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Abstract 

Complex immune disease variants are enriched in active chromatin regions of T cells and 
macrophages. However, whether these variants function in specific cell states or stages of 
cell activation is unknown. We stimulated T cells and macrophages in the presence of 
thirteen different cytokine cocktails linked to immune diseases and profiled active enhancers 
and promoters together with regions of open chromatin. We observed that T cell activation 
induced major chromatin remodelling, while additional exposure to cytokines fine-tuned the 
magnitude of these changes. Therefore, we developed a new statistical method that 
accounts for subtle changes in chromatin landscape to identify SNP enrichment across cell 
states. Our results point towards the role of immune disease variants in early rather than 
late activation of memory CD4+ T cells, and with limited differences across polarizing 
cytokines. Furthermore, we demonstrate that inflammatory bowel disease variants are 
enriched in chromatin regions active in Th1 cells, while asthma variants overlap regions 
active in Th2 cells. We also show that Alzheimer’s disease variants are enriched in different 
macrophage cell states. Our results represent the first in-depth analysis of immune disease 
variants across a comprehensive panel of activation states of T cells and macrophages. 
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Introduction 

Functional interpretation of complex disease variants is challenging as the majority of loci 
mapped through genome wide association studies (GWAS) reside in non-coding regions of 
the genome. Multiple studies have mapped GWAS variants to regulatory elements such as 
open chromatin regions and regions tagged by histone modifications1–5, implicating their role 
in gene expression regulation. The functional impact of non-coding GWAS variants is 
notoriously difficult to deconvolute, and may be specific to a particular cell type as well as a 
cell state context, such as different stages of cell activation6. Integrating GWAS variants with 
cell type specific chromatin marks can provide insights into disease causal cell types1,4,7. This 
approach has previously identified CD4+ T cells4,8 and monocytes6,9 as relevant cell types in 
the pathobiology of various complex immune diseases.  

CD4+ T cells are key regulators of immune response and are crucial in the protection 
against pathogens. One of the hallmarks of CD4+ T cells is their plasticity; in particular, the 
ability to differentiate into a range of cell states in response to environmental signals. CD4+ 
T cells undergo initial activation when they recognise antigen displayed by antigen-
presenting cells (APCs) in the context of co-stimulatory signals. Subsequently, activated T 
cells undergo proliferation and can be driven to differentiate into distinct T helper (Th) 
phenotypes, depending on the specific cytokines secreted by APCs. The major Th types 
include Th1, Th2, Th17 and induced regulatory T cells (iTregs), each exerting different 
functions in the immune response. Effector Th phenotypes are defined by the specific 
cytokines that they secrete, which in turn instruct other immune cells to acquire different 
phenotypes. For example, the Th1 cytokine IFN-γ polarizes macrophages to a 
proinflammatory (M1) phenotype with increased pathogen killing ability, while the Th2 
cytokine IL-4 induces a tissue remodelling macrophage phenotype (M2)10. As such, the 
proper differentiation of T cells and macrophages following cytokine signals is a crucial step 
in eliciting an appropriate immune response.  

Although it is established that immune disease variants localize to chromatin regions specific 
to CD4+ T cells and monocytes, it is not yet known if immune disease variants are further 
enriched in chromatin regions specific for a particular cytokine-induced cell state. To identify 
whether immune disease variants regulate cellular responses to cytokine polarization, we 
profiled chromatin accessibility using ATAC-seq, and active enhancers and promoters 
marked by H3K27ac (see Methods) in naive and memory CD4+ T cells as well as 
macrophages across 55 cell activation states, including early and late responses to activation 
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and cytokine polarization (Table S1). We developed a new statistical method for assessing 
SNP enrichment in chromatin marks to point towards the effects of immune disease variants 
in specific cell states.  

