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Abstract 

Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy 
today. However, evolving resistance to one drug may come at a cost of decreased growth rate or 
increased sensitivity to another drug due to evolutionary trade-offs. This weakness can be 
exploited in the clinic using an approach called ‘evolutionary herding’ that aims at controlling the 
tumour cell population to delay or prevent resistance. However, recapitulating cancer evolutionary 
dynamics experimentally remains challenging. Here we present a novel approach for evolutionary 
herding based on a combination of single-cell barcoding, very large populations of 108–109 cells 
grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and 
mathematical modelling of tumour evolution. We demonstrate evolutionary herding in non-small 
cell lung cancer, showing that herding allows shifting the clonal composition of a tumour in our 
favour, leading to collateral drug sensitivity and proliferative fitness costs. Through genomic 
analysis and single-cell sequencing, we were also able to determine the mechanisms that drive 
such evolved sensitivity. Our approach allows modelling evolutionary trade-offs experimentally to 
test patient-specific evolutionary herding strategies that can potentially be translated into the clinic 
to control treatment resistance.  

Introduction 
Although targeted cancer therapies are effective in many patients (Zhang et al., 2009), their 
efficacy is impeded by treatment resistance, currently an intractable problem in cancer. Resistance 
is often mediated by redundancies in downstream signalling pathways (Holohan et al., 2013), cell 
phenotypic plasticity (Meacham and Morrison, 2013), and most importantly, intra-tumour 
heterogeneity (ITH) (McGranahan and Swanton, 2015). The high level of ITH in the majority of 
cancers (McGranahan and Swanton, 2017) implies that pre-existing cancer subclones that are 
drug resistant because of heritable genetic (Pao et al., 2005) or epigenetic (Shaffer et al., 2017; 
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Sharma et al., 2010) alterations are invariably present when treatment starts (Diaz et al., 2012; 
Misale et al., 2012), thus leading to Darwinian adaptation (Greaves and Maley, 2012). In addition, 
drug-tolerant cancer cells or ‘persistors’ can survive and acquire de novo heritable alterations that 
give rise to fully resistant subclones during or after treatment (Hata et al., 2016; Nichol et al., 
2016). The emergence of pre-existing populations that prior to treatment are fitness neutral (or 
even deleterious) (Hall et al., 2009) and are positively selected by intervention can be recapitulated 
in the lab, as first demonstrated by the classical Luria-Delbruck experiment in bacteria (Luria and 
Delbrück). 

This implies that cancers are unlikely to be successfully treated with a single agent, as we often 
observed in the clinic (Gillies et al., 2012). Whereas combination strategies are often highly toxic 
and impractical, relatively little is known about the most effective sequence of agents. 
Administering a drug can sensitise cancer cells to a second drug, a phenomenon known as 
collateral sensitivity, which has been demonstrated experimentally in seminal studies in bacteria 
(Imamovic and Sommer, 2013; Nichol et al., 2015; Pál et al., 2015), malaria (Kirkman et al., 2018) 
and cancer (Hall et al., 2009; Zhao et al., 2016b). This is based on the observation that in 
evolution, adaptations frequently incur a cost. As in ecological systems, developing a new trait 
such as resistance to cancer treatment likely comes at the expense of other features, such as loss 
of adaptive response to other stimuli (Gatenby et al., 2009; Merlo et al., 2006), leading to 
‘evolutionary trade-offs’ (Fuentes-Hernandez et al., 2015). Cost of resistance has been observed in 
distinct pathogenic organisms (Hughes and Andersson, 2015a) as well as in cancer (Siravegna et 
al., 2015). 

Evolutionary herding aims at exploiting trade-offs to control tumour evolution in our favour. The 
goal is directing the evolution of the tumour population using Darwinian adaptation to a drug. When 
a second drug is administered, the clonal composition of the population is different from the start, 
and this can lead to increased sensitivity, or even complete extinction (Pluchino et al., 2012; Zhao 
et al., 2016a). In this scenario, because evolutionary herding has changed the clonal structure of 
the population, collateral drug sensitivity is likely to be persistent rather than transient and can be 
exploited as a form of synthetic lethality. Therapeutic strategies that rely on deterministic 
evolutionary herding and controlled cancer evolution are also less subject to stochastic temporary 
effects and cell plasticity, and hence more likely to be effective in the clinic.   

Current experimental approaches are inadequate to study evolutionary herding because they are 
limited to small populations that do not recapitulate the extensive intra-tumour heterogeneity 
present in human malignancies. Moreover, current approaches introduce substantial biases due to 
short timescales and re-plating, and rely on escalating drug doses that preferentially select for de 
novo evolution of small-effect alleles at multiple loci, rather than pre-existing highly resistant 
subclones (Nichol et al., 2017). Cell plasticity and drug tolerance, instead of Darwinian adaptation, 
often occurs in current model systems, leading to resistance that is non-heritable, potentially 
reversible, and that does not represent what happens in the clinic. Non-heritable drug resistance 
can arise through epithelial-mesenchymal transition (Shibue and Weinberg, 2017) or upregulation 
of drug-efflux pumps (Gottesman and Pastan, 1993). Although these are very important cellular 
mechanisms of resistance, they do not pertain to clonal evolution, which drives persistent 
resistance in human cancers over long timescales. 

Here, we present a novel experimental approach to study evolutionary herding quantitatively and 
demonstrate the evolutionary determinants of collateral drug sensitivity by clonal herding of cancer 
cell populations. 

Results 
Evolutionary herding of resistant cells through fitness landscapes 
 
The relationship between heritable information, whether genetic or epigenetic, and the 
corresponding cellular phenotype, can be represented by the classical fitness landscape model 
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(Wright). Cellular phenotypes are multifaceted and arise as a product of the complex interactions 
between heritable factors and the environment. If we summarise the fitness of these complex 
phenotypes with respect to a certain condition or environment by a single value, the genotype-
phenotype relationship can be represented as an n+1 dimensional space whereby the alleles 
present at n (epi)genetic loci are mapped to the relative fitness advantage they confer. A single cell 
can therefore be represented by a point in this landscape corresponding to its (epi)genetic state. 
As populations proliferate and randomly mutate, cell lineages move around the landscape. In a 
simple illustrative drug-free scenario (Figure 1A), multiple cells, each characterised by a certain 
genotype (x, y and z), are scattered around a neutral ‘flat’ fitness landscape because of genotypic 
mutations. When a drug is applied (e.g. drug 1), the fitness landscape changes, and genotypes 
that were previously neutral (or even slightly deleterious) may become advantageous under the 
new condition (e.g. y and z), and outcompete the rest (e.g. x). Due to Darwinian selection, 
populations in lower fitness elevations will likely go extinct, whereas populations in fitness ‘peaks’ 
will prosper. This makes populations appear to ‘climb’ higher and higher fitness peaks, leading to 
evolutionary adaptation. 
 
