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Abstract 

 

Circular RNA (circRNA) is a poorly understood class of non-coding RNAs, some of which have been 

shown to be functional important for cell proliferation and development. CircRNAs mainly derive 

from back splicing events of coding mRNAs, making it difficult to distinguish the internal exon 

composition of circRNA from the linearly spliced mRNA. To examine the global exon composition 

of circRNAs, we performed long-read sequencing of single molecules using nanopore technology for 

human and mouse brain-derived RNA. By applying an optimized circRNA enrichment protocol prior 

to sequencing, we were able to detect 7,834 and 10,975 circRNAs in human and mouse brain, 

respectively, of which 2,945 and 7,052 are not currently found in circBase. Alternative splicing was 

more prevalent in circRNAs than in linear spliced transcripts, and notably >200 not previously 

annotated exons were used in circRNAs. This suggests that properties associated with circRNA-

specific features, e.g. the unusual back-splicing step during biogenesis, increased stability and /or 

their lack of translation, alter the general exon usage at steady state. We conclude that the nanopore 

sequencing technology provides a fast and reliable method to map the specific exon composition of 

circRNA. 
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INTRODUCTION 

Circular RNA (circRNA) constitutes an abundant and partially conserved group of RNAs derived 

from both coding and non-coding linear transcripts. They are the outcome of a unique splicing event 

in which the 5’ splice donor back-splices to the upstream 3’ splice acceptor, resulting in a closed 

circular RNA. The formation of a unique back splice junction (BSJ) differentiates the circRNAs from 

their linear counterpart. CircRNAs are highly expressed in the central nervous system where many of 

them are differentially expressed during development (Ashwal-Fluss et al., 2014; Rybak-Wolf et al., 

2014; Venø et al., 2015) and also found to function as biomarkers in various cancer studies 

(Kristensen, Hansen, Venø, & Kjems, 2018; Okholm et al., 2017; Vidal et al., 2017). Only a limited 

number of circRNAs have been characterized functionally. The most extensively studied circRNA, 

ciRS-7, appears to act as a regulator of microRNA miR-7 (Thomas B Hansen et al., 2013; Kleaveland, 

Shi, Stefano, & Bartel, 2018; Memczak et al., 2013) and its removal in mouse brain causes cognitive 

changes in mouse behavior (Piwecka et al., 2017).   

High-throughput techniques including Illumina-based RNA-seq (Thomas B. Hansen, Venø, 

Damgaard, & Kjems, 2015), Microarray (S. Li et al., 2018; S. Zhang et al., 2018) and NanoString 

(Dahl et al., 2018) have been employed to profile circRNA expression by detecting and counting the 

number of unique BSJ sequences. However, none of the applied techniques have so far been able to 

detect the full structure of circRNAs measuring > 300 nucleotides and they are therefore unable to 

determine the exon composition of most circRNAs or distinguish between alternative splicing in 

linear and circular RNA species derived from the same gene. One approach that has addressed this 

problem is based on paired-end sequencing using the Illumina platform, but the method is limited to 

small circRNAs and provides only indirect data for the large circRNAs (Gao et al., 2016). 

Nanopore Sequencing Technology is an approach that has opened up a new era in genomic and 

transcriptomic studies by allowing ultra-long sequencing reads and Oxford Nanopore Technology 

(ONT) has recently launched a commercial platform that has eased the implementation of the 
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technology in the lab (Byrne et al., 2017; Chuang et al., 2018; Jain et al., 2018; Oikonomopoulos, 

Wang, Djambazian, Badescu, & Ragoussis, 2016; Workman et al., 2018). A recent study used 

Nanopore technology to sequence poly(A)-purified RNA and reported a significant number of trans-

spliced RNAs (Chuang et al 2018); however, the inclusion of a poly(A) selection step prevented the 

detection of circRNAs. Another study combines nanopore sequencing with a PCR-based approach 

by using end-to-end divergent primers to create BSJ reads and find different variants of circNPM1. 

However, this study was limited to this circRNA alone (Hirsch et al., 2017). 

An alternative technique for ultra-long sequencing is the Single-Molecule Real-Time (SMRT) 

approach developed by Pacific BioSciences (PacBio) (Rhoads & Au, 2015), which  provides a lower 

error rate due to multiple rounds of repeated sequencing of the same DNA template as part of the 

standard protocol (Weirather et al., 2017). However, this technique is considerably more expensive 

to establish in the lab, has lower throughput and is more difficult to establish as a bed-side clinical 

analysis method compared to the portable USB-sized ONT MinION sequencer (Check Hayden, 

2014). Furthermore, for many applications, such as RNA-Seq, the increased error rate seen by ONT, 

is less of a concern when having access to a reference genome. Therefore, we chose the ONT 

nanopore platform to provide a comprehensive characterization of correlated alternative splicing 

events in circRNAs on a genome wide scale. We demonstrate that this technology is capable of global 

circRNA sequencing and by applying it to RNA from human and mouse brains, it provides the first 

detailed characterization of the internal exon composition of circRNAs and how it varies in different 

species.  