Results 

Overview of the experimental design 

The GWAS link to CD4+ T cells places this cell type at the heart of dysregulated immune 
responses in disease pathobiology. Key steps in regulating the quality of an immune 
response include the initial activation and differentiation of CD4+ T cells and the subsequent 
interaction of polarized T cells with downstream effector cells such as macrophages, whose 
activity is regulated by T cell-derived factors. In this study we focused on dissecting the role 
of immune diseases variants in regulating this circuitry. For this purpose, we stimulated 
monocyte-derived macrophages with T-cell-produced cytokines associated with inflammation 
and autoimmunity, including IFNγ, TNFα, IL-4, IL-23 and IL-26 (Table S1). Since 
macrophages are part of the fast-responding innate immune system, we measured cytokine 
induced activation at six hours (early response) and 24 hours (late response) and profiled 
the chromatin regulatory landscape. To mimic T cell activation in vitro, we stimulated T cells 
by delivering T cell receptor (TCR) and CD28 signals using beads coated with anti-CD3 and 
anti-CD28 antibodies. In addition, we exposed cells to cytokine cocktails promoting 
differentiation towards Th1, Th2, Th17 or iTreg cell fates, or to individual cytokines relevant 
to autoimmunity (IL-10, IL-21, IL-27, TNFα, and IFNβ)11–15 (Table S1 and Methods). These 
stimuli were applied to memory and naive CD4+ T cells, which constitute the two major 
subsets of CD4+ T cells. We treated naive and memory cells separately because the two 
subsets differ in their response to stimulation16. Given that the response to stimulation 
develops over time17, we profiled T cells during both early and late activation. We defined 
early response as 16 hours in order to capture gene expression regulation prior to the first 
cell division. For late response we chose five days, which is when T cells acquire a defined 
effector phenotype. At each time point we profiled the chromatin regulatory landscape by 
assaying chromatin activity (H3K27ac ChIPmentation-seq) and chromatin accessibility 
(ATAC-seq). We then integrated these chromatin profiles with disease-associated variants to 
identify the most disease-relevant cell states. 
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Figure 1. Quantitative changes in chromatin activity distinguish cytokine induced cell 
states. A) Overview of the study design. Naive and memory CD4+ T cells were isolated from 
peripheral blood from three healthy blood donors and stimulated with anti-CD3/anti-CD28 T cell 
activation beads. Macrophages were derived from monocytes using M-CSF. All cell types were 
cultured in the presence of immune disease-relevant cytokines and their chromatin activity was 
profiled at early and late time point. B) Number of differential H3K27ac and ATAC peaks upon T cell 
activation with anti-CD3/anti-CD28 T cell activation beads and macrophage activation with TNFa. C) 
Proportion of activation induced peaks that are shared between all macrophage or T cell states. 
Different shades of gray represent the extent of sharing. Density plots show coefficient of variation of 
the number of reads within ATAC and H3K27ac peaks.  

Accounting for peak properties refines cell-type specific disease SNP enrichment 

We first used H3K27ac and ATAC-seq reads to identify active chromatin elements (peaks). 
We observed that stimulation induced thousands of new peaks across all cell types (Figure 
1B). We then asked whether these peaks were the same across multiple cell states. To do 
this, we merged all peaks in naive and memory cell states across all time points into a 
common set of peaks. We repeated the same procedure for the macrophage data. We 
observed that the majority of peaks were shared between cell activation states. For 
example, in T cells, only 2% of H3K27ac and 0.8% of ATAC-seq peaks were condition 
specific (Figure 1C). We then quantified the level of activity of each element by using the 
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number of reads in each peak. We found that quantitative levels of chromatin activity were 
highly variable across different cytokine induced cell states, as shown by the coefficient of 
variation of reads within peaks (Figure 1C). Importantly, the levels of chromatin 
accessibility were substantially less variable compared to H3K27ac which is in line with other 
reports showing that chromatin activity marked by H3K27ac is more informative in 
discriminating between closely related cell states than chromatin accessibility18,19 (Figure 
1C).  