Different drugs may select for distinct phenotypes (e.g. y and z are differentially selected by drug 2 
and 3 – Figure 1A). Using drugs with divergent fitness landscapes is the central idea of 
evolutionary herding. This concept is illustrated in Figure 1B. Tumourigenesis gives rise to a 
heterogeneous population of cancer cells that is the substrate for Darwinian selection to operate. 
When drug 1 is applied (Figure 1C), only populations that are around the new fitness peaks 
survive, while drug sensitive cells in fitness valleys go extinct. If then we expose the population to 
drug 2, which has an overlapping fitness peak, we select for a doubly resistant phenotype z, 
against which both drug 1 and 2 are ineffective. At this point we would have lost control of the 
tumour. Instead, if we first apply drug 3 (Figure 1D) this leads to selection for phenotype y. 
Because drug 2 shows differential fitness peaks with respect to drug 3, the sequence drug3-drug2 
leads to an evolutionary trap in which the cancer cell population goes extinct (Zhao et al., 2016a). 
This is the principle of evolutionary herding that can be exploited to delay and potentially control 
drug resistance, thus significantly extending patient survival. 

 

Figure 1: Evolutionary herding through fitness landscapes. (A) The selective effect of a drug 
on a heterogeneous population can be visualised as a fitness landscape. Genetically distinct cells 
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are represented by points in the x-y plane, whilst their fitness within a certain environment is the z-
value. Different drugs have different landscapes, selecting against different clones. For simplicity, 
here we assume in the absence of drug all clones to be equally fit (flat landscape). Drug 1 changes 
the landscape, selecting for y and z but against x. Drug 2 selects only for z and drug 3 only for y. 
(B) First, a population of cells is present at baseline, represented here as equally fit for simplicity. 
(C) Drug 1 selects clones that are resistant to drug 2. (D) Applying first drug 3 leads to evolutionary 
herding of a population that is entirely sensitive to drug 2. Here genotypes with values below the 
plain have negative fitness and so their frequency will decrease until they go extinct. 

Evolving resistance in large populations without re-plating  
 
We first demonstrate evolutionary herding in vitro using the HCC827 non-small cell lung cancer 
line. HCC827 is an EGFR exon19del mutant lung cancer cell line sensitive to EGFR inhibition 
(Engelman et al., 2007). We used two small molecule inhibitors for herding: gefitinib, an EGFR 
inhibitor, and trametinib, a MEK1/2 inhibitor. To recapitulate the evolutionary dynamics of large 
populations, we employed a HYPERflask® cell culture system, wherein each flask has a capacity 
of up to 150 million cells (Figure 2A). To track clonal evolution we employed high complexity 
lentiviral barcoding (Bhang et al., 2015). By barcoding the cells at baseline and splitting them into 
distinct replicates (Figure 2B), we could determine whether resistant clones were pre-existing if the 
same barcodes were enriched post-treatment in different replicas. We first barcoded a population 
of one million cells with one million distinct barcodes, and then expanded it to ~120M in a 
HYPERflask (Material and Methods). We call this initial baseline population the “POT” (Figure 2B). 
For each of the two drugs we seeded three HYPERflask replicates in addition to two HYPERflask 
as DMSO controls. Each HYPERflask was seeded with approximately 15 million cells from the 
same POT (i.e. most barcodes are common to all flasks) and expanded to 80-90% confluence. 
Thus, we achieved a total population of 120Mx3~0.4 billion cells per drug arm (Figure 2B, Material 
and Methods).  
 
These large populations allowed us to expose the cells to high drug concentrations without causing 
extinction and without the need for re-plating. This is because large populations are highly 
heterogeneous and likely to contain pre-existing resistant subclones that would survive high-dose 
drug exposure. We used GI99 concentrations (99% Growth Inhibition) until resistant clones grew 
back (Figure 2C and S1). Three HYPERflasks were drugged with gefitinib (40nM) and three with 
trametinib (100nM). Drug exposure in the gefitinib treated lines GEF1-GEF3, induced extensive 
cell death, thus causing a major population bottleneck (Figure 2D). Under constant drug 
concentration, the resistant population grew back and reached confluence again in 4 weeks. Drug 
exposure in the trametinib treated lines TRM4-TRM6 also induced extensive cell death and a 
resistant population grew back to confluence in 9 weeks (Figure 2D).  

We reasoned that not only the surviving resistant cells at the end of the experiments were 
important for the analysis, but also that the cells that died during the experiment could prove 
informative on the temporal dynamics of the system. The idea is that the sum of the surviving cells 
attached to the plate and the dead cells floating in the media would contain information on the 
whole evolutionary history of the cell population. Moreover, we hypothesised that dead cells may 
be a representative sample of the live population and, like circulating tumour DNA in cancer 
patients (Domínguez-Vigil et al., 2018), could be used to monitor the temporal dynamics of the 
system non-destructively. Once a week at each media change, we collected the floating (dead) 
cells as pellets to extract DNA and perform barcode analysis (Figure 2E, Material and Methods).  
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Figure 2: Experimental design. (A) The Corning® High Yield PERformance Flasks 
(HYPERflask®) cell culture vessel is a 10 layer 1720 cm2 total growth area system with 
polystyrene gas permeable surface that can reach the order of 150 million cells. (B) One million 
lung cancer cell line HCC827 cells were lentivirally barcoded before being expanded to a 
population (POT) of ~120 million cells on a HYPERflask. Eight replicates were seeded with ~12 
million cells each and expanded to 120 million. The remaining POT cells are frozen for subsequent 
analysis. Of the eight seeded replicates, three are exposed to GI99 doses of gefitinib (GEF1-3), 
three to GI99 of trametinib (TRM4-6) and two are harvested immediately as controls (DMSO7-8). 
(C) Clonal evolution of a large population containing pre-existing resistant subclones that is 
exposed to high drug concentration (GI99) without re-plating. As in patients, a clonal bottleneck 
occurs by means of Darwinian selection for drug resistance. Barcode enrichment analysis, 
genomic profiling and drug screening is performed on the resistant population. (D) Schematic 
growth curves for gefitinib (4 weeks for resistant population to regrow) and trametinib (9 weeks for 
the resistant population to regrow). Media and drug are changed weekly. (E) When cells die, they 
detach and float in the media. At each media change (once per week), supernatant cells are 
harvested from the spent media and their DNA extracted for barcodes analysis and non-
destructive tracking of tumour evolution. 

