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Abstract  
Heritable variation in gene expression is common within species. Much of this variation is due to genetic changes at 
loci other than the affected gene and is thus trans-acting. This trans-regulatory variation is often polygenic, with 
individual variants typically having small effects, making the genetic architecture of trans-regulatory variation 
challenging to study. Consequently, key questions about trans-regulatory variation remain, including how selection 
affects this variation and how trans-regulatory variants are distributed throughout the genome and within species. 
Here, we show that trans-regulatory variation affecting TDH3 promoter activity is common among strains of 
Saccharomyces cerevisiae. Comparing this variation to neutral models of trans-regulatory evolution based on 
empirical measures of mutational effects revealed that stabilizing selection has constrained this variation. Using a 
powerful quantitative trait locus (QTL) mapping method, we identified ~100 loci altering expression between a 
reference strain and each of three genetically distinct strains. In all three cases, the non-reference strain alleles 
increased and decreased TDH3 promoter activity with similar frequencies, suggesting that stabilizing selection 
maintained many trans-acting variants with opposing effects. Loci altering expression were located throughout the 
genome, with many loci being strain specific and others being shared among multiple strains. These findings are 
consistent with theory showing stabilizing selection for quantitative traits can maintain many alleles with opposing 
effects, and the wide-spread distribution of QTL throughout the genome is consistent with the omnigenic model of 
complex trait variation. Furthermore, the prevalence of alleles with opposing effects might provide raw material for 
compensatory evolution and developmental systems drift.  
 
Significance statement 
Gene expression varies among individuals in a population due to genetic differences in regulatory components. To 
determine how this variation is distributed within genomes and species, we used a powerful genetic mapping 
approach to examine multiple strains of Saccharomyces cerevisiae. Despite evidence of stabilizing selection 
maintaining gene expression levels among strains, we find hundreds of loci that affect expression of a single gene. 
These loci vary among strains and include similar frequencies of alleles that increase and decrease expression. As a 
result, each strain contains a unique set of compensatory alleles that lead to similar levels of gene expression among 
strains. This regulatory variation might form the basis for large scale regulatory rewiring observed between distantly 
related species. 
 
Introduction 
Heritable variation in gene expression results from genetic variation affecting cis-regulatory elements (e.g., 
promoters, enhancers) and trans-acting factors (e.g., proteins, RNAs). These trans-regulatory changes are located 
throughout the genome and are the major source of regulatory variation within species (1–10). The number, identity, 
and effects of individual loci contributing to variation in gene expression has been determined in a variety of species 
using expression quantitative trait locus (eQTL) mapping (11–18), with the most extensive dissection of eQTL 
coming from studies of two strains of the baker’s yeast Saccharomyces cerevisiae (19–28). These studies have found 
that (i) expression differences are typically associated with ~10 or fewer eQTL, (ii) most eQTL have individually 
small effects on expression, and (iii) most eQTL are located far from the gene whose expression they affect and thus 
likely contribute to trans-regulatory differences. 
  
Traditional eQTL mapping approaches require genotype and expression data for many individuals to detect 
significant effects. Consequently, studies mapping the genetic basis of regulatory differences have largely been 
limited to two strains or populations within any given species. In cases where polymorphism of regulatory variation 
has been studied within a species, experiments have focused on cis-regulatory variation for technical reasons (29–
34). As a result, key questions about the extent and genetic basis of trans-regulatory variation segregating within a 
species remain unanswered. For example, do multiple trans-regulatory variants affecting a gene’s expression often 
segregate at the same locus within a species? How different are the suites of trans-acting eQTL affecting a gene’s 
expression among individuals or strains? Are the effects of trans-regulatory variants at different loci often in the 
same direction, or do they typically have opposing effects, canceling one another out? Addressing these questions 
requires identifying trans-acting eQTL and their effects on expression among multiple individuals or strains of the 
same species.  
 