 

 

RESULTS 

Only a small fraction of RNA is circular (e.g. approx. 0.1% of rRNA depleted RNA pool in mouse 

nervous system; (Gruner, Cortés-López, Cooper, Bauer, & Miura, 2016)). To focus our sequencing 
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on this small fraction of RNA, we used a modified version of the RPAD protocol (Panda et al., 2017) 

to deplete both ribosomal and linear RNA. In brief, total RNA from mouse or human brain was treated 

with RiboZero to remove ribosomal RNA and RNase R-treated to remove linear RNA. Since some 

linear RNAs are resistant to RNase R, we conducted an additional polyadenylation step followed by 

poly(A)-depletion to remove the remaining linear RNA (See Fig. 1A for an overview of the full 

enrichment protocol). Quantification of selected circRNAs, linear mRNA and ribosomal RNA 

confirmed that this additional enrichment step led to a strong enrichment of circRNAs (Fig. 1B). The 

enriched circRNA pool was nicked by gentle hydrolysis and re-polyadenylated to align it with the 

standard ONT protocol for cDNA-PCR sequencing. 

Nanopore sequencing of the human and mouse circRNA libraries resulted in 0.67 mio and 1.06 mio 

reads, respectively, of which 3.2% and 3.3% were mapped across circRNA BSJ (Table 1). The mean 

read length was 430 bp and 545 bp for mouse and human data, respectively, with mean quality scores 

of 11.95 and 11.70 (Supplementary Fig. 1). These numbers translate into an error rate of 6.4% and 

6.8% per base for mouse and human, respectively, which is in line with other single-strand ONT 

sequencing reports. However, the relatively high error rate necessitates deviations from the standard 

circRNA identification protocols. Here, we enforce a stringent Blat score (the number of matching 

nucleotides subtracting mismatches and gap penalties) of 30 on each side of a BSJ to call a circRNA.  

Due to the efficient enrichment of circRNAs prior to sequencing, the vast majority of the reads 

mapping linearly inside defined circRNA regions, but without crossing the BSJ, are also likely to 

originate from the circRNA. With this assumption, 25.1% and 26.2% of the sequenced reads map to 

circRNA regions (Table 1). 

A total of 7,834 and 10,975 circRNAs were identified in human and mouse brain-derived total RNA, 

respectively (Table 1; see Supplementary Tables 1 and 2 for a complete list). Of these, 1,319 

conserved circRNAs were detected in both human and mouse brain, amounting to 16.8% and 12.0% 

of the detected human and mouse circRNAs, respectively (Fig. 2A). This is on par with previous 

Illumina-based circRNA studies estimating that 10-20% of expressed circRNAs are conserved 
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between mammalian species (Jeck et al., 2013; Venø et al., 2015). Among the highest expressed and 

conserved circRNAs, we find well-known brain circRNAs such as circRims1, circRims2, circHipk3, 

circCdyl, and circZfp609 (Fig. 2B). Surprisingly, ciRS-7 was missing in the mouse dataset, which 

suggests that our circRNA enrichment protocol in this case may cause some selective biases in the 

relative amount of ciRS-7 (see discussion). The exon maps of two highly abundant circRNAs, Hipk3, 

and Zfp609, are shown in Figures 2C and 2D, respectively. Interestingly, in our whole dataset, 2,945 

and 7,052 circRNAs from human and mouse, respectively, were not previously annotated in the 

circBase (Table 1). 

The long sequencing reads enabled a comprehensive mapping of the exon-intron composition of the 

circRNAs. To map the circRNA exons usage and retained introns, all mouse and human BSJ-

spanning reads were aligned to the respective reference genomes and the number of base pairs, 

mapping to exonic or intronic regions, were quantified. To focus our analysis towards intron retention 

and other alternative splicing events in the more abundant circRNAs, only circRNAs with 10 or more 

BSJ reads and having a mean intronic mapping percentage above 3% were investigated further. We 

found evidence for intron retention for 3 human and 4 mouse circRNAs, while 39 and 57 circRNAs 

contained exonic sequences not currently annotated in RefSeq for human and mouse, respectively 

(Supplementary Tables 3 and 4). Examples of intron retention are shown for CAMSAP1 circRNA, 

which only occurs in humans RNA (Fig. 2E) and LPXN circRNA (Fig. 2F), a circRNA only 

expressed in humans. 