We compared baseline (POT) vs resistant lines and confirmed decreased drug sensitivity for both 
gefitinib (Figure 3A) and trametinib (Figure 3B). To identify possible genetic mechanisms of 
resistance, we performed whole-exome sequencing at median 160x depth. We found a focal 
amplification of MET in gefitinib resistant lines (Figure 3C), consistent with previous results (37), 
that was confirmed by ddPCR (Figure S2). No amplification of MET was detected in trametinib 
resistant lines, suggesting that MET amplified subclones are gefitinib-resistant but may be 
trametinib-sensitive. The trametinib resistant lines shared a gain of chr1p and deletions in chr9, 
encompassing CDKN2A (Figure 3C, S3, S4 and Table S1). CDKN2A encodes tumour suppressors 
p16 and p14ARF and loss of this gene has been linked to resistance to targeted drugs (Mullighan 
et al., 2008). Analysis of single nucleotide variants (SNVs) revealed a small cluster of mutations 
clearly enriched in the trametinib resistant lines compared to POT (Figure 3D and S5). These 
mutations were also enriched in the gefitinib resistant lines, although to a lesser extent, potentially 
indicating a pre-existing subclone that is doubly-resistant to gefitinib and trametinib, although more 
strongly selected by trametinib. We speculate that these mutations are likely passenger hitchhikers 
of the CDKN2A-loss subclone. 
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The fact that genomic alterations were consistent between evolved replicas but different for the two 
drugs suggest that multiple resistant subclones were already present in the initial population. 
Differential evolution and competition of these subclones under the two drugs also suggest a target 
for herding. 

 

Figure 3: Characterisation of the resistant lines. (A) Dose-response curves of gefitinib resistant 
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lines and (B) trametinib resistant lines versus DMSO demonstrate acquired resistance. (C) 
Relative copy number profiling of resistant lines compared to POT highlight MET amplification in 
GEF lines and 1p gain, 9p loss (including CDKN2A loss) in TRM lines. (D) Single-nucleotide 
variant analysis shows enrichment of a subclone containing 4 variants in TRM and partial 
enrichment in GEF of the same clone.  

Tracking clonal evolution in real time non-destructively 
 
We next sought to more precisely quantify the temporal evolutionary dynamics. We profiled the 
barcodes of all samples using ultra-deep sequencing (Material and Methods). In comparison to the 
2295 unique barcodes identified in the POT population, we found an average of 872 unique 
barcodes in the gefitinib treated lines and an average of 199 unique barcodes in the trametinib 
lines (Figure S6), indicating that drug exposure induced a strong selective bottleneck. We note that 
because of the single-cell barcoding, we expect multiple barcodes corresponding to each pre-
existing subclone (i.e. multiple cells in the subclone have been barcoded with different barcodes). 
We considered a barcode as positively selected in a given replicate when its estimated growth rate 
was positive with respect to DMSO (Materials and Methods). We grouped barcodes with similar 
growth dynamics into ‘functional subclones’. We define pre-existing functional subclones as those 
having similar growth dynamics in more than one replica (Figure 4A and Material and Methods for 
details). Notably, we cannot exclude that each functional subclone may be composed of multiple 
genetically distinct subclones. This is not critical for our analysis as we are interested in drug 
response phenotypes, rather than individual genotypes. 
 
We identified five functional subclones with different growth dynamics (Figure 4B). The first group 
(grey) was the largest (87.2%) and represented largely clones that died under both drugs 
(sensitive) as well as clones for which the growth rate could not be determined because not found 
in the DMSO (Figure S7). The second group (blue) was resistant to gefitinib but sensitive to 
trametinib. The third group (purple) was resistant to trametinib but sensitive to gefitinib. The fourth 
group (orange) was doubly resistant to both drugs. Finally, the fifth group (green) was composed 
by a set of barcodes that were found in only one replica either of trametinib or gefitinib. This set 
could correspond to possible de novo resistant lineages. As this group comprises of barcodes all at 
low frequency, we focused on the majority of pre-existing resistant subclones that are relevant to 
evolutionary herding. We examined the frequency of barcodes and associated phenotypes in the 
POT versus the evolved lines. Strikingly, the frequencies of barcodes between replicas of a drug 
were highly similar, confirming that the initial conditions are a strong determinant of evolution under 
exposures to high drug concentrations (Figure 4B). Importantly, these results indicate that in this 
system, dynamics are deterministic and hence predictable.  
 
We reasoned that the doubly resistant (orange) subclone could be the same carrying the SNVs 
found highly enriched in TRM and partially enriched in GEF using the exome sequencing analysis. 
We contrasted the barcodes frequency of the orange subclone with the SNV Cancer Cell Fraction 
(CCF) in each sample and found that these two independent measurements matched in all 
samples, including the POT, thus describing concordant evolutionary dynamics and suggesting 
that the SNVs and barcodes are in the same cells (Figure 4C).  
 
Using mathematical modelling, we measured the growth rates of each barcode under each 
condition (see Material and Methods). This analysis confirmed that gefitinib resistant population 
was polyclonal, with a large MET amplified subclone (blue barcode group) composing ~32.8% 
(average) of the population in GEF1-GEF3 and a relatively large initial population (~2.4%) in the 
POT – see Figure 4B. This subclone was characterised by many barcodes with a positive growth 
rate under gefitinib but a negative growth rate under trametinib (Figure 4D – blue barcodes). We 
also found enrichment the multidrug resistant subclone (orange barcodes) that exhibited a positive 
growth rate under both gefitinib and trametinib. This subclone was found at mean frequency 22.4% 
in the GEF lines and 86.1% frequency in the TRM lines (Figure 4D – orange barcodes). This clone 
was smaller than the blue clone in the original POT population (~0.91%) and therefore carried 
many fewer barcodes. There was also a small set of barcodes that were only enriched in the 
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trametinib lines (Figure 4D – purple barcodes, ~4.2% average in TRM lines, ~0.57% in POT). The 
combined frequency of all enriched (resistant) barcodes in the initial population was 3.9%. The 
growth rates across replicates were highly similar (Figure 4E and S8). Hence, the barcode analysis 
supports the presence of pre-existing polyclonal drug resistance. 