In addition to these questions about the variability in genetic architecture of trans-regulatory variation, questions 
also remain about the impact of selection on this variation. Prior work has shown that gene expression levels are 
broadly constrained by stabilizing selection (35, 36), and variation in cis-regulatory eQTL appears to be limited by 
purifying selection (30, 37). But the impact of natural selection on the number, identity, or genomic distribution of 
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trans-acting eQTL is less clear, and there are reasons to suspect that it might be different than for cis-acting eQTL. 
For example, prior work suggests that trans-regulatory mutations arise more frequently than cis-regulatory 
mutations, but tend to have smaller effects on the focal gene’s expression (38). In addition, trans-regulatory 
mutations are more likely to be recessive and have greater pleiotropic effects than cis-regulatory mutations (39–43). 
Any or all of these factors might cause selection for the level of gene expression to have different impacts on cis- 
and trans-regulatory variation.  
 
Here, we examine trans-regulatory variation segregating among genetically distinct strains of S. cerevisiae. We 
focus on the extent of, genetic basis for, and evolutionary forces acting on, trans-regulatory variation affecting 
expression of the TDH3 gene, which encodes a glyceraldehyde-3-phosphate dehydrogenase. This gene was chosen 
because prior work has estimated the effects of new trans-regulatory mutations on its expression (38, 40) as well as 
the fitness consequences of changing its expression (44, 45), allowing us to compare the trans-regulatory variation 
segregating in S. cerevisiae to empirically-informed models of neutral evolution. We find that although differences 
in trans-regulation affecting TDH3 promoter activity are common among strains, they generate less variation in 
TDH3 promoter activity than predicted by neutral models, confirming that stabilizing selection has acted on trans-
regulatory variation affecting TDH3 promoter activity in the wild. We then use a powerful genetic mapping 
approach to determine differences in the genetic architecture of this trans-regulatory variation by identifying eQTL 
between each of three strains of S. cerevisiae and a common reference strain. In each of these three eQTL mapping 
experiments, we find ~100 eQTL affecting activity of the TDH3 promoter in trans. These loci are often different 
among strains, have opposing effects on expression, and are spread throughout the genome, indicating diverse 
sources of trans-regulatory variation segregating within S. cerevisiae. These results agree with theoretical 
predictions that stabilizing selection can maintain genetic variation for polygenic traits (46–50). They also suggest 
that natural populations harbor greater regulatory variation than suggested by differences among strains, which can 
impact the evolution of regulatory systems. 
 
Results and Discussion 
To isolate the effects of trans-regulatory variants segregating among S. cerevisiae strains on TDH3 promoter 
activity, we inserted a Yellow Fluorescent Protein (YFP) coding region under control of a common TDH3 promoter 
from the BY lab strain into 56 distinct S. cerevisiae strains (Figure 1A). These strains (i) were isolated from a range 
of environments, (ii) differ at more than 100,000 SNPs and small indels, many larger CNVs and chromosomal 
rearrangements, and (iii) encompass much of the genetic and phenotypic diversity observed within the species (51, 
52). For each strain, we measured YFP fluorescence in twelve biological replicate populations grown in rich media 
and used the measured YFP fluorescence to estimate changes in TDH3 mRNA levels due to differences in trans-
regulation among strains. We observed that trans-regulatory variation caused differences in expression that ranged 
from 71% to 147% of the reference strain (Figure 1B, C). This variance in trans-regulation was nearly double the 
variance of cis-regulation described among a similar set of strains (Figure S1A)(53). We detected significant 
phylogenetic structure for trans-regulatory differences among strains, with more closely related strains having on 
average more similar TDH3 promoter activity than more distantly related strains (l= 0.59, p = 0.013; K=0.49, 
p=0.012; Figure 1D).  
 
To determine how natural selection has impacted this trans-regulatory variation, we constructed models of neutral 
evolution and compared these models to the observed differences in TDH3 promoter activity among strains. We 
simulated the neutral evolution of trans-regulatory variation affecting TDH3 promoter activity by sampling trans-
regulatory mutational effects on TDH3 promoter activity defined in prior work (Figure 2A) (38), and tracking how 
expression changed with the addition of each new mutation (Figure 2B). We repeated this sampling process 10,000 
times and used the observed distributions of expression levels after the addition of each new mutation to define the 
probability with which we expect to see a given expression level evolve neutrally from the common ancestor after a 
particular number of genetic changes. We then compared this neutral projection to the observed differences in TDH3 
promoter activity among strains, using the genetic relationships among strains to infer how TDH3 promoter activity 
changed along each branch of the phylogeny (Figure 2C). We found that there was significantly less trans-
regulatory variability among strains than predicted to arise from mutation alone, suggesting that natural selection has 
constrained TDH3 promoter activity (p < 0.0001, Figure S1B, C). These simulations do not, however, account for 
epistatic interactions among new regulatory mutations, for which no current data exists (SI Methods).    
 
