviour on threat (Fig. S3). This suggests that polygamy may 262 
enhance the risk of extinction but that its effects may have been masked due to covariation with other factors 263 
that decrease extinction risk.  264 

In a univariate model, we found that proportionately fewer migrants are threatened compared to 265 
partial migrants or sedentary species (Fig. 3c, Table S1). This may suggest that migration, or perhaps 266 
associated greater vagility, buffers species from extinction. However, in our full model we found the opposite 267 
effect of migration on the likelihood of being threatened, whereby migrants are more likely to be threatened 268 
than sedentary species (Fig. 4). These contrasting findings arise because migratory tendency is strongly 269 
correlated with range size, with migrants have larger breeding ranges on average than sedentary species (Fig. 270 
S3), and thus a lower incidence of threat. However, having statistically accounted for the negative effects of 271 
range size on threat, migrants are more likely to be threatened than sedentary species (Fig. 4, Table S1). This 272 
suggests that undertaking long distance migration makes species more at risk of extinction but that this is 273 
unable to overcome the effects of other covarying factors that instead lead to a higher prevalence of threat 274 
among sedentary species (i.e. an example of a ‘reversed’ effect). 275 
 276 
Discussion 277 
 278 
We have shown that global-scale ecological and behavioural datasets predict variation in IUCN Red List 279 
status of birds, but that these relationships are largely explained by underlying correlations with well-280 
established macroecological variables. Some behavioural traits were only significant predictors when 281 
behaviour was analysed independently, becoming non-significant when correlations with factors such as body 282 
size, geographical range size and human impacts were included. Conversely, other behavioural traits were not 283 
significant predictors in behaviour-only models, and their effect was only evident when socio-economic and 284 
biogeographic variables were included. These findings are consistent with previous reports that most 285 
ecological and behavioural traits have relatively weak associations with conservation status when 286 
incorporated into regional or global models as a species-level trait (Lee and Jetz 2011, Newbold et al. 2015, 287 
Keinath et al. 2017). However, although we find little evidence that the recent expansion of behavioural 288 
datasets can contribute substantially to refining conservation strategies at these wider scales, our results also 289 
show that behavioural traits act as modifiers that can improve explanatory power in conservation assessments 290 
and other predictive exercises.  291 
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 The traits with strongest influence on conservation status were foraging strategy, mating behaviour 292 
and migration. Even in these cases, we found that significant relationships between behaviour and 293 
conservation status were only detected for certain strategies. For example, bird species foraging by diving 294 
from air to water were significantly more threatened than otherwise predicted. Moreover, a number of 295 
species-level behaviours, including variation in breeding system, territoriality, and nest placement, had little 296 
predictive power in explaining variation in IUCN Red List status regardless of how they were entered into 297 
models. This does not necessarily indicate that such factors are unimportant to conservation, as it is well 298 
known that they play a role in some contexts (e.g. nest design and placement has important implications for 299 
predation risk in modified landscapes; Wilcove 1985). However, our models show that these effects are minor 300 
and often overwhelmed by other non-behavioural factors at global scales.  301 

These results do not support the integration of behaviour into global conservation assessment 302 
frameworks, including the IUCN Red List criteria. However, the accuracy of Red List assessments might be 303 
improved by using life history and behaviour to scale terms in the criteria which are difficult to assess or 304 
define, such as “number of mature individuals” and “future rate of decline” (IUCN 2001). These factors are 305 
typically judged with a large dose of guesswork (see Tobias & Seddon 2002, Tobias & Brightsmith 2007). 306 
Guidelines on how to scale judgements in relation to ecological and behavioural factors such as mating 307 
systems, sex ratios, reproductive rate and predation pressure could be useful in fine-tuning predictions of 308 
“number of mature individuals” and “future rate of decline”. Moreover, for Red List assessors considering 309 
what constitutes “severe fragmentation”, future versions of the criteria may be improved with guidelines on 310 
how best to account for dispersal ability, gap-crossing ability and ecological specialism. 311 
 312 
(a) Challenges 313 
 314 
Our findings highlight one of the key challenges of applying behavioural data over larger spatial and 315 
taxonomic scales, namely that behavioural traits can have a major influence in particular species or contexts, 316 
yet only reduced effect in global analyses. This occurs for two main reasons. First, behavioural traits are 317 
inherently flexible within and between individuals and therefore poorly represented by averaging across 318 
entire species or populations. Second, behaviour is often not consistently or independently associated with 319 
extinction risk in the same way as, for example, low population size, small geographic range and slow 320 
reproductive output (Cardillo 2005, Lee and Jetz 2011).  321 