Figure 4: Barcodes reveal evolutionary dynamics over time. (A) Map of barcodes with drug 
response phenotype to define functional subclones. Values indicate the proportion of unique 
barcodes with positive growth rates across the given number of replicates of gefitnib exposure and 
trametinib exposure. (B) Barcode frequency distributions in each sample. Left hand bars show the 
frequency of each unique barcode. Barcode colours and ordering are identical between replicates. 
Right hand bars indicate the phenotypes assigned to each barcode. Phenotypes are determined 
by the set of evolutionary replicates in which a barcode exhibits a positive growth rate (Materials 
and Methods). Barcode and phenotype distributions are highly conserved between replicates, 
indicating repeatable evolution. (C) Cancer cell fraction estimates for the cluster of four SNVs 
identified form exome sequencing match barcode frequencies for the doubly-resistant phenotypes. 
(D) Growth rates for each barcode assigned to the GEF, TRM or double resistant phenotypes are 
shown under both the gefitinib (GEF1-3) and trametinib (TRM4-6) exposure. Points indicate the 
growth rates in the three replicates and lines connect these points to highlight variance. (E) 
Representative scatter plots show the concordance in barcode growth rates between evolutionary 
replicates. Points are coloured according to barcode phenotype, as in (B). (F) Temporal 
frequencies for the floating barcodes in each evolutionary replicate. Lines are coloured by 
phenotypes and marker colours correspond to the unique barcode as in (A). POT and DM7 
measurement are harvested (live) populations as is the final time point, all others are floating 
barcode measurements. The temporal frequency dynamics are conserved both between time 
points within each replicate and between replicates. Moreover, the final samples (harvested 
population) largely match the last floating cells samples. 

As part of our experimental design, we never re-plated cells following drug exposure in order to 
avoid strong stochastic drift effects due to sampling bias. As such, we could not take aliquots of 
cells for analysis throughout the experiment. To track evolution through time in a non-destructive 
way, we leveraged the large volume of media (560ml) that is changed every week. HCC827 is an 
adherent cell line, with cells that detach from the plate surface upon death. We collected pellets 
consisting of cells that had died within the week and extracted barcodes from each time point. We 
confirmed that pellets from supernatant collection were apoptotic/necrotic cells (Figure S9). Time-
course barcodes allowed us to track the evolution under drug exposure without perturbing the 
system and at a resolution that is unparalleled (Figure 4F). Strikingly, this barcode analysis clearly 
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shows an expansion of the subclones we identified in our analysis of the final populations, with the 
final time point of barcodes derived from supernatant cells being very similar to the final harvested 
populations (Figure 4F, line colours indicate phenotype, point colours indicate unique barcodes). 
This result seems partially counterintuitive, as one might expect the barcodes harvested from the 
dead cells not to correspond to a resistant clone. However, this phenomenon can be understood 
by consideration of the underlying evolutionary dynamics. At first, many barcodes are driven to 
extinction, because the majority of cells in the initial population are sensitive to the drug. At this 
stage, those cells present in the harvested media correspond to the thousands of different 
barcodes of sensitive cells (grey), none of which is common in the initial population, hence no 
enrichment is detected. As the resistant population grows, the contribution to the floating media 
becomes a mixture of sensitive cells being driven to extinction, and resistant cells turning over. At 
the end of the experiment, it is these resistant cells that are common and correspond to the few 
barcodes that are enriched. The frequencies of the clones stabilized after approximately 3 weeks 
of gefitnib exposure, and 6 weeks of trematinib exposure (Figure 4F). By comparing the time series 
barcode dynamics between replicates, we again see that the evolutionary dynamics are strikingly 
conserved, suggesting that the resistance dynamics are highly predictable (Figure 4F).  

Evolutionary trade-offs and collateral drug sensitivity 
 
We have demonstrated quantitatively how gefitinib and trametinib herd the tumour population by 
expanding pre-existing resistant subclones. We sought to quantify the effect of evolutionary 
herding on the efficacy of second line drug treatment. Our genomic analysis predicts the existence 
of a MET amplified clone in the gefitinib treated lines and a separate CDKN2A-loss clone in the 
trametinib treated lines. We performed single-cell RNA sequencing on the POT sample, one 
gefitinib-treated replicate (GEF1) and one trametinib-treated replicate (TRM4). tSNE analysis 
confirmed that cells deriving from the same evolutionary replicates clustered closely together 
(Figure 5A). Colouring cells by the expression of these genes confirmed these predictions at the 
RNA level, including the subclonality of the MET amplification in the gefitinib resistant line (Figure 
5B). Overall, the single-cell data provides a picture that confirms the clonal composition reported 
by the barcodes. Phosphoproteomic results validated our findings in terms of the functional effects 
of the drugs on the signalling pathways (Figure S11, see Material and Methods).  
 
In light of these results, we reasoned that GEF the lines may exhibit collateral sensitivity to MET 
inhibition owing to the presence of a MET amplified subclone. As CDKN2A loss leads to 
upregulation of CDK2/4, we reasoned that inhibition of CDKs could prove effective in the TRM 
lines. Indeed, we found collateral sensitivity of TRM lines to JNJ-7706621, a pan-CDK inhibitor 
(Figure 5C), leading to half of the EC50 dose for trametinib evolved lines with respect to DMSO or 
POT (Figure 5D).  
 
We then leveraged high throughput drug screening technology to assay sensitivity to a panel 485 
compounds at each of four concentrations (20nM, 80nM, 200nM and 800nM). This screen 
revealed a total of 8 candidate collaterally sensitive drugs (Figure S10A,B) of which 6 were chosen 
for validation, including a cMET inhibitor BMS-777607 (see Material and Methods). However, none 
of these candidates exhibited collateral sensitivity upon validation (Figure S10C), suggesting that 
standard high throughput screening methodologies, developed for first line target identification, 
may not be ideal to study changes in drug efficacy following evolutionary herding.  
 