We next assessed if immune disease variants were enriched in any specific cell state in our 
data set. Typically, disease SNP enrichment analyses rely on the presence or absence of 
overlap between associated variants and regulatory regions1,7,20. In our data set the majority 
of peaks were shared across cell states and therefore such a binary SNP-peak overlap 
approach would be unsuitable to discriminate between the different cellular conditions 
(Figure S1). A similar observation was previously made using partitioning heritability 
analysis of neuropsychiatric and metabolic disorders in highly correlated chromatin 
annotations of different brain regions5. To assess the immune disease enrichment across the 
different T cell and macrophage states we developed a new SNP enrichment method, 
CHEERS (Chromatin Element Enrichment Ranking by Specificity). In addition to SNP-peak 
overlap, our method takes into account peak properties as reflected by quantitative changes 
in read counts within peaks, corresponding to variable levels of H3K27ac or chromatin 
accessibility (Figure 2 and Methods). Briefly, we first construct a matrix of quantile 
normalized read counts across peaks detected in all cell states (Figure 2A). For each peak 
we generate specificity scores where a high score is assigned to a peak with a higher read 
count in that cell state compared to all other states. Within each cell state, peaks are then 
ranked based on their specificity scores (specificity rank; Figure 2B). To assess disease SNP 
enrichment across the different cell states, for each locus we use the index variant and 
identify variants in strong LD (R2>0.8). Next, we identify peaks that overlap with the 
associated variants (Figure 2C). Importantly, our method is peak-centric, i.e. a peak that 
overlaps multiple disease associated variants in a locus contributes to the final cell-type 
specificity score only once. Alternatively, if the associated variants within a locus intersect 
multiple peaks, each independent peak contributes to the final enrichment score. We then 
calculate the mean specificity rank of all peaks that intersect disease associated variants and 
infer the significance of the observed SNP enrichment in the cell type by comparing it to a 
theoretical distribution.  
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Figure 2. Overview of the CHEERS method. A) We first define a union of peak regions present 
across cell types and construct a matrix of normalized read counts. B) We then calculate and rank 
specificity scores. C) To test for disease SNP enrichment, we take all the index variants and identify 
variants in strong LD (r2 > 0.8). We then identify peaks that overlap with the associated variants, 
calculate the mean specificity ranks and assess statistical significance. 

We benchmarked CHEERS by testing for immune disease SNP enrichment across cell types 
assayed with H3K27ac ChIP-seq as a part of the BLUEPRINT project3. Our method identified 
enrichment of multiple sclerosis (MS) variants in T and B cells, while inflammatory bowel 
disease (IBD) and rheumatoid arthritis (RA) variants showed enrichment exclusively in T 
cells (Figure S2). These results agree with previous reports7,21,22 and validate our method.  

Next, we used simulations to assess the sensitivity of CHEERS (Figure S3). With over 23% 
of variants overlapping the top 10% most cell-type-specific peaks we observed over 80% 
power to detect a significant enrichment (p-value < 0.01). However, at least 78% SNPs 
needed to map within peaks ranked as low as 60%-70% of cell-type-specific peaks to 
achieve 80% power of detecting a significant enrichment. This indicates that CHEERS can 
detect a significant cell type enrichment when a sufficient proportion of trait associated 
variants overlap peaks with high cell-type-specificity ranks. Based on the results from the 
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BLUEPRINT data and the simulations we concluded that CHEERS is able to identify 
enrichment in active chromatin elements across both diverse and closely related cell types. 

Immune disease SNPs are enriched in active chromatin elements specific to early activation 
of memory T cells 

We applied CHEERS to our data from cytokine induced cell states to test for SNP enrichment 
across six diseases with an immune component, including multiple sclerosis (MS), 
rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, allergies and 
Alzheimer’s disease (AD) (Table S2). The tested traits included between 17 and 132 
associated loci, resulting in between 26 (asthma) and 386 (IBD) SNP-peak overlaps 

contributing to the final enrichment (Table S3 and Table S4).  
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Figure 3. Disease SNP enrichment in H3K27ac regions in cytokine induced cell states. We 
used CHEERS to test for SNP enrichment in H3K27ac regions across cytokine induced cell states. The 
numbers in parentheses represent the number of SNP-peak overlaps per disease. The height of the 
bars represents -log10(p-value). The dotted gray line represents the nominal p-value threshold of 
0.05, while the solid gray line represents the Bonferroni corrected p-value threshold of 0.00091 
(corrected for the number of cell states in the study). 

Across all tested traits, only AD variants were significantly enriched in macrophages (Figure 
3). This agrees with recent reports implicating microglia, a subtype of macrophages present 
in the brain, in the pathogenesis of AD23,24. We observed that AD variants were enriched in 
active chromatin regions present in all macrophage conditions, and in both early and late 
activation. On the other hand, we found that risk loci for MS, RA, IBD, allergy and asthma 