This point can be illustrated by year-round territoriality, a system of resource defence most 322 
widespread in tropical birds (Tobias et al. 2016). Intense year-round territorial behaviour can increase the risk 323 
of extinction in some contexts, such as mountaintop species driven to extinction through costly agonistic 324 
interactions with lower elevation replacements moving upslope in response to climatic warming (Jankowski et 325 
al. 2011, Freeman et al. 2018). The costs of territoriality are asymmetric, producing both lower-elevation 326 
winners and upper-elevation losers. Moreover, the pattern of non-overlapping elevational ranges for highly 327 
territorial species holds largely true for some species pairs and localities (Freeman et al. 2019), but not others 328 
(Boyce & Martin 2019), particularly in lowland systems where species do not tend to occupy rare climatic 329 
niches or to share parapatric range boundaries with close ecological competitors. Given that the relationship 330 
between territoriality and extinction risk is bidirectional and context-dependent, it makes sense that we find 331 
no overall link between territoriality and IUCN Red List status. 332 

An important viewpoint to bear in mind is that the models presented here treat behaviour as an 333 
independent species-level trait whereas the influence of behaviour is often dependent on inter-relationships 334 
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among species. Staying with the example of territoriality, the key factor is not so much whether a particular 335 
species aggressively defends territories year-round, but whether it directly competes with a closely related 336 
taxon that does the same. Thus, future versions of global models or associated conservation assessments 337 
should consider scoring behavioural interactions rather than behaviour per se. Advancing towards this goal is 338 
particularly urgent given that species interactions are sensitive to environmental effects. Both climate and 339 
land-use change can potentially influence the behavior of multiple interacting species, as well as their 340 
phenology, physiology and relative abundance, and we ideally need to quantify a range of behavioural 341 
interactions and responses to understand how environmental changes affect interaction-based ecosystems 342 
(Tylianakis et al., 2008). Again, the key challenge is that the role of behavior in heterotrophic systems can be 343 
complex and highly flexible (Ness & Bressmer 2005), creating difficulties for multi-species models. 344 
Nonetheless, we may improve predictions by incorporating behaviour in more sophisticated ways using 345 
interaction-based models, starting at local scales and expanding to larger scale ecological networks when data 346 
become available.  347 