Taken together, these results demonstrate the potential of evolutionary herding in which a first 
drug can change the clonal composition of the population, inducing stable collateral drug 
sensitivity. However, although evolutionary trade-offs can be exploited to obtain collateral drug 
sensitivities, these are often rare, and likely specific to the signalling pathways altered by the 
agent. This may explain why collateral sensitivities have proved difficult to identify, and supports 
the need for model systems that are better able to identify evolutionary trade-offs using tumour 
evolution and biologically informed drug screening. 
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Figure 5. Herding leads to collateral drug sensitivity. (A) tSNE of single cell RNA sequencing 
coloured by replicate. (B) tSNE of single cell RNA sequencing coloured by decile of expression of 
MET and CDKN2A, different drug-resistant clones are indicated with arrows. (C) Dose response 
curves for the pan-CDK inhibitor JNJ-7706621 applied to the TRM lines (left). (D) EC50 
concentrations for baseline versus evolved lines. Error bars denote 95% confidence intervals. 

Discussion 
 
The vast majority of metastatic cancers remain largely incurable. Treatment with standard 
approaches may extend survival  (Zhang et al., 2009), but ultimately fails due to the emergence of 
resistant cells (McGranahan and Swanton, 2015). This is the natural consequence of a process of 
clonal evolution fuelled by intra-tumour heterogeneity (Greaves and Maley, 2012). Combining 
different drugs together at the same time has been investigated, but typically only improves 
survival by a few months, if any (Carrick et al., 2009; Delbaldo et al., 2004), and the narrow 
therapeutic window of cancer drugs leads to high toxicity in combinations, limiting the practicality of 
this approach. Instead, controlling the disease, rather than attempting to cure it, may be the only 
viable option in advanced cancers (Gatenby et al., 2009). Although this sounds radical in 
Oncology, disease management is well established in fields such as HIV (Ghosn et al., 2018) and 
antibiotic resistance (Nichol et al., 2015), as well as pest control (Alto et al., 2013; Neve et al., 
2009; Oliveira et al., 2007). In cancer, different groups have explored this concept of ‘adaptive 
therapy’ (Gatenby et al., 2009) where drug dose is modulated in response to the underling 
evolutionary dynamics (Enriquez-Navas et al., 2016; Gallaher et al., 2018), with encouraging 
preliminary results in clinical trials (Zhang et al., 2017). Many adaptive approaches are based on 
‘buffer therapy’, which exploits the fact that resistance often comes at a proliferative cost and 
hence resistant subpopulations may be at disadvantage in a drug-free environment (Hughes and 
Andersson, 2015b). This has been observed prospectively in colorectal cancer patients under 
EGFR inhibition, where KRAS-driven resistance seems to imply a cost, and KRAS subclones 
decrease in relative frequency if the drug is suspended (Siravegna et al., 2015). We have also 
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observed this in our evolved lines treated with trametinib, which show significantly slower growth 
with respect to baseline. When resistance comes at a cost in a drug-free environment, the drug 
sensitive subpopulations can be used to “keep in check” drug resistant cells (Gatenby et al., 2009). 
This would explain the low prevalence in the POT of the CDKN2A-loss clone. Moreover, 
evolutionary game theory has been proposed as a conceptual framework for adaptive therapy 
(Staňková et al., 2018). In this study we evaluated an additional level of complexity, where we use 
more than one drug to study evolutionary trade-offs and costs of resistance not just in the original 
drug-free environment, but also under the pressure of secondary drugs. The specific type of 
adaptive therapy we investigated is evolutionary herding, which exploits the differences in fitness 
landscapes imposed by different drugs to control or prevent drug resistance. 
 
Despite the conceptual elegance and promises of adaptive therapy however, current strategies are 
often based on ad hoc rules of thumb. The lack of reliable experimental model systems that 
recapitulate patient heterogeneity and clonal evolution is a major barrier for bringing adaptive 
therapies to the clinic. Here we presented a new approach for clonal herding where evolution can 
be tightly controlled, monitored and altered using drugs. This has the potential of paving the way to 
multidrug adaptive treatments.  
 
Although we have attempted to design a model system that specifically aims at recapitulating the 
evolutionary dynamics of treatment resistance occurring in patients, our study has limitations. First, 
we do acknowledge that established cell lines may not recapitulate the dynamics of evolutionary 
herding in the patient. Second, we have used high concentrations of drugs that may not be always 
achievable in patients. Therefore, future studies will be needed that incorporate tumour 
microenvironment factors such as cancer-associated stromal and immune cells as well as different 
doses of drugs. Moreover, additional validation experiments will be needed prior to incorporating 
such models into clinical trial design.   
 
Despite these limitations, model systems that recapitulate the temporal dynamics of human cancer 
evolution will shed new light on how to control drug resistance in advanced cancers, and open for 
the opportunity of personalised adaptive drug schedules that may achieve long-term control in 
advanced human cancers. 

Materials and Methods 

Cell line culture in HYPERflasks 
HCC827 cell line was cultured in RPMI-1640 medium (Sigma-Aldrich) supplemented with 10% 
FBS (Sigma-Aldrich), 4 mM L-Glutamine (Sigma-Aldrich), 1% non-essential amino acids (Sigma-
Aldrich), and 1% Penicillin-Streptomycin (Sigma-Aldrich). Cell line was confirmed to be 
Mycoplasma free using PCR-based method. Cell line was grown and expanded in High Yield 
PERformance Flasks (HYPERflask®) cell culture vessel (Corning). Medium was changed once a 
week and cells were harvested upon reaching ~85% confluence. 

Barcoding of cell lines 
The ClonTracer lentiviral barcode library construction and the generation of the lentivirus were 
previously described (38). The ClonTracer library a gift from Frank Stegmeier (Addgene #67267). 
HCC827 cell lines were cultured in normal growth media and barcoded by lentiviral infection using 
0.8 μg/ml polybrene. For the majority of single cells to be infected with a single barcode a 
multiplicity of infection (MOI) of 0.1 corresponding to 10% infection was chosen, following lentiviral 
titration results. Following infection, 2,5 μg/ml puromycin was used for selection of cells infected 
with a barcode. Statistical analysis of the barcoding process suggests that <1% of cells were 
doubly barcoded and <0.1% of unique barcodes were received by multiple cells (Supplementary 
Methods). 
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Generation of gefitinib and trametinib resistant cell lines 
The 1 million barcoded HCC827 cells were expanded to approximately 120 million cells, harvested 
and frozen. Of these frozen cells, 4 million cells were thawed and again expanded to 
approximately 120 million cells. These cells were seeded into 8 HYPERflasks equally.  Two 
HYPERflasks were grown under <0.0001% of DMSO for 6 days upon which they reached ~85% 
confluence and were harvested as controls. The remaining 6 HYPERflasks were grown under 
normal growth media for one week upon which they were exposed to GI99 concentrations of 
gefitinib (Selleckchem) and trametinib (Selleckchem) (3 replicate flasks for each), for 4 and 9 
weeks respectively. During this time, the medium and inhibitor were replenished weekly. The GI99 
concentrations for gefitinib and trametinib were previously determined to be 40 nM and 100 nM 
(Figure S1). Cell counts were determined via the Countess II Automatic Cell Counter 
(ThermoFisher). 