were predominantly enriched in T cells.  
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Surprisingly, we found that enrichment of immune disease loci was particularly strong in 
chromatin regions upregulated during early activation of memory T cells (16 hours; Figure 
3). In contrast, resting memory T cells, which were cultured without any stimulus, showed 
no significant enrichment in any of the tested diseases, suggesting that it is specifically the 
regulation of cell activation which drives this enrichment. To corroborate this, we explored 
the individual loci driving the enrichment and found a clear signal in proximity of genes 
involved in T cell activation. For example, RA GWAS variants overlapped a peak in the C-C 
Motif Chemokine Receptor 6 (CCR6) gene which showed higher levels of acetylation during 
early activation of memory and not naive T cells (Figure 4A). Another example included 
three RA associated variants that overlapped a peak in acyl-CoA Oxidase Like protein 
(ACOXL) that was highly upregulated only during early activation of both naive and memory 
T cells (Figure 4A). By using genes in proximity to variants overlapping the top 25% 
specific peaks driving the enrichment in early activation of memory T cells we observed 
enrichment of pathways such as T cell activation and differentiation, and leukocyte 
activation (Figure 4B). This suggests that immune disease variants overlap enhancers and 
promoters that regulate gene expression programmes underlying early activation of memory 
T cells. Furthermore, for MS, RA and IBD we also observed that the enrichment in early T 
cell activation varied between individual cytokine induced cell states. For example, across 
the cell states significantly enriched for MS variants, IL-27 stimulation showed the most 
significant enrichment (p=6.5x10-12). This is in concordance with previous studies that 

reported elevated levels of IL-27 in the cerebrospinal fluid of MS patients25,26.  

We also observed significant enrichment in early activation of naive CD4+ T cells; however 
the enrichment was less significant in comparison to memory cells. For example, in MS and 
RA, Th1 cells showed the strongest enrichment (p=2.08x10-6 and 1.84x10-10 respectively), 
while in asthma we observed significant enrichment only in early activation of naive CD4+ T 
cells polarized towards the Th2 phenotype (Figure 3), pointing towards the well-established 
role of Th2 cells in the pathobiology of asthma27,28. Among the loci driving the enrichment of 
asthma in Th2, we identified an active chromatin region located 900kb away from the 

hallmark Th2 gene, GATA3, and induced only upon Th2 polarization (Figure 4C).  

Conversely, we observed a significantly lower signal in later stages of T cell activation (5 
days). Here, the enrichment was apparent only in selected T cell states and diseases, for 
example, we observed a strong enrichment of IBD risk variants in naive and memory T cells 
polarized with Th1 cytokines (p=7x10-11 and p=5.91x10-6, respectively). Among the loci 
driving this signal was the IL18RAP locus, where a 30kb region undergoes substantial 
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acetylation upon Th1 polarization (Figure 4D). In MS we also observed enrichment in late 
memory T cell activation, albeit to a lower extent than in early activation. On the other 
hand, we have not observed any enrichment in control traits such as bone mineral density, 
breast cancer and coronary artery diseases (Figure S4). Finally, we recapitulated similar 
results using our ATAC-seq data, although enrichment in ATAC-seq was weaker than in 
H3K27ac (Figure S5). Globally, our results point towards a number of variants associated 
with immune mediated diseases that function in early activation of CD4+ T cells, 

predominantly in memory cells.  
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Figure 4. Example loci driving immune disease SNP enrichment in induced CD4+ T cell 
states. A) Examples of loci driving rheumatoid arthritis enrichment in early and not late activation of 
T cells. Shades of purple and green represent early and late memory and naive T cell activation 
respectively. B) Pathway enrichment analysis using all the genes in proximity of the 25% top specific 
peaks overlapping immune disease variants. Example loci driving the enrichment of C) asthma 
variants in naive CD4+ T cells 16h stimulation towards Th2 phenotype and D) IBD variants in naive 
CD4+ T cells after 5 days stimulation towards Th1 phenotype.  
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Discussion 

Identifying the most relevant cellular context in which disease associated variants function is 
critical for designing meaningful functional follow-up studies. Here, we used an in vitro 
system to identify cytokine induced cell states relevant in the pathobiology of immune-
mediated diseases. We observed that most changes in the chromatin landscape of CD4+ T 
cells resulted from TCR and CD28 stimulation alone, while the presence of specific cytokines 
had a modulatory effect on the levels of these changes. As a consequence, T cell states had 
very similar chromatin landscapes and currently available SNP enrichment methods could 
not distinguish between them. To address this, we developed CHEERS, a statistical method 

that takes into account quantitative changes in chromatin activity.  