The data also revealed that alternative exon usage is a widespread phenomenon in both human and 

mouse circRNAs (Fig. 3) and that the alternative splicing pattern of the individual circRNA often are 

shared between mouse and human (Supplementary Tables 7 and 8). Most of the exons used in 

circRNAs are annotated in RefSeq, but, notably, 1.9% (73 exons) and 2.1% (96 exons) of the well-

expressed exons (> 5 reads) in human and mouse, respectively, are novel and not previously annotated 

in RefSeq. Looking only at alternatively spliced exons the percentage of novel exons increases to 

8.7% (21 exons) and 6.8% (12 exons) in human and mouse, respectively (Table 2). 
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Examples of extensive alternative splicing events are shown for human circPPP6R2 and circRBM23 

and mouse circBrsk2 and circNrxn1 (Fig. 3A-D). Note that circPPP6R2 is shown as an example of a 

circRNA that contains a non-annotated exon (Fig. 3A). Our data also confirmed the existence of two 

human ciRS-7 isoforms measuring 1,485 and 1,301 bp (Supplementary Fig. 2), caused by optional 

intron retention (Barrett, Parker, Horn, Mata, & Salzman, 2017; T B Hansen et al., 2011).  

To further analyze the use of novel exons in circRNAs, we categorized them either as “cryptic 

circRNA exons” (sharing either the 5’ or 3’ splice sites with the annotated exon) or “unique circRNA 

exons” (entirely new exons; Fig. 4A). Using this annotation 91 out of 2,393 exons in human and 82 

out of 2,487 exons in mouse were unique circRNA exons and 140 and 163 are cryptic circRNA exons, 

respectively (Fig. 4B). All single-exon circRNAs are excluded from this analysis since complete 

coverage of detected exons is required within single reads, which cannot technically occur for single 

exon circRNAs (see methods section).  

Most unique circRNA exons found in our dataset are in the 40-200 bp range but a distinct group of 

very short exons (microexons) of 3-6 bp were also frequently observed (Fig. 4D-E). Interestingly, a 

majority of the circRNA-specific exons resulted in frame shifts or incorporation of stop codons, 

possibly explaining their absence in linear mRNAs that undergo translation and therefore are subject 

to nonsense-mediated decay (see discussion).  

 

 

DISCUSSION 

Delineation of the exact exon composition of mammalian RNA transcripts is often neglected due to 

predominant usage of short-read sequencing technologies. The invention of long-read sequencing 

provides a unique opportunity to address the question. In this study, we apply Oxford Nanopore 

sequencing technology to describe the exon composition of full-length circRNAs. This approach 

circumvent the limitation of second-generation paired-end sequencing methods where the read-length 

is limited to approximately 150 nucleotides adjacent to the BSJ, insufficient to read through most 
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circRNAs. Previous studies have presented algorithms to predict circRNA structure and alternative 

splicing events based on shorter sequencing reads (Gao et al., 2016); however, neither the current 

second-generation sequencing protocol nor prediction algorithms can provide a direct view of the 

full-length sequence of circRNAs.  

One limitation of the ONT sequencing method is that it only provides a relatively low read number 

(usually 1-2 mill. reads on the Minion setup compared to 1-2 billion reads on the Illumina platform). 

In order to reach a reasonable coverage of circRNAs we implemented an enrichment protocol for 

circRNAs in addition to the standard rRNA-depletion/RNase R treatment. Inspired by Panda et al. 

(Panda et al., 2017), we implemented an additional successive poly(A)-tailing-poly(A) removal step, 

which further enriched for circRNAs (Fig. 1B). One thing to bear in mind when designing such an 

enrichment scheme is that extensive purification steps can introduce biases in the circRNA pool. For 

instance, it is a well-known fact that some linear RNAs are resistant to RNaseR while some circRNA 

are sensitive, presumably because they become nicked during purification. In addition, the Ribo-zero 

probes may have fortuitous complementarity to circRNAs and lead to selective removal. Indeed, we 

found that the abundant circRNA, ciRS-7, to some extend was removed by the RiboZero treatment 

of mouse RNA (data not shown). This circRNA also appeared more sensitive to RNase R than 

circHipk3, maybe due to the larger size of murine ciRS-7 (2,927 nucleotides), which is nearly twice 

the size of human ciRS-7 (1,485 nucleotides) and almost three times larger than circHipk3 (1,099 

nucleotides). This phenomenon has previously been reported (Jeck et al., 2013) and may be explained 

by increased chance of nicking in larger circRNA. As part of our circRNA enrichment process we 

also saw that the βIII-tubulin transcript is 10-fold more resistant to RNase R treatment than the Eef1a1 

mRNA (data not shown), presumably due to RNA structures inhibitory to exonuclease activity. 