We next tested whether our inference of stabilizing selection was robust to uncertainty in the inferred phylogenetic 
relationships among strains and the inferences of changes in TDH3 promoter activity on the phylogeny by repeating 
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this analysis using the total genetic distance between pairs of strains instead of the phylogenetic relationships among 
strains. We again found less trans-regulatory variability in TDH3 promoter activity among strains than predicted by 
the neutral model, further supporting the hypothesis that trans-regulatory variation affecting TDH3 promoter activity 
has evolved under stabilizing selection (Figure 2D, Figure S2D). Next, we tested for evidence of natural selection 
acting on TDH3 trans-regulatory variation using an approach that does not rely on empirical estimates of the effects 
of new trans-regulatory mutations. Specifically, we fit the PTDH3-YFP reporter activity and phylogenetic 
relationships among strains to two models of quantitative trait evolution: a Brownian Motion model of neutral 
quantitative trait evolution and an Ornstein-Ulenbeck model that incorporates stabilizing selection (54). We found 
that the Ornstein-Ulenbeck model fit the data significantly better than the neutral Brownian motion model (p = 
0.00007, chi-square test, Figure S2E, F), again suggesting that trans-regulatory variation affecting TDH3 promoter 
activity in S. cerevisiae has been shaped by stabilizing selection. Consistent with these results, the effects of trans-
regulatory variation on TDH3 promoter activity are predicted to decrease fitness by less than 0.1% in 80% of strains 
by prior work describing the relationship between TDH3 expression level and fitness in rich media (45), with the 
largest deviation in TDH3 promoter activity (71% of wild type) expected to decrease fitness by only 0.5% (Figure 
S2G). Taken together, we conclude that stabilizing selection has constrained trans-regulatory variation affecting 
expression of TDH3.  
 
In the presence of stabilizing selection, gene expression can be kept similar among strains by purifying selection 
purging mutations that alter expression or by maintaining sets of variants with off-setting, or compensatory, effects 
on expression within the population. To determine which of these mechanisms is more likely to have minimized 
differences among strains in the trans-regulatory effects on TDH3 promoter activity, we used eQTL mapping to 
examine the genetic architecture of trans-regulatory variation affecting TDH3 promoter activity in three strains 
(M22, YPS1000, SK1) relative to a common reference strain (BY). Strain M22 is closely related to BY, with 
YPS1000 and SK1 more distantly related to BY, M22, and each other (Figure S2A). Each of the three focal strains 
was individually mated with BY to form an F1 hybrid. Hybrids were then forced through three rounds of sporulation 
and mating, resulting in haploid individuals that had undergone three rounds of recombination (Figure 3A, Left). 
The resulting segregants were analyzed for PTDH3-YFP expression, with the 5% of cells with highest YFP expression 
collected in one pool and the 5% of cells with lowest YFP expression collected in a second pool using fluorescence 
assisted cell sorting (FACS). These pools were grown to saturation and sorted two additional times for PTDH3-YFP 
expression, for three total rounds of selection (Figure 3A, Middle). Cells from the high and low fluorescence 
selection pools for each of the three pairs of strains were then sequenced. Genetic variants that do not impact PTDH3-
YFP expression were expected to be found at similar frequencies in the high and low fluorescence pools, whereas 
genetic variants that affect PTDH3-YFP expression (plus linked loci) were expected to show significant differences in 
frequency between the high and low fluorescence pools (Figure 3A, right). This bulk-segregant mapping strategy is 
similar to the extreme QTL mapping approach described previously (28, 55–60), but with additional rounds of 
recombination and selection (61). The additional rounds of recombination are expected to better resolve individual 
eQTL, whereas the additional rounds of selection are expected to enrich the genotypes sampled for extreme 
phenotypes. 
 