Barcode amplification and next generation library preparation  
Barcoded HCC827 cell lines and human PDOs were harvested and pelleted. Genomic DNA 
isolation was performed using DNeasy Blood and Tissue DNA extraction kit (Qiagen) according to 
manufacturer’s recommendations.  Half of the conditioned media from each HYPERflasks were 
centrifuged at 1,700 x g and pelleted. Quantification of genomic DNA was carried out using Qubit 
(Life Technologies). Amplicon PCR reaction was performed using 2x Accuzyme mix (Bioline) and 
20 ng of DNA to amplify the barcode using the previously published primers sequences (Bhang et 
al., 2018):  
 
Forward: ACTGACTGCAGTCTGAGTCTGACAG  
Reverse: CTAGCATAGAGTGCGTAGCTCTGCT 
 
Following detection of 80-bp PCR product including the 30-bp semi-random barcode and after 
purification, NGS libraries were prepared using the NEBnext Ultra II DNA library preparation kit for 
Ilumina (New England Biolabs) according to manufacturer’s recommendations. Libraries were 
quantified using Qubit (Life Technologies) and KAPA library quantification kit (KAPA Biosystems), 
as well as TapeStation (Agilent Genomics). Library preparation was not successful for DNA 
extracted at four floating cell time points (GEF2-F2, GEF3-F2, TRM5-F1 and TRM6-F3). NGS was 
performed in house using MiSeq (Ilumina). 

Barcode bioinformatics analysis 
FastQ files were first filtered to extract those reads with quality score >20 in all positions. Reads 
matching potential barcodes were extracted from FastQ files by use of a regular expression 
matching 12 bases of the forward barcode primer, followed by 30 base pairs, followed by 12 bases 
of the reverse barcode primer. To account for potential errors arising from PCR amplification or 
mutation, similar barcodes were merged via a novel method (outlined in the Supplementary 
Methods) that assigns each barcode to a representative matching the known weak/strong base 
pair pattern by consideration of the Hamming distance between barcodes. 
 
To assign a phenotype to each barcode we first determined an approximate growth rate under 
each condition by consideration of the frequencies. We assumed that the frequency of each 
barcode in the DMSO replicates was representative of the frequency in the drug-treated replicated 
GEF1-GEF3, TRM4-TRM6 prior to the introduction of drug. To ensure a conservative estimate of 
the growth rate, we estimated the initial frequency as 𝑓0 = 𝑀𝑎𝑥(𝑓'7, 𝑓'8) where 𝑓'7, 𝑓'8 denote the 
frequency of the barcode in the lines DMSO7 and DMSO8 respectively. Denote the barcode 
frequency in a given replicate following drug exposure, expansion and harvesting by 𝑓*. We 
estimated the growth rate of the barcode under drug exposure as 
 

𝑟 =	
1
𝑇
𝑙𝑜𝑔2

𝑓*
𝑓0
3	

 
where 𝑙𝑜𝑔 denotes the natural logarithm and 𝑇 denotes the time between drug exposure and 
harvesting the cells (𝑇 = 4𝑤𝑒𝑒𝑘𝑠 for gefitinib, 𝑇 = 9𝑤𝑒𝑒𝑘𝑠 for trametinib). 
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Phenotypes were then assigned according to the number of gefitinib and trametinib evolutionary 
replicates in which the barcode exhibited a positive growth rate. As a barcode can appear extinct in 
a given replicate either because it has negative growth rate, because the specific barcode was 
never seeded to that replicate, or because of drift, we determined barcode phenotypes as follows. 
Where a barcode exhibited positive growth rate in both 1+ GEF and 1+ TRM replicates, the 
barcode was designated as double-resistant. Where a barcode exhibited positive growth rate in 2+ 
GEF lines but no TRM lines it is designated gefitinib resistant / trametinib sensitive. Likewise, 
where a barcode exhibited positive growth rate in 2+ TRM lines but no GEF lines it is designated 
trametinib resistant / gefitinib sensitive. Where a barcode exhibits positive growth rate in a single 
replicate (GEF or TRM) it is designated as putatively de novo resistance. Other barcodes with 
measured growth rate are designated sensitive. Finally, some barcodes are designated as having 
undetermined phenotype where a barcode is not detected in DMSO7 or DMSO8 (potentially due to 
loss at seeding) but observed in a replicate, as a growth rate cannot be determined. Figure 4A 
shows a schematic of the phenotype mapping along with the proportion of unique barcodes 
assigned to each phenotype. Moreover, we compared a previous ‘POT’ baseline sample with the 
POT used in this experiment, after it has been frozen, stored and then thawed. Figure S12 shows 
that barcodes are highly consistent in terms of proportion in the two samples, with a proportion of 
barcodes that are always missed by sequencing, which implies a binomial sampling of the 
barcodes. 

Whole Exome Sequencing 
Nine whole exome sequencing libraries were prepared from 200ng of genomic DNA using the 
Agilent SureSelect HT2 Human All Exon_V6 kit following the manufacturer’s instructions. The 
libraries were pooled and sequenced on the Illumina NovaSeq platform. The median (of medians) 
coverage achieved was 161x (min 43x, max 218x), see Table S2. 
 
Mutation Calling 
Trimming was performed with Skewer v0.1.126. Reads with mean a quality value greater than 10 
prior to trimming and a minimum read length of 35 following trimming were kept. All others were 
discarded. Trimmed reads were aligned to the full human reference genome hg19 with the 
Burrows-Wheeler Aligner tool (bwa-mem, v0.7.15). PCR duplicates were marked using Picard 
tools  (v2.8.1). Mutations were jointly called for all samples together using Platypus v0.8.1(Rimmer 
et al., 2014). The extent of selection was determined by identifying SNVs exhibiting a 10x 
enrichment in VAF in the treated lines (GEF1-GEF3, TRM4-TRM6) over the POT line. This 
analysis yielded a cluster of four SNVs exhibiting enrichment corroborating that predicted by the 
barcode enrichment analysis. 
 