Further investigation is needed to see how RNaseR treatment affects different linear and circular 

RNAs on a global scale. Until then, we need to stress that circRNA purification protocols can create 

significant biases and care must be taken to only compare RNA profiles created with the same 

purification strategy. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 4, 2019. ; https://doi.org/10.1101/567164doi: bioRxiv preprint 

https://doi.org/10.1101/567164
http://creativecommons.org/licenses/by/4.0/


8 
 

We found clear examples of intron-retentions in 4 mouse and 3 human circRNAs (Supplementary 

tables 3 and 4). Of those, circCAMSAP1 only shows intron retention in human brain as previously 

reported (Fig. 2E; (Salzman et al., 2013; X. O. Zhang et al., 2014). The other examples of intron-

retaining circRNAs have, to our knowledge, not been reported before. Intron-retaining circRNAs, 

also known as exon-intron circular RNAs (EIciRNAs), have been found to be restricted to the nucleus 

and, in one instance, shown to regulate transcription by association with RNA polymerase II (Z. Li 

et al., 2015). We are not able to distinguish nuclear from cytoplasmic circRNA in our dataset and it 

remains to be studied to what extent intron retention may regulate cellular compartmentalization of 

circRNA and whether they are associated with regulatory functions in general. 

Another striking observation from our long-read dataset is the high frequency of unannotated exons 

found in the circRNAs. A dedicated search identified 91 and 82 unique circRNA exons obtained  from 

human and mouse brain, respectively. Furthermore, 140 and 163 cryptic circRNA exons were 

generated by cryptic splicing (Fig. 4B). So why do we observe so many unique and cryptic circRNA 

exons not normally seen in linear spliced mRNA? One explanation may be that the circRNA specific 

exons are also alternatively spliced into linear mRNA but that the resulting transcripts are prone to 

degradation by nonsense-mediated decay (NMD). The NMD pathway is known to target mRNAs 

carrying a premature termination codon (PTC) in a translation-dependent manner (Belgrader, Cheng, 

& Maquat, 1993) and it plays a crucial role in the regulation of the transcriptome. Particularly in the 

brain, NMD is linked to development and neurodegenerative disorders (Jaffrey & Wilkinson, 2018; 

Lykke-Andersen & Jensen, 2015). The insertion of non-coding exons between coding exons in linear 

mRNA is likely to cause NMD, either by shifting the reading frame or by introducing a stop codon. 

In contrast, since most circRNA are not translated, they will not be subject to NMD and can therefore 

tolerate the inclusion of novel exons. In support of this theory, more than 68% and 76% of novel 

mouse and human exons, respectively, are either predicted to introduce frame-shifting or contain at 

least one in-frame stop codon (Fig. 4C). 
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Another possible explanation for the increased occurrence of novel exons in circRNAs could be that 

the novel exons are only spliced into the circular form of the RNA. The circRNA-specific exons may 

bind splicing factors or introduce RNA structures that selectively stimulate back splicing events rather 

than forward splicing. Such a system could function as a proofreading system to correct mRNA 

splicing by circularizing aberrantly spliced exons. Further investigation is needed to determine 

whether the alternative circRNA exon structure influences the sub-cellular localization and hence 

also its potential function. It is also unclear whether circRNA splice-variants are co-expressed in the 

same cells or originate from different cells in the brain.  

Interestingly, microexons were observed in both human and mouse data, most frequently as 3-bp 

exons (Fig. 4D-E). Microexons generally contain 3-15 nucleotides and are important regulators of 

the transcriptome, especially in neurogenesis where splicing factors such as nSR100/SRRM4, 

RBFOX and PTBP1 regulate the inclusion of brain-specific microexons (Curry-Hyde, Chen, Mills, 

& Janitz, 2018; Irimia et al., 2014; Ustianenko, Weyn-Vanhentenryck, & Zhang, 2017). In contrast 

to the longer exons, the 3-bp microexons did not cause frame shifts and only in a very few cases 

introduce a stop codon. Hence, NMD is not likely to play a role in the overrepresentation of these 

very short exons.    

In conclusion, our circRNA enrichment strategy combined with nanopore mediated long-read 

sequencing provides a platform for delineation of circRNA-specific exon structures. It reveals that 

many circRNAs have an exon structure distinct from that seen in linear mRNA, and that this structure 

appears to be partially conserved between mouse and human. It remains to be elucidated whether the 

unusual splicing pattern of circRNAs merely reflects the absence of NMD on these transcripts or 

whether alternatively spliced circRNAs mediate new functions independently of the linear host 

transcript. 
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METHODS 

In order to cover the circular RNAs derived from both X and Y chromosomes, total RNA was 

obtained from male gender for both human and mouse samples. Total human brain RNA was derived 

from post mortem cortex and provided by Agilent (Agilent Technologies, cat: 540143). For the 

preparation of mouse brain RNA, a male mouse (strain 129S2/SV) was sacrificed and the entire brain 

was harvested and grained in Trizol (Thermo Fisher Scientific). Total RNA was obtained according 

to the manufacture’s protocol. Animals were treated according to the regulation of “The Animal 

Experiments Inspectorate”, the legal authority under the “Ministry of Environment and Food of 

Denmark” (https://www.foedevarestyrelsen.dk/english/Animal/AnimalWelfare/The-Animal-

Experiments-Inspectorate/Pages/default.aspx). 