Using CHEERS, we were able to refine the enrichment of immune disease variants observed 
in previous studies7,21,22 to specific cellular contexts. Across the five immune diseases that 
we tested, we observed that the associated variants were enriched in early activation of 
memory CD4+ T cells. The role of CD4+ effector memory T cells in conditions like RA has 
been previously suggested21,29. Additionally, a recent study which profiled open chromatin 
regions across subsets of immune cells in resting and stimulated states identified enrichment 
of immune disease variants in T cell activation33. Our study now provides further evidence 
for the importance of this cell type in the biology of complex immune mediated diseases and 
builds a case for dysregulation of specific cellular processes. Our results suggest that GWAS 
variants for immune-mediated diseases affect genetic regulation mostly during the initial 
phase of memory T cell activation, but less so during the effector response seen at the 
second time point. This emphasises the importance of tight regulation of T cell activation, 
suggesting that many subtle effects of immune variants lead to dysregulated early cell 
responses. This agrees with observations from severe immune disorders where, for instance, 
deficiency in the expression of one of the main regulators of T cell activation, CTLA-4, has 
been associated with the development of autoimmune diseases due to uncontrolled T cell 
activation30–33. Furthermore, it is worth noting that immune-mediated diseases are more 
often diagnosed in adults, which coincides with a shift in the frequency of T cells from 
predominantly naive to predominantly memory. Therefore our results suggest that focusing 
on regulation of early activation of memory CD4+ T cell may provide an important axis for 

development of new treatment options.  
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In addition to early activation of memory CD4+ T cells, we observed selected diseases 
where the associated variants were enriched in distinctive cytokine polarised cell states. For 
example, IBD risk variants were highly enriched in naive and memory T cells polarized with 
Th1 cytokines. This agrees with previous findings from immunophenotyping studies showing 
that lamina propria T cells express high levels of Stat4, T-bet and IL-12R, which are all 
induced by Th1 polarizing cytokines34. This could indicate that a proportion of IBD variants 
regulate the function of Th1 cells, suggesting the involvement of this cell type in IBD 
development. Another example was asthma, where we detected enrichment in naive T cells 
polarized towards the Th2 phenotype. Our results provide evidence of a genetic basis of the 
previous results from immunology studies, which implicate Th2 cells in allergic asthma27,35 

and link disease associated variants to dysregulation of this cell type. 

Across the tested immune diseases, we did not observe a significant enrichment in any of 
the macrophage stimulatory cell states, suggesting that autoimmune inflammation is mostly 
driven by T cells. In contrast, variants associated with AD point to a crucial role of 
macrophages in the disease. Recent studies have highlighted the role of microglia in 
AD23,24,36, a type of resident macrophage in the central nervous system (CNS). Our results 
suggest that a proportion of AD associated variants could be studied in an in vitro model of 
monocyte differentiated macrophage. This can have significant implications, as cells from 
the CNS are challenging to collect. Finally, the lack of stratification of AD variants between 
the different cytokine induced macrophage states could indicate that some AD variants 

might regulate more general functions of the macrophage lineage.  

Our study is the first to systematically profile changes in chromatin regulatory landscape 
induced by cytokines during activation of human immune cells. This provides a valuable 
resource to identify appropriate cell models for studying how genetic variants lead to 

diseases. 
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Methods 

Sample processing and cell activation 

Blood samples were obtained from three healthy individuals. The human biological samples 
were sourced ethically and their research use was in accord with the terms of the informed 
consents under an IRB/EC approved protocol (15/NW/0282). Peripheral blood mononuclear 
cells (PBMCs) were isolated using Ficoll-Paque PLUS (GE healthcare, Buckingham, UK) 
density gradient centrifugation. Naive and memory CD4+ T cells were isolated from PBMCs 
using EasySep® naive CD4+ T cell isolation kit and memory CD4+ T cell enrichment kit 
(StemCell Technologies, Meylan, France) according to the manufacturer's instructions. T 
cells were stimulated with anti-CD3/anti-CD28 human T-Activator Dynabeads® (Invitrogen) 
at 1 bead : 2 T cell ratio. Cytokines were added at the same time as the stimulus and cells 
were harvested after 16h and 5 days (for the list of cytokines, and their concentration refer 

to Table S1). 