Despite a difference of only 1% in PTDH3-YFP expression between M22 and BY, and of only 4% between YPS1000 
and BY, we identified n=113 and n=101 statistically significant eQTL in these crosses, respectively. Between SK1 
and BY, which showed a 47% difference in expression, we identified a similar number (n = 99) of statistically 
significant eQTL (Figure 3B). These numbers of eQTL identified in each experiment are approximately ten-fold 
greater than the number of eQTL identified for most genes in a prior eQTL mapping study (21) between BY and 
another strain of S. cerevisiae, RM11, which is closely related to M22 (Figure S2A).  
 
To better understand why we found more eQTL than prior studies, we repeated our eQTL mapping experiments 
with fewer rounds of selection and recombination. We found that reducing the rounds of selection resulted in 
decreased statistical significance for many eQTL, but did not change the location or direction of effects for most 
eQTL inferred (red points in Figure 3C, Figure S3). By contrast, repeating these eQTL mapping experiments with 
crossing limited to a single round resulted in considerably fewer eQTL identified, regardless of the number of 
rounds of selection (black points in Figure 3C, Figure S3). These data suggest that although additional rounds of 
selection allowed eQTL with smaller effects to be identified, the high number of eQTL detected results primarily 
from increased recombination during multiple rounds of meiosis breaking apart physically close eQTL with opposite 
effects on expression. Indeed, we found that the non-BY alleles were evenly split between those that increased and 
decreased expression for all three mapping experiments (53 of 101 YPS1000 alleles increase expression, 51 of 99 
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SK1 alleles increase expression, and 55 of 113 M22 alleles increase expression, p > 0.6 for all, binomial test) 
(Figure 3D). These observations support the hypothesis that similar trans-regulatory effects on TDH3 promoter 
activity are observed among strains of S. cerevisiae because compensatory alleles are maintained in the population. 
 
To determine the similarity in genetic architecture of trans-regulatory variation affecting TDH3 promoter activity 
among strains, we compared the genomic locations of eQTL identified in each pair of strains. If trans-regulatory 
variation is caused by the same loci in all strains, the ~100 eQTLs identified in each comparison should map to 
similar genomic regions. However, if the sources of trans-regulatory variation affecting TDH3 promoter activity 
segregating in S. cerevisiae are more diverse, eQTL identified in each comparison should map to different genomic 
regions. We found that the 313 eQTL identified mapped to 180 non-overlapping regions of the genome, with 27% 
(49 of 180) of these regions containing eQTL in only two of the comparisons and 22% (40 of 180) of these regions 
containing eQTL in all three comparisons (Figure 3E). Such shared eQTL regions might contain genes that 
contribute to variation in trans-regulation of TDH3 promoter activity in multiple strains; however, this degree of 
overlap is not greater than expected by chance given the number and width of eQTL observed (p = 0.079, 
permutation test). Furthermore, in these shared genomic regions, only 18% of non-BY eQTL alleles had the same 
direction of effect on TDH3 promoter activity in two comparisons (26 of 119 for increases, 18 of 120 for decreases), 
and only 6% of non-BY eQTL alleles had the same direction of effect in all three comparisons (7 of 119 for 
increases, 8 of 120 for decreases; p > 0.53, permutation test, Figure 3F-G). This lack of consistency in the direction 
of eQTL effects suggests that even if the same underlying loci contribute to trans-regulatory variation in multiple 
strains, the exact polymorphisms and their effects on TDH3 promoter activity are likely to differ.   
 