DNA LoBind tubes (Eppendorf) were used for all steps during the RNA preparation and ONT cDNA-

PCR library construction. RNA and dsDNA concentrations were determined using a Qubit 4.0 

fluorometer together with the Qubit HS dsDNA and Qubit HS RNA kits (Thermo Fisher Scientific). 

RNA quality was assessed after each step of circRNA preparation and polyadenylation using Agilent 

2100 bioanalyzer (Agilent Technologies). DNase I treatment was utilized to remove DNA from both 

the human and mouse total RNA preparations. The quality of total RNA samples was confirmed 

by agarose gel analysis.  

 

Preparation of linearized polyadenylated circRNA for Nanopore sequencing 

Generally, RNA Clean and ConcentratorTM -5 (R1016, Zymo Research) was applied after each step 

in the RNA preparation procedure to clean up and concentrate the RNA, using the adjusted RNA 

Binding Buffer to select only RNA transcripts longer than 200 nts. RiboLock RNase inhibitor 

(Thermo Fisher Scientific, EO0381) was added to the eluted RNA to prevent RNA degradation after 

each step. First, the Ribo-Zero rRNA Removal kit (Human/Mouse/Rat, Illumina) was employed to 

deplete ribosomal RNA from 20 µg of total human or mouse brain RNA according to the 

manufacture’s instruction. Then, the rRNA-depleted sample was treated with RNase R (Epicentre, 
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RNR07250) to digest all linear RNAs. In order to further enrich the ratio of circRNAs to linear RNA, 

the remaining linear RNAs were polyadenylated utilizing the Poly(A) polymerase (New England 

Biolabs, M0276) and subsequently removed with NEBNext Poly(A) mRNA Magnetic Isolation 

Module (New England Biolabs, E7490S). Next, a NEBNext Magnesium RNA Fragmentation Module 

(New England Biolabs, E6150) was used to linearize the circRNAs in preparation for sequencing. In 

order to fragment both small and large circRNAs, and prevent over-degradation of large circRNAs, 

the RNA sample was divided into three aliquots and subjected to 80 °C incubation for 30 sec, 1 min 

or 2 min, respectively, before pooling them again. After fragmentation, the 3´phosphate group was 

removed from linearized circRNAs, and phosphate groups added to the 5´ends using 

T4 Polynucleotide Kinase (New England Biolabs, M0201S) by first incubating for 30 minutes 

without ATP and then 30 min with ATP to remove and add the phosphate group, respectively. Finally, 

the linearized RNAs were polyadenylated as described above and used as input for the cDNA-PCR 

sequencing procedure (Fig. 1A). 

 

Evaluation of circRNA abundance during RNA preparation 

For cDNA preparation, we used the Superscript VILO cDNA Synthesis Kit (Thermo Fisher 

Scientific) according to the manufacturer’s protocol. The LightCycler 480 SYBR Green I Master Kit 

was used for the qPCR reactions.  Eef1a1 and  βIII-tubulin were chosen as housekeeping genes, 18S 

ribosomal RNA as a marker for rRNAs and ciRS-7 and circHipk3 to represent the circRNAs. 

 

cDNA-PCR sequencing 

The protocol, SQK-PCS108, version PCS_9035_v108_revF_26Jun2017, provided by Oxford 

Nanopore was applied with a few modifications as described below (See the flow of the protocol in 

Supplementary Fig. 3). 
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Reverse transcription and strand-switching 

Nine microlitres, equal to 50 ng of poly(A) RNA, 1 µl VNP primer (ONT), and 1 µl 10 

mM dNTPs were mixed and incubated at 65 °C for 5 min and snap-cooled on a pre-chilled freezer 

block. Then, a mix of 4 µl Superscript IV buffer (Thermo Fisher Scientific), 1 µl RNaseOUT, 1 µl 

100 mM DTT and 2 µl Strand-Switching Primer (SSP, ONT) was added to the cold sample, followed 

by incubation at 42 °C for 2 min. Finally, 1 µl of 200 U/µl Superscript IV Reverse Transcriptase 

(Thermo Fisher Scientific) was added and the following protocol completed using a thermocycler: 

One cycle at 50 °C for 10 min, one cycle at 42 °C for 10 min, one cycle at 80 °C for 10 min (heat-

inactivation) and cool down to 4 °C. 

 

PCR amplification of cDNA 

A set of 4x 50 µl reactions were prepared, each containing 25 µl 2x LongAmp Taq Master Mix 

(M0287, NEB), 3 µl cDNA PRM primer (cPRM, ONT), 17 µl nuclease-free water and 5 µl reverse-

transcribed RNA sample. The cycle steps of the PCR were: 1) 95 °C for 30 s, 2) 95 °C for 15 s, 3) 62 

°C for 15 s, 4) 65 °C for 6 min, repeat steps 2-4 for 18x, 5) 65 °C for 6 min and 7) cool down to 4 

°C. Each PCR reaction was treated with 1 µl of Exonuclease I (M0293, NEB) at 37 °C for 15 min 

followed by 80 °C for 20 min to inactivate the Exonuclease I enzyme.  