Copy Number Analysis 
Heterozygous single nucleotide polymorphisms (SNPs) in the exome sequencing of the cell lines 
were identified using allelecount v3.0.1 (www.github.com/cancerit/alleleCount). Here we counted 
bases at SNP locations that have a global minor allele frequency between 0.1 and 0.2 (min. 
genomic position 100,000 bp) in dbSNP build 132 (Sherry et al., 2001) and overlap with the target 
regions of the exome panel for all autosomes. We calculate B-allele frequency (BAF) by dividing 
the highest base pair count by the total coverage at the SNP loci. These values were randomly 
subtracted from 1 to simulate the random assignment of the A and B allele. Log R ratio (LRR) was 
calculated as the log base 2 of the coverage of each SNP loci normalised by subtracting the global 
median LRR value. 
  
To identify segments of copy number alterations (CNAs) we smoothed and segmented the LRRs 
of each sample using DNAcopy. In order to calculate the mean heterozygous major allele 
frequency in each segment we required a test for distinguishing between segments with pure loss-
of-heterozygosity (LOH) and segments containing heterozygous SNPs. We identified segments 
with heterozygosity by counting the numbers of SNPs in each segment with a major allele 
frequency less than 0.9. We then performed an exact binomial test in which the alternative 
hypothesis was that more than 5% of the segment contains heterozygous SNPs (p < 0.05). For 
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those segments in which the null hypothesis was rejected, the median heterozygous major allele 
frequency value was used to represent the allelic (im)balance of the segment.  
Using the ASCAT equations (Van Loo et al., 2010), we assumed each sample was pure (rho = 1) 
and solved the ploidy of each sample (psi) by calculating the distance of the continuous major and 
minor copy number values of all segments from their nearest integer states across a range of psi 
values that are realistic for tumour ploidy (1.5 to 5.5). The psi value that produced the smallest 
distance from integers in all segments was taken as the ploidy solution. This was ~3 for all cell 
lines as the cell line HCC827 is known to be triploid (Engelman et al., 2007). 
 
We additionally calculated GC content normalised depth ratios between each treated cell line and 
the parental population (POT) using Sequenza (Favero et al., 2014). To calculate segments of 
differential copy number status, we subset the loci by their global minor allele frequency in dbSNP 
build 132 and segmented the depth ratios using DNAcopy as described previously.   

Digital Droplet PCR 
Genomic DNA isolation for ddPCR was performed using DNeasy Blood and Tissue DNA extraction 
kit (Qiagen) according to manufacturer’s recommendations. Quantification of gDNA was carried 
out using Qubit (Life Technologies). DdPCR was performed on a QX200 ddPCR machine (Bio-
Rad). Copy number assay was performed using 3 ng gDNA as a template and commercially 
available probes for MET (dHSACP2500321, FAM, Bio-Rad) and NSUN3 (dHSACP2506682, 
HEX, Bio-Rad) as a reference gene.  PCR reactions were performed using 3ng of DNA, 10 μl of 
2xSupermix in a total volume of 20 μl. Automated droplet generator (Bio-Rad) was used to 
generate ~20,000 droplets for partition of PCR reactions. Negative controls with no DNA and 
positive control DNA extracted from a cell line with previously reported CN were included. 
QuantaSoft v1.3.2.0 software was used for MET CN analysis. Copy number status of NSUN3 was 
assumed to be 3 (triploid) and this was confirmed by copy number analysis in exome sequencing 
data. 

High-throughput drug screening 
Cells from POT, DMSO7, DMSO8, GEF1-3 and TRM4-6 were tyripsined and counted. 1,000 cells 
per well were seeded in 384-well plates (Corning). Cells were grown in a 370C and 5% CO2 
incubator overnight. A panel of 485 agents (Table S3) was prepared in 4 different concentrations 
(20 nM, 80 nM, 200 nM and 800 nM) and dispensed per well using Echo 555 liquid handler 
(Labcyte Inc.). After 3 days of treatment with agents, cells were incubated with 10% CellTiter-Blue 
cell viability reagent (Promega) for 4 hours in a 37oC and 5% CO2 cell culture incubator. Finally, 
EnVision (PerkinElmer) plate reader was used to obtain readings. 
 
Hit identification was performed separately for each of the four drug concentrations. First, for each 
replicate, normalised percentage inhibitions (PCI) for each compound were derived using the 
average fluorescence of 14 empty wells as a negative control and the average fluorescence of 14 
wells seeded with cells but no drug as a positive control. To improve statistical power, we grouped 
the PCIs for the two POT controls and two DMSO lines together as a control data set comprising 
four data points per compound, per concentration. Likewise, the data for the three evolutionary 
replicates under each drug (GEF1-3 and TRM4-6) were grouped. Potential collaterally sensitive 
second line therapies were identified as those exhibiting a significant change in mean PCI  (as 
determined by a two-tailed t-test on the PCIs at an á=0.05 significance threshold) that was greater 
than a 5%. To account for spurious hits arising from multiple hypothesis testing we considered only 
compounds resulting in hits at two or more concentrations. This analysis yielded eight candidate 
therapies for validation (Figure S8), namely Teniposide, Mycophenolate Mofetil, Fludarabine, BMS-
777607, Tosedostat (CHR2797), Panobinostat (LBH589), ENMD-2076, PF-03814735. Of these we 
opted to validate six, excluding Mycophenolate Mofetil and Fludarabine. The six drugs for 
validation were purchased from Selleckchem. 

High-throughput drug screen validation 
POT, 2 DMSO, gefitinib and trametinib resistant cell lines were trypsinised and counted. Between  
500 and 10,000 cells per well were seeded in 96-well standard plates (Corning). Following overnight 
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incubation in a 37oC and 5% CO2 cell culture incubator, average 10-fold changing dose of 10 
concentrations from each inhibitor were used. 3 days post inhibitor treatment for all of the drugs 
validated, with an exception of 10 days for trametinib, 10% CellTiter-Blue cell viability reagent 
(Promega) was applied. After overnight of incubation with 10% CellTiter-Blue in a 37oC and 5% CO2 
cell culture incubator, readings were obtained using EnVision (PerkinElmer) plate reader. 
 
To derive dose-response curves, normalised percentage growth was derived from OD readings by 
normalisation to six positive control (drug-free growth) and six negative control (empty) wells. A two 
parameter (ec50, hill coefficient) log-logistic dose response curve was then fitted to the data via non-
linear least squares regression. 