Monocytes were isolated using EasySep® monocytes isolation kit according to the 
manufacturer's instructions. In order to generate macrophages, monocytes were plated in a 
100mm x 20mm dish and cells were treated with 800 U/ml M-CSF (PeproTech) for seven 
days. Following macrophage differentiation, they were stimulated with cytokines for 6 and 

24 hours (for the list of cytokines, and their concentration refer to Table S1). 

ChIPmentation-seq 

In order to profile active enhancers and promoters, cells were washed with RPMI and 
Dynabeads® were removed using a DynaMag® magnet (Thermo Fisher). Next, cells were 
resuspended at 1x106 cells/ml in FACS buffer (PBS buffer supplemented with 10% FCS and 
1 mM EDTA) and chromatin was cross-linked by adding 1% formaldehyde and incubating at 
37°C for five minutes. To quench the reaction we added glycine and cells were washed in 
cold PBS buffer. Cross-linked cell pellets were frozen in liquid nitrogen and stored at -80°C 

until further processing.  
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To perform ChIPmentation, cross-linked pellets were thawed and processed using the 
iDeal® ChIP-seq kit for histones (Diagenode) according to the manufacturer’s instructions. 
Briefly, cells were lysed and sonicated, and the resulting material was used for 
immunoprecipitation (IP). Sonication was performed using a Bioruptor® Pico (Diagenode), 
with 6 sound pulse cycles of 30 seconds each. For immunoprecipitation (IP), we used ChIP 
grade antibodies specific to human H3K27ac histones (Diagenode). A negative control 
undergoing no IP (input) was also generated for each cell type. After IP, the recovered 
chromatin fragments were tagmented as previously described 37. Briefly, 2 μl of IP material 
were resuspended in 30 ul ChIP-seq buffer (Diagenode) supplemented with 1 μl Tn5 
(Illumina). Samples were then reverse cross-linked using the iDeal® ChIP-seq kit for 
histones according to the manufacturer’s instructions. The resulting DNA was purified using 
SPRI magnetic beads (AMPure XP A63881 Beckman Coulter). Enrichment of active chromatin 

regions was verified by qPCR.  

Sequencing libraries were constructed from the obtained material using the Nextera® DNA 
library preparation kit according to the manufacturer’s instructions. Briefly, DNA was 
amplified by PCR and fragments of inappropriate sizes were removed using Agencourt 
AMPure XP beads (BD). Finally, samples were pooled and loaded into an Illumina® HiSeq 
2500 instrument for paired-end sequencing. In order to minimise batch effects, samples 
were randomized before sequencing. We obtained on average 63 million paired-end reads 
per sample. 
 

ATAC-seq 

In order to profile open chromatin regions, stimulated cells were washed with RPMI and 
Dynabeads® were removed using a DynaMag® magnet (Thermo Fisher). Next, 
tagmentation was performed using the fast ATAC protocol 38. Briefly, 50,000 cells were 
washed in cold PBS buffer and resuspended in 50 μl of Nextera® tagmentation buffer 
supplemented with 0.01% digitonin and 2.5 μl Tn5 transposase (Nextera). Samples were 
then incubated at 37°C and 800 rpm for 30 minutes. After tagmentation, DNA was purified 
using MinElute® PCR columns (Qiagen) according to the manufacturer’s instructions and 

stored at -80°C until library preparation. 

Sequencing libraries were generated from tagmented DNA using the Nextera® DNA library 
preparation kit according to the manufacturer’s instructions. Briefly, DNA was amplified by 
PCR and fragments of inappropriate sizes were removed using Agencourt AMPure XP beads 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2019. ; https://doi.org/10.1101/566810doi: bioRxiv preprint 

https://doi.org/10.1101/566810
http://creativecommons.org/licenses/by/4.0/


 

16 

(BD). Finally, samples were pooled and loaded into an Illumina® HiSeq 2500 for paired-end 
sequencing. In order to minimise batch effects, samples were randomized before library 
preparation and before sequencing. We obtained on average 58 million paired-end reads per 
sample.  