 

Agarose gel purification and size selection of the PCR products 

A set of 4x 40 µl of PCR reaction was mixed with 8 µl 6x DNA load dye (Thermo Scientific) and run 

on a 2% TBE agarose gel (UltraPure, Thermo Scientific) for 2h at 80V. Using the 100 bp and 1 kb 

DNA Quick-Load ladders (N0467 and N0468, NEB) as a reference, the PCR products in the 

range from 350 bp to 10 kb were cut out and extracted from the gel (GeneJet Gel Extraction Kit, 

Thermo Scientific). 
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Re-amplification of extracted DNA 

The 350 bp - 10 kb products were subjected to PCR amplification and Exonuclease I digestion as 

described above, except that 2 µl cPRM and 6 cycles of steps 2-4 was applied. In order to confirm 

the quality of amplified DNA, 5 µl of the PCR product was analyzed in a 2% TBE agarose 

gel. The remaining ~200 µl PCR material was mixed with 160 µl AMPure XP beads (Beckman 

Coulter) followed by rotation for 5 min at room temperature. The beads were subsequently washed 

twice using 500 µl fresh 70% ethanol, and DNA material eluted from the beads using 21 µl of Rapid 

Annealing Buffer (RAB, ONT) during 10 min rotation at room temperature. To add the adapter, 400 

fmol of the eluated DNA was adjusted to 23 µl using RAB buffer and used for adapter ligation 

by addition of 2 µl cDNA adapter mix (cAMX, ONT) and incubating for 5 min at room temperature 

with rotation. The mixture was purified using 20 µl of AMPure XP beads, incubated for 5 min at 

room temperature with rotation, before washing the beads twice with 140 µl of Adapter Bead Binding 

Buffer (ABB, ONT). Elution was done with 13 µl of elution buffer (ELB, ONT) for 10 min at room 

temperature with rotation. Then 12 µl of the ELB eluate was mixed with 35 µl of Running Buffer 

with Fuel mix (RBF), 25.5 µl of Library Loading Beads and 2.5 µl of nuclease-free water, and the 

sample sequenced for 48 hours using the MinION Mk1B with a FLO-MIN106 R9 Flow Cell. 

 

Data analysis 

Nanopore data was basecalled using Albacore (v 2.1.10). Quality control using FastQC revealed that 

the first 10 bp were generally of low quality so they were trimmed away using the fastX-toolkit. 

Porechop (v 0.2.3) was used to remove adaptors. The filtered data was mapped to the human genome 

(hg19) and mouse genome (mm10) using a parallelized version of  Blat software package (Kent, 

2002)https://github.com/icebert/pblat). Blat is able to map sequences across linear splice events but 

when encountering a BSJ splicing event, it splits into two segments that individually can be mapped 

to the genome. The observation of two segments that map upstream of a splice donor and downstream 

of a splice acceptor, respectively, signifies a BSJ and can hence be interpreted as a circRNA. A Blat 
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score is calculated as the number of matching nucleotides subtracting mismatches and gap penalties. 

To qualify as a circRNA, the Blat score has to reach 30 on both sides of the BSJ. A blat score of 30 

is a stringent requirement, so only a single read fulfilling this criterium is required to define a circRNA 

in this study. A putative circRNA is reported if the following criteria are met: The two hits from the 

same read must be 1) on the same genomic strand, 2) within 1 Mb, 3) must not overlap by 50 or more 

bp and 4) must be oriented in reverse order relative to the read sequence.  

 

Reads that fulfill the above-mentioned criteria are annotated with the number of bp overlapping a 

refSeq gene, exon of refSeq gene, Expressed sequence tags (ESTs) from the UCSC genome browser 

and introns of refSeq genes. This information is stored for each single read and is used later to assess 

the intron usage level in each detected circRNA. For visualization and further analysis, psl files were 

converted to bed12 format using a custom script and to bam format using samtools. 

Using custom scripts, hits originating from the same read were combined, only allowing reads with 

exactly two hits marking the genomic ends of circRNAs. The previously added gene/exon/EST/intron 

bp annotation data is summed when read hits are combined. Reads mapping to mitochondria and 

rRNA genes are excluded from this analysis. Since the ends of these putative circRNA reads often 

are heterogeneous due to the data quality of the Nanopore 1D reads, end-processing of the reads is 

performed by searching for the closest refSeq exon using bedtools. If both ends of a putative circRNA 

are within 30 bp of an annotated refSeq exon, the end-sequences of the putative exon are corrected 

accordingly. This effectively removes the end heterogeneity of the Nanopore data, when reads 

originate from RefSeq annotated genes. Putative circRNAs that do not satisfy this requirement are 

matched against circRNAs annotated on circBase. If a read has 95% overlap in its genome mapping 

position to an annotated circRNA, the end-sequences of the putative circRNA are corrected to fit the 

annotated circRNA ends. All reads satisfying the two adjustment criteria are accepted as circRNA 

candidates. 
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CircRNA candidate reads are collapsed to show only one unique genomic regions for each position 

found to produce a circRNA. These unique circRNA regions are annotated with overlapping gene 

(host gene), circBase ID where available, the count of candidate reads that map to the unique region, 

as well as the mean value of the previous gene/exon/EST/intron bp annotations for the mapping reads. 

