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Abstract

Summary: Long noncoding RNAs (lncRNAs) can act as molecular sponges or decoys for an RNA-binding
protein (RBP) through their RBP binding sites, thereby modulating the expression of all target genes of the
corresponding RBP of interest. Here, we present a web tool named RBPSponge to explore lncRNAs based
on their potential to act as a sponge for an RBP of interest. RBPSponge identifies the occurrences of RBP
binding sites and CLIP peaks on lncRNAs, and enables users to run statistical analyses to investigate the
regulatory network between lncRNAs, RBPs and targets of RBPs.
Availability: The web server is available at https://www.RBPSponge.com
Contact: hilal.kazan@antalya.edu.tr
.

1 Introduction
Eukaryotic genomes encode for thousands of long non-coding RNAs
(lncRNAs); however, their functions are largely unknown (Kopp and
Mendell, 2018). Recent studies revealed that some lncRNAs can function
as microRNA (miRNA) sponges (Mitello et al., 2017). These lncRNAs
contain several miRNA binding sites and the resulting competition restricts
miRNA’s availability to bind to its own targets. In turn, miRNA’s
activity is suppressed. A similar relationship has been recently discovered
between lncRNAs and RBPs. For instance, a highly conserved cytoplasmic
lncRNA, NORAD, contains several functional binding sites for the two
mammalian Pumilio homologs (i.e., PUM1 and PUM2) (Tichon et al.,
2016; Lee et al., 2016). NORAD sequesters PUM1/PUM2 molecules and
modulates the expression of their target genes. Similarly, Kim et al has
been shown that the lncRNA OIP5-AS1 sponges ELAVL1 in HeLa cells
(Kim et al., 2016). Lastly, Chiu et al performed extensive computational
analyses on TCGA datasets where several candidate sponge lncRNAs are
predicted for RBPs (Chiu et al., 2018).

A number of tools are available to identify lncRNAs that can act as
miRNA sponges (Furio-Tari et al., 2016). There are also tools to map
RBP binding sites on lncRNAs (e.g. Wu et al., 2018), however they
do not evaluate the enrichment and distribution of binding sites or the
regulatory relationship between the lncRNA and RBP target background
genes. As such, tools that explore lncRNAs that could function as RBP
sponges are still lacking. Here, we introduce a web tool named RBPSponge

that explores lncRNAs based on their potential to act as a sponge for an
RBP of interest. RBPSponge leverages several types of data such as RBP
binding preferences, CLIP datasets and gene expression data. In addition to
identifying the occurrences of RBP binding sites on lncRNAs, RBPSponge
runs several types of analyses to evaluate the sponge potential of lncRNAs.

2 Data and Methods
Human RBPs with known existing binding preferences are compiled by
merging position weight matrices (PWMs) from three compendiums:
RNAcompete (Ray et al., 2013), RBNS (Dominguez et al., 2017) and
RBPmap (Paz et al., 2014). These RBPs are further filtered by selecting
those with CLIP data compiled from ENCODE eCLIP datasets (van
Nostrand et al., 2016) and CLIPdb database (Yang et al., 2015) (See
Supplementary Table 1 for the complete list of CLIP datasets). 40 RBPs
are retained after these steps.

2.1 Identifying potential lncRNAs that sponge RBPs

The top 3 scoring k-mers were determined for each PWM to represent the
set of binding motifs for the RBP. For RBPs with multiple PWMs, the
union of top 3 scoring k-mers is used as the set of binding motifs. lncRNA
sequences (exon regions only) that are downloaded from GENCODE
database (v25lift37) are scanned for k-mer occurrences. To evaluate the
significance of RBP motif occurrences in lncRNA sequences two metrics
are calculated: log-odds (LOD) score and dispersity score (Furio-Tari et al.,
2016). LOD score evaluates the enrichment of RBP binding sites on a
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lncRNA. To obtain the LOD score for a lncRNA/RBP pair, we calculate
the number of motif occurrences across each sliding window (of size w) of
the lncRNA sequence. Assuming that nt,w,i corresponds to the number
of occurrences of binding motifs within the window that starts at position i
of lncRNA t, nmax

t,w is defined as max(nt,w,1, nt,w,2, .., nt,w,l) where
l is the starting position of the last sliding window within the lncRNA. The
sliding window approach enables the identification of the window with
maximum number of motif occurrences. nmax

t,w is then normalized by the
average maximum number of occurrences of the same set of binding motifs
across all lncRNAs :