To further assess whether differences in eQTL inferred among strains were more likely to be due to biological 
differences than reproducibility among independent experiments, we repeated the mapping experiment between 
M22 and BY and compared the eQTL identified in the two replicate mapping experiments. Of the 74 eQTL found in 
the second M22/BY eQTL mapping experiment, 73% (54 eQTL) overlapped with eQTL from the initial M22/BY 
mapping experiment, which is significantly more than expected by chance (p < 0.001, permutation test, Figure 
S2C,D). This degree of overlap between the two M22/BY mapping experiments is greater than the degree of overlap 
between the second M22/BY experiment and both the YPS1000/BY (54%, 40 of 74 eQTL, p = 0.03, Fisher’s exact 
test) and SK1/BY (58%, 43 of 74 eQTL, p = 0.08, Fisher’s exact) test mapping experiments. In addition, the 113 
eQTL identified in the initial mapping between M22 and BY strains included all 8 regions of the genome identified 
as affecting TDH3 promoter activity in a cross between the BY and RM11 strains in a previous study, 7 of these 
eQTL alleles had effects in the same direction in both studies (28) (Figure S2E). This overlap is consistent with the 
close phylogenetic relationship between M22 and RM11 (Figure S2A). These results suggest that the differences in 
eQTLs mapped among the M22, YPS1000, SK1, and BY strains are unlikely to be primarily explained by low 
reproducibility of the mapping procedure, but rather reflect real differences in the genetic architecture of trans-
regulatory variation affecting TDH3 promoter activity among strains.  
 
Taken together, our data suggest that there are hundreds of genetic variants segregating within S. cerevisiae that 
impact TDH3 promoter activity in trans. These variants (i) differ among strains, (ii) cause increases and decreases in 
TDH3 promoter activity with similar frequencies, and (iii) are located in hundreds of distinct regions in the genome. 
Although it might seem counterintuitive to find such extensive genetic variation affecting a trait whose variance has 
been limited by stabilizing selection, theoretical work has previously shown that stabilizing selection acting on 
quantitative traits can maintain abundant cryptic genetic variation with off-setting effects (46–50). These 
observations are consistent with the recently described “omnigenic model” of complex traits, which predicts that 
many quantitative trait loci with small, often opposing effects, are located throughout the genome and segregate 
within a population (62). The pervasiveness of genetic variants with opposing effects on expression might also 
explain the recurrent observation of compensatory evolution in genomic comparisons of gene expression within and 
between species (7, 9, 63–66). In addition, this variation might also form the basis for developmental systems drift 
in which phenotypes stay stable over evolutionary time, but the molecular components responsible for the phenotype 
change (67–70): with many combinations of alleles available that can produce the same trait value, changes in the 
regulation of a trait that do not alter the trait value might be common. Additional genetic mapping experiments that 
have similar power to resolve closely linked loci and detect alleles with very small effects are needed to determine 
whether the complex genetic architecture observed for the trans-regulation of the TDH3 gene in S. cerevisiae is 
common to other genes, traits, and organisms.  
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Methods 
Yeast strains and growth conditions 
Strains used in this work are listed in Table S1. To determine variability in TDH3 expression segregating within S. 
cerevisiae, we used haploid, MATalpha versions of 85 natural S. cerevisiae strains created in previous work (51). 
For each strain, we inserted a PTDH3-YFP reporter at the HO locus using a standard lithium acetate transformation 
approach with minor alterations (51, 71). The inserted reporter contained a copy of the TDH3 promoter from the BY 
strain, a Yellow Fluorescent Protein (YFP) coding sequence, a CYC1 terminator, and a NatMX4 drug resistance 
marker. For 60 strains, we obtained successful integration and correct sequence of the reporter. Unless noted, all 
yeast growth was performed at 30°C in YPD (1% Difco yeast extract, 2% peptone, 2% glucose).  
 
Measurement of YFP expression 
The trans-regulatory effects on TDH3 promoter activity for each strain were estimated by measuring YFP 
expression from the PTDH3-YFP reporter. Strains were first revived from glycerol stocks on YPG (1% Difco yeast 
extract, 2% peptone, 2% glycerol) at 30°C. After 24 hours, each strain was inoculated into liquid YPD in a 96 well 
plate. For each plate, YFP positive (YPW1139) and YFP negative (YPW880) strains were included at specific 
locations in the 96 well plate as controls. This structure was replicated to solid YPD using a pin tool. To generate 
replicates, colonies were pin-tool replicated after 24 hours into twelve 96 well plates containing 500 µl of liquid 
YPD and grown for 24 hours. Cultures were then diluted 1/20 into fresh 500 µl of YPD and grown for an additional 
four hours. Samples were diluted 1/10 into 500 ul PBS and analyzed on an Accuri C6 flow cytometer connected to 
an Intellicyt autosampler.  
 