ATAC-seq and ChM-seq analysis 

We assessed the quality of reads using fastx and trimmed the adapters using skewer 
(v0.2.2)39. We then mapped reads to the human genome reference GRCh38 using bwa mem 
(v0.7.9a)40 only kept uniquely mapped reads. We also removed PCR duplicates and 
mitochondrial reads in ATAC-seq using samtools (v0.1.9)40,41. This resulted in final BAM files 
containing uniquely mapped, non-mitochondrial reads that were used for peak calling. 
Finally, we calculated insert size distributions using PICARD tools (v2.6.0) to remove 
samples with over- or under- sonicated chromatin and removed samples with a skewed 
distribution of insert sizes.  
Peaks were called using MACS2 (v2.1.1)42 -q 0.05 --nomodel --extsize 200 --shift -100 for 
ATAC; and --broad --broad-cutoff 0.1 --nomodel --extsize 146 for H3K27ac ChM. 
Next, we calculated the fraction of reads in peaks (FRiP) to investigate the quality of our 
data. The average FRiP for H3K27ac ChM was 46,64% and for ATAC was 17.03%. Samples 
with FRIP <5%, skewed distribution of insert sizes, or <20 million QCed reads were 
removed from the downstream analysis.  
To call peaks per cell state, QCed BAM files corresponding to biological replicates of the 
same condition were merged using samtools and peaks were called as described above but 
with two additional parameters. First, when pooling reads across individuals and within the 
cell state we expected to see a proportion of identical sequence reads in independent donors 
by chance, therefore we used the --keep-dup flag in MACS2, as PCR duplicated reads had 
already been removed. Second, we increased the q-value threshold to 0.1. In ATAC-seq, 
where the quality of the data was lower compared to ChM, we wanted to ensure that noisy 
peaks were excluded from our enrichment analysis. Therefore we used stringent parameters 
and kept all peaks with fold enrichment > 4 and q-value < 10-4. In ChM, where peaks are 
broad and FRiP values higher, we kept all peaks with fold enrichment > 2 and q-value < 10-

2. This resulted in the final BED files which were used used for GWAS enrichment analysis.  
To define differentially accessible regions and differentially modified histone regions, we used 

DESeq2. We compared all conditions to the resting state or to Th0 and used Benjamini-Hochberg 

controlled FDR of 5% and an absolute fold-change ≥ 1. 
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Disease enrichment with GoShifter 

We ran GoShifter on ATAC and H3K27ac peaks as described previously7. We ran 10,000 
permutations. Command used: python goshifter.py -s SNP_list -a annotation/file/path -p 
10000 -l LD/file/path -o output_name. 
 

Chromatin Element Enrichment Ranking Specificity (CHEERS)  

We first merged the peaks across all cell types and cell states using bedtools (v2.22.0) 
merge option in order to get a unified set of peaks. Then, for each cell type and cell state 
we quantified the the number of reads within the merged peak regions using featureCounts 
(v1.5.1)43. We normalized each peak for the library size by scaling the peak read counts to 

the sample with the greatest count of informative sequence reads: 

Z",$ = C",$
max
"
*∑ C",$$ ,
∑ C",$$

 

where 𝐶𝑖, 𝑗 is the number of reads falling within peak 𝑗 in cell state 𝑖. 

To ensure that our analysis was not confounded by the low confidence peaks, we removed 
the bottom 10th percentile of peaks with the lowest read counts and obtained a final count 
of 132,236 peaks for H3K27ac ChM and 740.221 for ATAC-seq. 

In order to compare the peaks across the cell types and cell conditions, we also quantile 
normalized the library size-corrected peak counts. We then transformed the read count of 
each peak into a score that reflects cell type specificity (specificity score). For that, we 
divided the normalized read counts of each peak in each condition by the Euclidean norm for 
that peak across all conditions, as described in the following formula: 

S",$ =
Z",$

1∑ Z",$2"

 

where 𝑆𝑖, 𝑗is the specificity score, and 𝑍𝑖, 𝑗 is the normalized number of reads within a peak 𝑗 
in a condition 𝑖. This score is a number from 0 to 1, where 1 means a peak has high read 

counts in only one cell state and 0 means the peak shows no read in that cell state. 