A related point is that, although we have largely focused on how particular behaviours may influence 348 
extinction risk, such factors may yet prove to be less important than behavioural flexibility itself (Sol et al. 349 
2016). Individual organisms with the ability to modify their behaviour through adaptability (i.e. plasticity) 350 
may be better able to survive when confronted with novel environmental conditions and selection pressures 351 
imposed by anthropogenic change. Defining and developing general indices of behavioural flexibility and 352 
innovation remains a challenge (Audet & Lefebvre 2017), but may nevertheless be broadly predictable by 353 
morphometric traits that are increasingly available at large scales (Sol et al. 2005). For instance, differences in 354 
relative brain size across species is positively associated with rates of behavioural innovation in birds, an effect 355 
that may explain the apparently greater success of large brained species in colonising and persisting in more 356 
unpredictable environments (Sayol et al. 2006, Sol et al. 2008), including cities, the most highly altered of 357 
human environments (i.e. the ‘cognitive buffer’ hypothesis) (Sol et al. 2013). 358 
 359 
(b) Opportunities  360 
 361 
Although they extend the number of behavioural traits compiled across a major global radiation, our analyses 362 
are limited by the patchy availability of trait datasets and thus remain highly incomplete (figure 1). A major 363 
omission is dispersal behaviour, which we only include as a simple score of migration. Dispersal has long 364 
been considered relevant to the conservation of fragmented populations and the optimum design of reserve 365 
networks (Caro 1999). However, despite the likely importance of dispersal to understanding biodiversity 366 
responses to habitat loss and fragmentation, most broad-scale models (e.g. Newbold et al. 2013, Bregman et al. 367 
2014) lack estimates of dispersal behaviour simply because they are generally not available as a standardised 368 
organismal trait at macroecological scales. This problem may be addressed by the fast-moving field of 369 
movement ecology, with GPS trackers and loggers deployed over increasing numbers of species (Kays et al. 370 
2015), and data compilation accelerated by new satellite tracking systems, such 371 
as ICARUS (https://icarusinitiative.org). Given that it could take decades for these technological innovations 372 
to generate comprehensive dispersal estimates across major taxonomic groups, one potential stopgap solution 373 
is to use morphometric indices of dispersal or flight ability. Dispersal indices, such as hand-wing index in 374 
birds, can be estimated by measuring museum specimens to provide a fuller picture of spatial ecology and 375 
movement behaviour across multiple species in macroecological analyses (e.g. Pigot & Tobias 2015) and 376 
comparative studies of anthropogenic threats (e.g. Thaxter et al. 2017). Such indices, along with further 377 
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missing data on factors such as reproductive rate and sensitivity to disturbance (figure 1) should be compiled 378 
and applied to conservation assessments at global scales.  379 
 Another area where behavioural indices may prove useful is ecological forecasting. At present, 380 
dispersal is usually ignored in global range shift models, or only included on the basis of extremely crude 381 
metrics, such as geographical range size (e.g. Hof et al. 2018). Similarly, species interactions are difficult to 382 
quantify and, while most range shift forecasting models acknowledge the limitation, they are generally not 383 
included in analyses. Future models should explore the possibility of estimating the strength of species 384 
interactions using either pairwise morphometric trait divergence or scores of territorial behaviour, both of 385 
which have been shown to limit geographical range overlap in pairs of avian sister species (Pigot & Tobias 386 
2013, Freeman et al. 2019). Theoretically, suites of behavioural traits and associated morphometric indices can 387 
be incorporated into species distribution modelling in much the same way proposed for detailed physiological 388 
traits (Chown 2012). 389 
 The associations we detect between behaviour and conservation status (figure 3) suggests that future 390 
research could use similar techniques to identify “threatened behaviours” or suites of behaviours. Using 391 
global analyses to look beyond species conservation and instead to identify behaviours that are rare or 392 
declining might be a useful step towards targeting conservation action towards maintaining behavioural trait 393 
diversity. Similarly, the completion of rich behavioural trait datasets for entire taxonomic groups would pave 394 
the way towards multi-dimensional community-based analyses of behavioural diversity (BD) metrics, 395 
adopting methods from the functional diversity (FD) literature (Petchey & Gaston 2002, Villéger et al. 2008). 396 
Setting strategic conservation priorities based on rare behaviours or BD may have important implications for 397 
ecosystem function, particularly when focusing on behavioural traits linked to key ecological processes, such 398 
as trophic interactions (pollination, seed dispersal, etc.). In addition, there are opportunities for including 399 
behaviours in models designed to pinpoint likely future shifts in conservation status by estimating latent 400 
extinction risk (Cardillo et al. 2006). The way these models work is to predict threat status for any taxon based 401 
on a wide range of attributes and then compare predictions with their observed threat status, thus flagging up 402 
any species currently ‘flying under the radar’ (i.e. likely more threated, and thus a higher conservation 403 
priority, than indicated by their current conservation status).  404 
 405 
(c) Conclusions 406 
 407 
Over recent years, there have been repeated calls for behavioural ecologists to increase their focus on 408 
conservation, not least because their study organisms are being driven to extinction by anthropogenic change 409 
(Caro & Sherman 2011). Previous authors have suggested that bridging the gulf between these fields might be 410 
achieved by applying the experimental or mechanistic approaches predominant in behavioural ecology to 411 
conservation research (Linklater 2004), or else returning to more descriptive forms of behavioural ecology 412 
potentially relevant to conservation (Caro 2007). However, neither of these approaches are exactly suited to 413 
the needs of global conservation assessments which call for simple standardised classifications of basic 414 
behavioural traits at ambitious scales, including natural history observations and morphometric 415 
measurements. Our analyses show how broad-scale behavioural classifications are now within reach for some 416 
major taxa, highlighting the need for continued sampling of basic descriptive information for massive samples 417 
of species and pointing the way forward to a deeper integration of the resultant datasets into conservation 418 
assessments at the scale of clades, communities and ecosystems. 419 
 420 
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 669 
 670 
 671 