Data was processed using the same procedure as described in Duveau et al. (2018) (45). Briefly, hard gates were 
used to remove flow cytometry artifacts and instances where multiple cells entered the flow cytometry detector at 
the same time based on estimates of cell size. For each sample, the most abundant monomorphic population was 
identified and the effect of cell size on fluorescence removed. For each event in a sample, the YFP levels were 
converted to estimates of mRNA expression using the formula E(mRNA) = exp(-7.820027*E(YFP)), which was 
based on a direct comparison of YFP fluorescence and mRNA abundance first reported in Duveau et al. (2018) (45). 
From these estimates, the population median was calculated. Using the control strains, linear models were used to 
remove batch effects such as differences among plates and variation due to the position of a sample (row and 
column) within a plate. Twelve replicate samples from each strain were combined to estimate strain averages. Four 
strains (NCYC110 (PJW1041), EM93 (PJW1055), YIIc17_E5 (PJW1038), and DBVPG3591 (PJW1053)) were 
excluded from analysis due to inconsistent measurements between replicates caused by flocculation and cell settling. 
All scripts used in data processing are included in the supporting files. Raw data is available for download from 
Flow Repository (FR-FCM-ZYVQ). 
 
The effects of naturally occurring cis-regulatory variants on TDH3 promoter activity within S. cerevisiae used data 
from Metzger et al. 2015 (53) (Flow Repository FR-FCM-ZZBN). The effects of new mutations on TDH3 promoter 
activity used data from Metzger et al. 2016 (38) (Flow Repository FR-FCM-ZZNR). The original flow cytometry 
data from these previous studies was reprocessed with the same procedure as used in the current work. 
 
Testing for evidence and impacts of selection 
To test for the action of natural selection on trans-acting factors affecting TDH3 promoter activity, we developed an 
empirically based neutral model of gene expression evolution. To inform this model, we used previously collected 
data on the effects on TDH3 promoter activity due to new mutations. Briefly, this prior work used ethyl 
methanesulfonate (EMS) to induce mutations in an isogenic yeast population containing the PTDH3-YFP reporter and 
used FACS to isolate ~1500 individual genotypes irrespective of their YFP expression. Each isolated mutant 
contained ~32 mutations relative to the reference strain, the overwhelming majority of which are expected to be 
trans-acting with respect to TDH3 promoter activity (only two mutations in the TDH3 promoter are expected among 
all individuals) (38). To estimate how TDH3 promoter activity could evolve in the absence of natural selection, we 
generated a neutral distribution by sampling effects from this mutational distribution, combining the effects of 
mutations multiplicatively. We repeated this process 10,000 times to create a distribution of effects on TDH3 
promoter activity expected under neutrality for a given number of mutations.  
 
To test for natural selection, we compared the effects of changes in TDH3 promoter activity due to trans-regulatory 
differences among S. cerevisiae strains to our empirically derived neutral model. To account for the phylogenetic 
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relationships among strains, we used a S. cerevisiae phylogeny estimated from whole genome polymorphism 
data(51). We used this phylogeny and the measured effects of each strains trans-regulatory background on TDH3 
promoter activity to estimate the ancestral state of trans-regulatory effects on TDH3 promoter activity at each node 
in the phylogeny. Next, we used the S. cerevisiae phylogeny to estimate how many mutations had likely occurred 
along each branch. We then compared the changes in trans-regulatory effects along each branch to the 
corresponding distribution of effects derived from our neutral model. For each branch, we calculated the likelihood 
of the observed change in expression along that branch given the number of mutations that had occurred. We 
combined the likelihoods over all observed branches to determine the likelihood of the complete set of observed 
expression values and changes in expression on the phylogeny. Observed likelihoods less than expected under 
neutrality are consistent with positive selection for a new phenotypic value, whereas likelihoods greater than 
expected under neutrality are consistent with phenotypic constraint due to natural selection. Additional discussion of 
this approach can be found in SI methods.  
 
To test the robustness of our inference to phylogenetic uncertainty, we repeated the analysis using genetic distance 
between strains instead of phylogenetic branch lengths to estimate the number of mutations that had occurred 
between strains. To avoid double counting of individual strains, we used each strain exactly once in the comparison. 
We then sampled which strains were compared 10,000 times to generate a distribution of observed effects.    
 