Then, within each cell state, peaks were ranked by specificity score from the highest to the 
lowest score, where the peak least specific to the cell state was ranked 1. If multiple peaks 
have equal specificity scores, the same lower rank is assigned to all of them.  
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To test for disease SNP enrichment, we take all the index variants, identify variants in LD 
(r2>0.8) and overlap them with peaks. Importantly, our method is peak-centric, i.e. a peak 
that overlaps multiple disease associated variants in a locus contributes to the final cell-type 
specificity score only once. On the other hand, if within a locus the associated variants 
intersect multiple peaks, each independent peak contributes to the final enrichment score. 
We then calculate the mean specificity rank of all peaks which intersect disease associated 
variants. We inferred the significance of the observed enrichment by fitting a discrete 
uniform distribution. Within each cell state all ranks (1, 2, 3...N) can be observed with an 
equal probability and thus they follow a discrete uniform distribution (Kolmogorov-Smirnov 
test p=1) with mean (𝜇): 

𝜇 =
1 +𝑁
2  

and variance:  

𝜎2 =
(𝑚𝑎𝑥	 − 	𝑚𝑖𝑛	 + 1)2 	− 1

12  

where max and min are the maximal and minimal ranks in the dataset. When we substitute 
max with number of peaks (N) and min with the minimal rank (1) we obtain the following 
formula: 

𝜎2 =
𝑁2 − 1
12  

which, under the central limit theorem converges to: 

σD2 =
N2 − 1
12n  

 
where σD2 is the variance of the mean of the n peak ranks overlapping the GWAS SNPs 
assuming that these overlap at random.  
 
Finally, we calculate p-values as:  

p = 1 −ΦI
x− µ
σ

K 

where the ΦILMN
O
K is a cumulative normal distribution for x~𝑁(µ, 𝜎2); x is the observed rank, 

and μ and σ are the expected values under the null hypothesis that all ranks occurred as 
random. 
 
To ensure that this method accounts for any possible unidentified properties of the data, 
such as correlations, we also assessed the significance of the enrichment using an empirical, 
permutation based strategy. For that, within each of the tested cell states, we randomly 
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sampled sets of peaks, matching for the number of peaks overlapping GWAS variants, and 
calculated the mean of their ranks. We repeated this process N times, assessed the 
frequency at which the mean of permuted ranks was greater or equal to the mean of 
observed ranks, and derived an empirical p-value: 

𝑝RSTUV =
𝑛𝑢𝑚(𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	 > 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑁  

where N is a number of permutations. Both approaches yielded similar results while the p-
values from CHEERS were not limited by the number of permutations (R2 = 0.96, p-value < 

2.2e-16).  

 

Power calculations for CHEERS 

To estimate the power of CHEERS, we simulated 100 SNP-peak overlaps and tested for 
enrichment. Each simulation was repeated 100 times and power was estimated as the 
percentage of simulations that yielded a significant enrichment (p-value < 0.01). We 
designed the simulations such that a given percentage of SNPs (ranging from 0% to 100%), 
but not the remaining SNPs, always overlapped with peaks in the top 10th percentile of 
specificity. Finally, in order to test how specific the peaks needed to be for our method to 
detect enrichment, we repeated the simulations at lower specificity percentiles.  
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Supplementary Figures 

 
 

Figure S1. Binary SNP-peak overlap is not sufficient to discriminate between closely 
related cell states. We used GoShifter to test for SNP enrichment across cytokine induced cell 
states. We ran 10,000 permutations with default parameters. 
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Figure S2. Disease SNP enrichment in H3K27ac regions in blood cell types. A) PCA of cell 
types assayed as a part of BLUEPRINT project. B) CHEERS results across different blood cell types 
from the BLUEPRINT project. The dotted gray line represents the nominal p-value threshold of 0.05, 
while the solid gray line represents the Bonferroni corrected p-value threshold of 0.0026 (corrected 
for the number of cell types tested). 
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Figure S3. Power calculations for CHEERS. Graph shows the power to detect the enrichment 
(p<0.01) with different percentage of specific SNP-peak overlaps. Different colours represent 
specificity percentile of top overlaps.  
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Figure S4. CHEERS SNP enrichment in H3K27ac regions in cytokine induced cell states for 
non-immune traits. The numbers in parentheses represent the number of overlapping peaks per 
disease. The dotted gray line represents the nominal p-value threshold of 0.05, while the solid gray 
line represents the Bonferroni corrected p-value threshold of 0.00091 (corrected for the number of 
cell states in the study). 
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Figure S5. CHEERS SNP enrichment in open chromatin regions in cytokine 
induced cell states. The numbers in parentheses represent number of overlapping peaks 
per disease. The dotted gray line represents the nominal p-value threshold of 0.05, while 
the solid gray line represents the Bonferroni corrected p-value threshold of 0.00091 
(corrected for the number of cell states in the study). 
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