Finally, the minimum, maximum and mean number of bp the mapping reads were adjusted to fit the 

mapping circRNA genomic region is added. 

Fastq quality scores are defined as Q = -10*log(err), where err is the per base error-rate. The error-

rate can be calculated as: err = 10^(-Q/10). Example for quality score of 11.95: err = 10^(-11.95/10) 

= 0.064 = 6,4%. 

 

Conservation of circRNAs 

Conservation of circRNAs was examined using the UCSC liftOver tool as described in (Venø et al., 

2015). Twenty base pairs from each end of circRNAs were lifted from mm10 to hg19 or from hg19 

to mm10, recombined and compared to circRNAs sequenced from the relevant species. 

 

Detection of intron usage in circRNAs 

In order to detect potential intron retention in circRNAs, we used the previously detected annotations 

for gene/exon/EST/intron mapping. This data was collected for each read individually, showing how 

many refSeq-annotated exons and introns each individual BSJ spanning read maps to. This allows us 

to calculate the intron coverage for each circRNA, defined as the mean number of intron mapping bp 

in the BSJ spanning reads that define the circRNA divided by the mean number of gene mapping bp 

in the BSJ spanning reads. CircRNAs with 10 or more BSJ spanning reads showing more than 3% 

intron coverage are inspected for intron retention. See Supplementary Tables 3 and 4 for a complete 

list of intron-containing circRNAs in human and mouse, respectively. 
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Novel exons 

Exons present in circRNAs but not annotated in RefSeq were detected by scanning mapped Nanopore 

reads for flanking AG-GT splicing signatures in the reference genome. Read segments mapping in 

discrete blocks, with allowance of up to 10 bp internal deletion, were checked for flanking base pairs. 

Segments that are flanked by AG on the 5' side and GT on the 3' side, consistent with RNA splicing, 

are marked as likely exons. If two or more reads corroborate the exon definition, it is considered a 

bonafide exon. No end processing of the Nanopore reads is done before detecting flanking sequences. 

Detected circRNA exons that do not match an annotated RefSeq exon by at least 95% similarity on 

genome coordinates are considered novel exons. Complete lists of novel exons detected in the 

Nanopore data can be seen in Supplementary Tables 5 and 6 for human and mouse, respectively. 

Note that only circRNAs with two or more exons contribute to this analysis, since BSJ spanning reads 

are required to completely cover an exon in a single genomic mapping location. Single exon 

circRNAs are combined from two genomic mapping locations of individual BSJ spanning reads, and 

do not count in this analysis. 

Novel exons that do not overlap any annotated RefSeq exon are classified as “unique circRNA 

exons”, whereas exons that partially overlap an already annotated exon are classified as “cryptic 

circRNA exons”, since these exons presumably arise from cryptic splice sites not normally used in 

the linear mRNA host (Fig. 4A). 

 

Alternative exon usage 

The usage of exons within the mapping range of each individual BSJ spanning read is detected and 

used to build alternative exon usage tables for each circRNA. For each circRNA, we quantify the 

number of BSJ reads mapping to genomic coordinates, including specific exons and how many of 

these BSJ reads have sequence mapping to the exon. Exon usage level is then defined as the number 

of BSJ reads using the exon divided by the number of BSJ reads mapping across the exon. Only exons 

used in 5 or more reads are included in the analysis. Exons that are constitutively used in circRNAs 
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have an exon usage level of 1, whereas alternatively used exons have an exon usage level between 0 

and 1. Complete lists of alternative exon usage for novel and annotated exons can be seen in 

Supplementary Tables 7 and 8 for human and mouse, respectively.  

 

Data availability  

The raw and analyzed long-read sequencing data are deposited to the Gene 

Expression Omnibus (GEO) repository database with the accession number GSE127059. The data 

will be publicly available upon publishing. 
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Figure legends: 

 

Figure 1: circRNA enrichment work flow for ONT sequencing. 

A) Total human or mouse brain RNA was subjected to DNase treatment and rRNA depletion before treating 

it with RNase R to digest the linear RNAs. To enrich the abundance of circRNAs further, the remaining linear 

RNAs were polyadenylated and depleted using poly(A) purification beads. The circRNA enriched supernatant 

was collected and fragmented to linearize the circRNAs. After removing a phosphate group from 3’ end and 

adding a phosphate group to the 5’ ends of the linearized RNAs, the obtained RNA pool was subjected to 

polyadenylation to align with the ONT sequencing protocol. 