As an alternative to tests for selection based on the empirical estimates of the effects of new regulatory mutations, 
we used the Brownian motion/Ornstein-Uhlenbeck framework to test for the presence of stabilizing selection on 
trans-acting factors affecting TDH3 promoter activity. We followed the approach of Bedford and Hartl 2009. 
Briefly, two models of quantitative trait evolution were fit to the data. The Brownian motion model allows for trait 
values to diverge linearly with time, while the Ornstein-Uhlenbeck model includes an additional parameter that 
reflects the action of stabilizing selection. We tested whether the Ornstein-Uhlenbeck model fit significantly better 
than the Brownian motion model using a chi-square distribution with a single degree of freedom.  
 
eQTL Mapping  
Genomic regions responsible for differences in TDH3 promoter activity were identified by eQTL mapping. We 
crossed strains YPS1000 (PJW1057), SK1 (PJW1016), and M22 (PJW1072) that were MATalpha, nourseothricin 
resistant, and contained the PTDH3-YFP reporter to a version of BY (PJW1240, Figure S4) that was MATa, G418 
resistant, and contained the PTDH3-YFP reporter. This common BY mapping strain also contained a Red Fluorescent 
Protein (RFP) marker at its mating type locus (72). Detailed methods for the creation of the common mapping strain 
can be found in SI methods. For each cross, we selected diploids using a combination of nourseothricin and G418 
resistance and choose a single colony to ensure homogeneity in the genetic background. Each strain was then 
sporulated. To increase the amount of recombination in each cross, the resulting spores were mated and sporulated 
two additional times. YFP expression of the resulting spores was measured using flow cytometry and the 5% highest 
and lowest expressing cells collected. For each cross, sorted cells were allowed to reach saturation and then resorted 
based on YFP expression an additional two times. From each population, DNA was extracted and Illumina libraries 
created. Sequencing was performed on a HiSeq 2000 using 125 bp paired end sequencing at the University of 
Michigan Sequencing Core. Sequencing barcodes are listed in Table S2. Detailed methods on the mapping 
procedure can be found in SI methods.  
 
QTL Identification 
After sequencing, samples were processed to identify individual eQTL. First, Sickle was used to remove low quality 
bases from each read using default setting (73). Next, Cutadapt was used to remove any adapter sequence from read 
ends (flags -e 0.2 -O 3 -m 15) (74). Samples were aligned to the S228c reference genome using bowtie2 (flags -I 0 -
X 1000 --very-sensitive-local) (75) and then sorted and indexed using samtools (76). Overlapping reads were 
clipped using clipOverlap in bamUtil. SNPs were jointly called within each paired set of samples selected for high 
and low YFP fluorescence using freebayes (77). Identified SNPs were required to reach at least 20% frequency in at 
least one of the two paired samples and be observed at least 4 times across both samples.  
 
For each pair of samples, SNPs were filtered based on quality and depth. Each SNP was required to have depth of at 
least 20 to ensure adequate power, a depth below 500 to reduce the number of SNPs called in low complexity 
sequences, a mapping quality score of greater than 30, and imbalance scores for left/right, center/end, and 
forward/reverse for SNP position within reads of less than 30. At each position, only the two highest likelihood 
SNPs were retained. For each SNP, we calculated a G statistic using a likelihood ratio test of alternative and 
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reference alleles within the high and low selected populations(78). For SNPs where the alternative allele had a 
higher frequency than the reference allele in the high selected population relative to the low selected population, we 
maintained the sign of G. For SNPs where the alternative allele had a lower frequency than the reference allele in the 
high selected population relative to the low selected population, we flipped the sign of G. We then calculated G’ by 
averaging these estimates over a 40 kb window centered on the SNP (78). Finally, to identify QTL peaks, we located 
all local maxima and minima in G’. We called significant peaks those with G’ > 5 or G’ < 5. The location of each 
peak was defined as the distance needed for G’ to drop by 5 from the peak. Local peaks whose locations overlapped 
were merged into a single peak.  
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Figure Legends 
Figure 1. Extensive trans-regulatory variation affecting TDH3 expression is segregating among S. cerevisiae strains. 