Luminex phospohoprotein Assay 
POT, DMSO7, GEF1 and TRM4 cell lines were tyripsinied and counted. Following seeding of 300, 
000 cells per well in 6-well plates and incubation in a 37oC and 5% CO2 cell culture incubator 
overnight, 3 biological replicates of each cell lines were treated with DMSO, 40nM of gefitinib and 
100nM of trametinib for 1 hour. After the incubation under those conditions, cells were tyripsinised 
and centrifuged at 1,500 rpm to generate cell pellets. Cell pellets were lysed using MDS Tris Lysis 
Buffer (Meso Scale Diagnostics) containing phosphatase inhibitor I (Sigma-Aldrich), phosphatase 
inhibitor II (Sigma-Aldrich), protease inhibitor (Cell Signalling Technology). Protein content of lysed 
samples was quantified using BCA assay (Sigma-Aldrich). MILLIPLEX MAP Akt/mTOR 
phosphoprotein kit, MILLIPLEX MAPK/SAPK signalling kit, MILLIPLEX MAP RTK phosphoprotein 
kit (48-611MAG, 48-660MAG, HPRTKMAG-01K respectively, MerckMillipore) were combined with 
the following singleplex magnetic bead sets to produce three multiplex Luminex assays; Total 
HSP27, GAPDH (46-702MAG, 46-710MAG, 46-623MAG, 46-641MAG, 46-608MAG, 46-667Mag, 
MerckMilipore). Bio-Plex Pro phosphor-PDGFRb and Akt (Thr308) (171-V50018M, 171-V50002, 
Bio-Rad) were combined into a triplex assay. Manufacturer’s recommendations were followed. 
Phosphoprotein levels were measured on the Luminex 200 system utilizing xPOTENT c3.1 
software. 
 
EGFR phosphorilation was highly downregulated under gefitinib and even in the absence of drug 
in GEF evolved lines, suggesting a stable phenotype where EGFR signalling has been lost due to 
clonal evolution (Figure S10A). MET phisphorilation was upregulated only in MET amplified GEF 
lines, as expected (Figure S10B). MEK phorphorilation was variable (Figure S10C), however we 
confirmed ERK/MAPK downregulation under trametinib (Figure S10D), a strong indicator that the 
drug is inhibiting the MEK pathway. 

Floating barcodes harvesting  
To track evolution through time, we leveraged the large volume of media (560ml) that must be 
changed each week to maintain the HYPERflask culture system. HCC827 is an adherent cell line, 
with cells that detach from the plate surface upon death. By spinning the spent media in a 
centrifuge at 12,000 rpm for 10 minutes, we collected pellets consisting of cells that had died within 
the week. We extracted barcodes from these intermediate time points for each of the gefitinib 
exposed lines (weekly for 4 weeks) and for each of the trametinib resistant exposed lines (weekly 
for 9 weeks). These barcodes permitted us to track the evolution of each cell lineage, under each 
drug exposure, without the need for re-plating, and with a temporal resolution that is unparalleled. 
Apoptotic barcoded cells were extracted using DNeasy Blood and Tissue DNA extraction kit 
(Qiagen).  
 
Single cells RNA profiling 
 
Sample preparation 
Single cells were prepared from POT, GEF1 and TRM4 cells. After centrifugation, single cells were 
washed with PBS and were re-suspended with a buffer (Ca++/Mg++ free PBS + 0.04% BSA) at 
1,000 cells/µl. 
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Sequencing 
Viability was confirmed to be > 90% in all samples using acridine orange/propidium iodide dye with 
LUNA-FL Dual Fluorescence Cell Counter (Logos Biosystems, L20001). Single cell suspensions 
were loaded on a Chromium Single Cell 3’ Chip (10X Genomics) and were run in the Chromium 
Controller to generate single-cell gel bead-in-emulsions using the 10X genomics 3’ Chromium v2.0 
platform as per manufacturer’s instructions. Single-cell RNA-seq libraries were prepared according 
to the manufacturer’s protocol and the library quality was confirmed with a Bioanalyzer High-
Sensitivity DNA Kit (Agilent, 5067-4627) and a Qubit dsDNA HS Assay Kit (ThermoFisher, 
Q32851). Samples were pooled up to three and sequenced on an Illumina HiSeq 4000 according 
to standard 10X Genomics protocol. 
 
Data analysis 
cellRanger (v2.1.1) was run on the raw data using GRCh38 annotation (v1.2.0). Output from 
cellRanger was loaded into the statistical computing environment R v3 (www.r-project.org) through 
the function load_cellranger_matrix_h5 from package cellranger (v1.1.0; genome = ”GRCh38”). 
Datasets were merged according to gene names. Before normalization, a series of filtering steps 
was performed. Only those cells showing at least 1,500 detected genes and 5,000 UMIs were 
considered for further analyses (Torre et al., 2018). Reads mapping on mitochondrial genes were 
excluded. After that, data were imported in Seurat (v2.3.4) (Butler et al., 2018) and scaled 
(NormalizeData function using normalization.method = "LogNormalize", scale.factor = 10000, 
followed by the ScaleData function). A further filtering step was performed based on the cumulative 
level of expression (the sum of the Seurat-scaled values) of three housekeeping genes (GAPDH, 
RPL26 and RPL36) (Lin et al., 2018). Manual inspection of these values versus the number of 
UMIs per cell (or the number of genes with non-zero expression per cell) revealed no significant 
correlation between the two. Nevertheless, a number of cells showed extremely low expression of 
these genes, so those in the bottom 1% were excluded from further analyses. At last, genes 
expressed in less than 20 cells were also excluded. Linear normalization and scaling were 
performed again on the filtered, raw data. Variable genes were identified using the 
FindVariableGenes function of Seurat (mean.function = ExpMean, dispersion.function = LogVMR, 
x.low.cutoff = 0.01, x.high.cutoff = 6, y.cutoff = 0.01, num.bin = 100). Principal component analysis 
(PCA) was run using variable genes as input and, based on p-values estimated by the JackStraw 
function, the top 44 components were kept. These components were used as input for further 
dimensionality reduction (using t-Distributed Stochastic Neighbor Embedding; t-SNE) through the 
RunTSNE function (perplexity = 50, do.fast = TRUE, seed.use=44). Clusters were then identified 
using FindClusters (resolution = 0.6). 
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