Figure 1. Extrinsic and intrinsic factors associated with extinction risk or conservation status at global scales.  672 
Extrinsic factors include anthropogenic threats to species and the biogeographic and environmental context; 673 
intrinsic factors include population and ecological niche dimensions. This diagram summarises the types of 674 
traits that are either available or desirable when constructing models of conservation risk at macroecological 675 
(continental or global) scales; numerous additional factors may impinge on conservation assessments in 676 
particular clades or species. Red text indicates datasets currently available for all species in well studied 677 
groups like birds. Availability of data is currently biased towards environmental, biogeographical and 678 
population attributes, whereas data tend to be unavailable, uncertain or sparse for most ecological variables, 679 
and absent for behavioural variables.  680 
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 682 

 683 
 684 
 685 
Figure 2. The relative contribution of anthropogenic, ecological and behavioural variables to explaining threat 686 
status. Variable contributions are quantified as the difference in AIC between the full model and a model 687 
excluding each variable. Variables are colored according to variable type. The dashed line indicates a 688 
difference of 2 AIC units indicating strong support for variable inclusion. 689 
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 693 
 694 
 695 
 696 
Figure 3. The % of threatened species in different behavioural syndromes: a) Foraging behaviour (1 Foraging 697 
generalist, 2 Aerial screen, 3 Bark glean, 4 Aerial sally, 5 Arboreal glean, 6 Ground forage, 7 Aquatic ground, 8 698 
Aquatic plunge, 9 Aquatic surface, 10 Aquatic aerial, 11 Aquatic generalist, 12 Aquatic dive), b) Mating 699 
behaviour (1 Monogamy with infrequent polygyny, 2 Monogamy with frequent polygyny, 3 Monogamy, 4 700 
Polygyny), c) Migratory behaviour (1 Migrant, 2 Partial migrant, 3 Sedentary), d) Breeding system (1 701 
Cooperative, 2 Non-cooperative), e) Territoriality (1 Weak, 2 Strong, 3 None), f) Nest placement (1 Cavity, 2 702 
Exposed elevated, 3 Exposed ground). The width of each segment indicates the proportion of all species (N = 703 
9576) in each behavioural syndrome. Segment heights indicate the % of species that are threatened in each 704 
syndrome. Colours indicate threat level (Critically endangered [CR], Endangered [EN], Vulnerable [VU] and 705 
Near Threatened [NT]).    706 
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 707 
 708 
Figure 4. Variation in the prevalence of threat across behavioural syndromes. Top row: bars indicate the 709 
observed proportion of threatened species for different foraging modes, mating behavioural and migratory 710 
strategies. Brackets indicate the expected proportion (95% CI) of species threatened based on all other 711 
predictor variables. Numbers indicate the number of species in each category. Bottom row: the estimated 712 
effect size of each behavioral category (mean and 95% CI). Significant contrasts are indicated at the p = 0.05 (*), 713 
p = 0.01 (**) and p = 0.001 (***) level. Effect sizes and significance was assessed with a generalized linear mixed 714 
effects model including all predictor variables and family as a random effect. 715 
 716 
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