LODt,w =
nmax
t,w(∑

j n
max
j,w

)
/N

(1)

where N is the number of all lncRNAs. LOD score is calculated with
varying window sizes (from 50nts to 1000nts in steps of 50nts) and the
window size with the largest LOD score is reported. Avoiding the use of a
fixed window size enables a robust motif enrichment analysis for lncRNAs
of varying length. LncRNAs with high LOD scores contain an enrichment
of binding sites for the RBP of interest compared to other lncRNAs (Figure
S2).

The second metric which is named dispersity score evaluates the
clustering of motif occurrences within the sequence. To calculate the
dispersity score of an lncRNA/RBP pair, we build a vector of normalized
nmax
t,w values across all window sizes :

xt =

(
50

nmax
t,50

,
100

nmax
t,100

, ...,
1000

nmax
t,1000

)
(2)

Then, the dispersity score for lncRNA t is calculated as the standard
deviation of vectorxt. Smaller dispersity scores correspond to a more even
distribution of motif occurrences across the sequence. Equal distribution
of motifs are observed for lncRNAs that sequester miRNAs (Memczak
et al., 2013) and we hypothesize that lncRNAs that sequester RBPs show
a similar property. In summary, LOD score focuses on the number of
binding sites whereas dispersity score focuses on the distribution of these
binding sites (Figure S2).

We define threshold values for the LOD / dispersity scores by finding
the scores at the 95% percentile of the distribution of all possible RBP-
lncRNA pairs. This resulted in the values 1.6 and 36 for LOD score and
dispersity score, respectively.

To incorporate experimental binding data, CLIP peaks that are located
within lncRNAs are determined. Lastly, gene expression datasets are
compiled to assess the regulatory network between lncRNAs, RBPs
and their target genes. The following datasets are used: (i) GTEX; (ii)
E-MTAB-2706; (iii) E-MTAB-2770. Utilizing all these resources, the
following information is displayed for each RBP-lncRNA pair (Figure
1):

• number of non-overlapping motif occurrences in the entire lncRNA
sequence

• number of non-overlapping motif occurrences within the CLIP peaks
that are located in the lncRNA

• log-odds enrichment score of motif frequencies
• dispersity score
• number of eCLIP / CLIPdb peaks
• median and maximum expression value across the samples available

in GTEX, E-MTAB-2706, E-MTAB-2770 datasets
• consensus score

The consensus score is calculated by counting the number of satisfied
constraints listed below:

• LOD score > 1.6

• dispersity score < 36
• existence of at least one motif in eCLIP or CLIPdb peak
• maximum expression > 5 TPM in at least one dataset
• correlation analysis gives a p-value < 0.05 in at least one dataset
• regression analysis gives a p-value < 0.05 in at least one dataset

As each positive check increases the consensus score by 1, consensus
scores range between 0 and 6. The results are displayed in decreasing
order of consensus scores.

3 Identifying target and background gene sets for
each RBP

Target and background genes sets of RBPs are needed for the statistical
analyses implemented by RBPSponge. The user can either upload these
gene sets or use our pre-defined gene lists. To define these lists of genes for
each RBP, gene annotation files are downloaded from GRCh37 assembly
of Ensembl (Release 87) and the longest 3’UTR isoform is determined
for each gene. All 3’UTRs are scanned with the set of k-mers that are
determined for each RBP. 3’UTRs are also intersected with CLIP peaks to
determine overlaps as the presence of a CLIP peak strongly suggests that
the region is bound by the RBP of interest.