B) After RiboZero and RNase R treatment, the remaining linear RNA was polyadenylated and depleted 

by oligo-dT beads. The supernatant (blue bars) and the eluate from the beads (orange bars) were analyzed by 

qPCR quantification for the relative contents of representative housekeeping genes (Eef1a1 and βIII-tubulin), 

circRNAs (ciRS-7 and circHipk3) and rRNA (18S rRNA). The circRNA level was significantly enriched in 

the supernatant obtained from the pelleted oligo-dT beads compared to the poly(A) purified. Bars represent 

mean of 2^-Ct ± SD and n=3. 

 

 

Figure 2: Comparing circRNAs in human and mouse brain.  

A) Venn diagram showing the total number of circRNAs found in human (7,834) and mouse (10,975), of 

which 1,319 circRNAs were found to be conserved. B) The number of BSJ spanning reads detected for mouse 

(x-axis) vs. human (y-axis) circRNAs. Only circRNAs that are conserved between human and mouse are 

included. Some genes like Rims1 generate several different circRNAs. C-D) Circular RNAs derived from 

HIPK3 and ZNF609; a novel exon using an alternative 3’ splice site is shown for human ZNF609. E) The 

Camsap1 circRNA is conserved between human and mouse, but only the human version shows intron 

retention. F) The human LPXN circRNA shows intron retention, while this circRNA is not expressed in mouse. 

The number of ONT reads are indicated by green (human) and orange (mouse) bars above the gene map (upper 

line, BSJ reads, lower line all reads). The black track indicates conservation and RefSeq gene annotation is 

shown below in blue. Note that the Hipk3 gene is expressed from opposite strands in human and mouse 

genomes, resulting in opposite directions of the shown browser screenshots.  
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Figure 3: Alternative exon usage. 

Several circRNAs from both human and mouse exhibit complex alternative splicing events. Examples shown 

are circRNAs PPP6R2 (A) and RBM23 (B) derived from human, and Brsk2 (C) and Nrxn1 (D) derived from 

mouse. Red arrows indicate alternatively spliced exons. See legend to Figure 2 for explanation of tracks. The 

bottom tracks show position of all individual BSJ spanning reads. 

 

 

Figure 4: Analysis of circRNA specific exons. 

A) Schematic representation of novel exons produced by either use of cryptic splice sites (cryptic circRNA 

exons; red) or exons found only in circRNA (unique circRNA exons; purple) in a back splicing event indicated 

by arrow. B) Donut diagram showing the distribution of known RefSeq exons, cryptic circRNA exons and 

unique circRNA exons for human (inside) and mouse (outside). C) The number of in-frame and out-of-frame 

exons shown for unique and cryptic circRNA exons of at least 30 bp length. In-frame novel exons containing 

an in-frame stop codon are shaded. D - E) The length profile of unique novel exons with 2 or more exact read 

matches shown as a bar chart for human (D) and mouse (E). The number of exons that are out-of-frame or 

introduce a stop codon is indicated by an overlaid line plot. 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Table 1: Information on reads that map to circRNAs 

 Human Mouse 

Raw reads  674,236  1,062,286  

Filtered reads  673,659  1,059,247  

Back splice junction reads 21,705 3.2% 34,707 3.3% 

circRNA mapping reads 169,022 25.1% 277,426 26.2% 

Unique circRNAs 7,834  10,975  

CircBase circRNAs 4,889  3,923  

Novel circRNAs 2,945  7,052  

 

 

 

 

 

Table 2: Summary of alternative exon usage 

 Number of exons 

with ≥ 5 reads 

Alternatively 

used exons 

Human   

RefSeq exons 3752 241 

Novel exons 73 21 

Novel % 1.9% 8.7% 

Mouse   

RefSeq exons 4541 177 

Novel exons 96 12 

Novel % 2.1% 6.8% 
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Supplementary figures 

 

 

Supplementary Figure 1: Nanopore 1D circRNA sequencing metrics. 

Histograms of read length (A) and quality score (B) distribution of enriched human and mouse circRNAs obtained by 

Nanopore MinION sequencing. 

 

 

 

 

Supplementary Figure 2: Reads across human ciRS-7.  

Red arrows indicate the splice sites involved in alternative intron retention, leading to circRNAs of 1,485 and 1,301 

nucleotides in size. 
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Supplementary Figure 3: Library preparation for Oxford Nanopore MinION sequencing. 

Poly(A) RNA is reverse transcribed using polyT-VN primer and second strand synthesis is performed using strand 

switching primer. After 18 rounds of PCR amplification the DNA product was purified from 2% TBE agarose gel after 

size selection from 350 bp – 10 kb. Using the gel purified product as PCR template, 6 more PCR cycles were employed 

to produce sufficient product for library preparation. After attachment of the sequencing adapters and elution of the 

sample, 12 µl was loaded to a flow cell and sequenced by Oxford Nanopore MinION. 
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