A. Variation in TDH3 trans-regulatory backgrounds among yeast strains was measured using a reporter gene 
containing the TDH3 promoter from the BY strain and a yellow fluorescent protein (YFP). This reporter was 
integrated into the genome of 56 diverse S. cerevisiae strains. Twelve replicate populations were grown in 
YPD and analyzed by flow cytometry for YFP expression. B. Variation among replicates relative to the BY 
reference strain was used to calculate the average effect of each strain’s trans-regulatory background on TDH3 
promoter activity. Darker colors reflect higher TDH3 reporter activity. C. Frequency of trans-regulatory 
effects relative to reference strain. D. Phylogenetic relationships among strains as estimated from genome 
wide polymorphism data (51). Color of branches corresponds to estimated trans-regulatory effect from 
ancestral character estimation.  

 
Figure 2. Natural selection has constrained TDH3 trans-regulatory variation. A. Effects of trans-regulatory 

mutations on TDH3 promoter activity. Mutants were collected and analyzed in prior work (38). B. Simulated 
neutral trajectories for TDH3 promoter activity based on empirically measured effects of new mutations. 
Lighter colors reflect more extreme values after 30,000 mutations. C. Comparison of observed differences in 
TDH3 promoter activity among S. cerevisiae strains with neutral expectation. The blue background represents 
the 95th, 90th, 80th, 70th, and 60th percentiles, from light to dark, for the simulated neutral trajectories. Green 
dots are differences in TDH3 promoter activity and estimated number of mutations based on the S. cerevisiae 
phylogeny. Dashed line indicates the point where the observed data departs significantly from expectation. D. 
Same as C, but using genetic distance instead of phylogenetic distance between strains. The green areas 
represent the 95th, 90th, 80th, 70th, and 60th percentiles, from light to dark, for the observed differences from 
sampling pairs of strains.  

 
Figure 3. Compensatory alleles underlie the maintenance of TDH3 trans-regulatory effects. A. The genomic basis of 

TDH3 trans-regulatory variation was mapped using an xQTL approach. Left: Three rounds of mating and 
sporulation were used to increase mapping resolution. Middle: Three rounds of FACS based selection were 
used to enrich for alleles increasing and decreasing TDH3 trans-regulatory activity. In each round, the top or 
bottom 5% of the population was collected. Right: Comparisons of allele frequency from Illumina sequencing 
of FACS based pools was used to identify eQTL. Each block (dashed lines) represents a different genomic 
region. Colored lines represent allele frequencies. Black: Reference strain. Blue: Testing strain. For each 
block, the top bars are after selection for high YFP fluorescence, while the bottom bars are after selection for 
low YFP fluorescence. eQTL are identified when allele frequencies among the high and low selected pools 
differ significantly. B. G’ statistic for evidence of eQTL in each comparison. Effects are relative to the non-
BY reference allele. Dashed gray lines indicate chromosome boundaries. Dashed red lines gives threshold for 
statistical significance. Called eQTL with 95% confidence intervals on the location are highlighted for each 
strain. Brown: M22 x BY. Blue: YPS1000 x BY. Green: SK1 x BY. C. Relationship between G’ statistic for 
different mapping procedures. X-axis, G’ statistic for high recombination and strong selection (three rounds of 
crossing and three rounds of selection). Y-axis, (Black) G’ statistic for low recombination and strong selection 
(one round of crossing and three rounds of selection). (Red) G’ statistic for high recombination and weak 
selection (three rounds of crossing and one round of selection). Each point is for an eQTL identified with high 
recombination and strong selection (three rounds of crossing and three rounds of selection) from the M22 x 
BY cross. D. Number of non-BY eQTL increasing or decreasing TDH3 promoter activity for each cross. E. 
eQTL shared among the three crosses irrespective of direction of effect. Areas are proportional to the number 
of eQTL shared. Brown: eQTL identified only in the M22 x BY cross. Blue: eQTL identified only in the 
YPS1000 x BY cross. Green: eQTL identified only in the SK1 x BY cross. Black: eQTL identified in all three 
crosses. F. Same as E, but for non-BY eQTL that increase TDH3 promoter activity. G. Same as E, but for non-
BY eQTL that decrease TDH3 promoter activity.  
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