Data from shRNA knockdown assays are downloaded from ENCODE
project (i.e. see Supplementary Table 1 for the complete list). For these
assays, log fold changes (LFCs) are calculated using DeSeq2 method Love
et al. (2014). For ELAVL1, knockdown dataset from Mukharjee et al
Mukherjee et al. (2011) is used as knockdown assay data for ELAVL1 was
not available in ENCODE project.
We defined the target set as those genes that satisfy the following
conditions: (i) occurrence of at least one CLIP peak; (ii) occurrence of
one of the top 3 scoring k-mers within a CLIP peak; (iii) has an LFC
value that has an adjusted p-value < 0.05 as calculated by DeSeq2 for
knockdown datasets.
Similarly, we defined the background set as those genes that satisfy the
following conditions: (i) no CLIP peak occurrence; (ii) no occurrence of
top 3 scoring k-mers; (iii) significant LFC value in knockdown datasets.
We also ensured that the background genes are length-matched to target
genes such that there is no statistically significant difference in distribution
of length between target set and background set.

4 Analysis
The expression values of the lncRNA and the RBP across the samples of
the selected dataset are displayed with bar plots. This is an important sanity
check as most lncRNAs have low abundance compared to other molecules
in the cell and this might prevent them to act as molecular decoys for
RBPs. In addition to this, three types of analyses are performed (scripts
are available on github page: https://github.com/rbpsponge/RBPsponge).

In the first analysis, we investigate how the expression of the lncRNA
co-vary with the expression of target genes of the RBP. To assess the
distribution of correlation coefficient values that we obtain with target
genes, we repeat the same analysis with a set of background genes as a
control. If the lncRNA acts as a decoy for the RBP of interest, RBP activity
is reduced and the expression levels of its target genes are affected.In
summary, we calculate the Spearman correlation coefficient between the
expression values of the lncRNA and the expression values of each gene
in the target/background set. We compare the distribution of correlation
values of target and background genes with Wilcoxon rank-sum test and
also display them with a box plot.

In the second analysis, we assess whether lncRNA expression has
added predictive value in addition to RBP expression in determining the
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Fig. 1. Screenshot from RBPSponge website. Putative sponge lncRNAs for PUM2 are listed in a table where columns display information on motif occurrences and CLIP peaks.

expression levels of target genes. If the lncRNA affects the activity of
the RBP as a decoy, including lncRNA expression should improve the
performance. To this end, we perform a simple linear regression analysis
to predict target gene expression where in one case only RBP expression
is used and in the other case both RBP and lncRNA expression are used
as features. We calculate the Spearman correlation values between actual
and predicted expression values of target genes on held-out datasets using
10-fold cross-validation. If the lncRNA of interest acts as a sponge for the
RBP, we expect to see an improved predictive performance when lncRNA
expression is included as an additional feature. The significance of change
is evaluated with Wilcoxon rank-sum test and likelihood-ratio test.

In the third analysis, we look into the expression changes upon the
knockdown of the lncRNA of interest, when available. Because lncRNA
activity is minimized we expect to see an increased RBP activity and a more
pronounced effect (either stabilizing or de-stabilizing) on the expression
of target genes. To this end, we compare the distribution of expression
changes of target and background genes with a cumulative distribution
frequency (CDF) plot. Wilcoxon rank-sum test is used to assess the
significance between the two distributions.

5 Example run
As input, user selects an RBP of interest and optionally uploads a set of
target and background genes for this RBP. As output, a table is displayed
where each row corresponds to a lncRNA and columns display the number
of motifs, number of CLIP peaks etc. (as described in Section 2.1, Figure
1A). The graphical representation on the right part displays the positions of
motif occurrences within that lncRNA as vertical bars. Motifs and CLIP
peaks can be also explored within an integrated genome viewer that is
displayed as a pop-up window (Supplementary Figure 1).

When the analysis button is clicked, a multi-tab page is displayed
where each tab corresponds to a different analysis. For example, when
E-MTAB-2706 dataset is chosen for PUM2 (RBP)-NORAD (lncRNA)
pair, expression values of PUM2 and NORAD across the tissues are
displayed in the first and second tab, respectively (Supplementary Figure
2A-B). In the third tab, the box plot shows that NORAD expression is
correlated higher with target genes compared to the background genes
(Supplementary Figure 2C). In the fourth tab, we observe that including
NORAD in addition to PUM1/PUM2 expression improves the prediction
performance significantly (Supplementary Figure 2D). Lastly, the CDF
plot in the last tab shows that PUM2 target genes are stabilized more upon
the knockdown of NORAD (Supplementary Figure 2E).
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