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Abstract: 
 
In 2015 and 2016, Zika virus (ZIKV) swept through many Latin American countries where 
dengue virus (DENV) is endemic. Dengue and Zika viruses are of the same family, share a 
vector and may interact competitively or synergistically through human immune responses. We 
examine dengue incidence data from Brazil and Colombia from before, during, and after the 
Zika epidemic. We find evidence that dengue incidence was atypically low in 2017 in both Brazil 
and Colombia. We investigate whether Zika incidence at the state or department level is 
associated with changes in dengue incidence and find mixed results. We use simulations to 
investigate expected impact of cross-protection or enhancement between dengue and Zika. Our 
simulations show that regardless of the mechanism, low periods of dengue incidence are 
followed by a resurgence in dengue cases. It is therefore likely that countries currently 
experiencing low levels of dengue incidence will experience large dengue seasons in the near 
future. By considering multiple combinations of DENV and ZIKV reproduction numbers, we 
demonstrate that the mixed results of our statistical models are not entirely unexpected. 
Correlations in DENV and ZIKV reproduction number could contribute to complicating 
or masking an association between their case counts.  

 

 
 
Introduction: 
 

In 2015 and 2016, Zika virus (ZIKV) swept through many Latin American countries1 

where dengue virus (DENV) is endemic. Following this epidemic, many locations appeared to 

experience abnormally low dengue incidence. DENV and ZIKV share a vector2,3 and are both 
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flaviviruses. Evidence suggests these viruses may interact competitively or synergistically 

through human immune responses4–10. Changes in surveillance and control in response to 

Zika1,11 could affect reported dengue cases. Conditions (climate12, vector abundance) that favor 

Zika may be similar to those favoring dengue. Here, we examine data from Brazil (1999-

2017)13–15 and Colombia (2007-2017)13,16,17 to determine whether dengue incidence has been 

atypical since the emergence of ZIKV. We demonstrate that dengue incidence was significantly 

lower than expected in both countries in 2017. Despite these unprecedented low periods, we did 

not find a negative association between cumulative Zika incidence and biweekly dengue 

incidence in either country. To gain insight into how immunological interactions would impact the 

relationship between ZIKV and DENV incidence in this period, we used a stochastic 

compartmental model of the four DENV serotypes and ZIKV under multiple assumptions. In 

almost all simulations incorporating strong ZIKV cross-protection against subsequent DENV 

infection, ZIKV epidemics were followed by a trough in dengue incidence, followed by a larger 

than average peak in DENV incidence. Correlated hazards of DENV and ZIKV transmission 

may complicate the relationship between ZIKV incidence and resulting dengue incidence. It is 

likely that countries experiencing low dengue incidence after the Zika epidemic will experience 

increases in dengue cases in the near future. 

           Epidemics of emerging pathogens have the potential to disrupt the ecology of other 

circulating pathogens. Zika virus (ZIKV) was identified in the Americas in Brazil in late 201518, 

though phylogeographic analyses suggest ZIKV may have arrived as early as mid-201319, 

entering northeast Brazil in early 201420. The outbreak in the Americas was extensive, affecting 

48 countries and territories up through December 201721. Serological evidence has found rates 

of infection ranging from 56% (Nicaragua22) to 63% (Salvador, Brazil23). These are comparable 

to seroprevalence in previous ZIKV outbreaks; 73% in Yap Island, Micronesia24, 49% in French 

Polynesia25. Associations between ZIKV infection and severe disease outcomes such as 
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microcephaly and Guillain-Barré syndrome were recognized by the WHO in March 20161, 

prompting intensified surveillance and control efforts.   

            Since 2016, Zika incidence in Brazil has dropped precipitously, from over 200,000 

probable cases in 2016 to 18,548 in 201713. In Colombia incidence dropped from approximately 

90,000 in 2016 to 1,641 in 201713. These reductions are likely the result of widespread immunity 

throughout affected populations, leaving few individuals susceptible to infection. Multiple human 

and animal studies show that ZIKV induces potently neutralizing antibody responses26,27, 

suggesting enduring ZIKV-specific immunity28. 

The primary ZIKV vectors, Aedes aegypti and Aedes albopictus2,3,29, also transmit 

chikungunya virus (CHIKV) and dengue virus (DENV). In contrast to CHIKV (an alphavirus), 

DENV and ZIKV are genetically similar flaviviruses8. DENV exists as four antigenically distinct 

serotypes (DENV1-4). When an individual is infected by DENV, there is a period of cross-

protection from infection by other serotypes30. After the period of cross-protection, subsequent 

infections with different serotypes can result in more severe disease due to antibody dependent 

enhancement (ADE)31,32. It has been speculated that, due to the similarity between DENV and 

ZIKV, immunity to one of these viruses may alter the chance of infection or probability of severe 

disease following exposure to the other virus. Current evidence supports both the potential for 

enhancement4–7 and for cross-protection5,7–10. 

 

Results and discussion 

At the population level, the large ZIKV epidemic could plausibly have lead to either 

increases or decreases in dengue cases. To determine if either was the case, we compared 

dengue surveillance data from before, during, and after the arrival of ZIKV. We constructed time 

series of probable case counts for each state in Brazil (1999-2017)13–15 and department in 

Colombia (2007-2017)13,16,17(see Methods, Fig. 1b, 1d, Supplementary Fig. 1). In 2017, Brazil 
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had the lowest annual incidence rate (IR) of dengue since 2005 (Fig. 1a) and Colombia had the 

lowest annual dengue incidence since 2007 (the first year of available data) (Fig. 1c). 

 

Departures from expected dengue incidence. We quantified the probability of departures 

arising by chance from expected dengue incidence using time series models with seasonal 

variation in autocorrelative effects (see Methods, Supplementary Fig. 2, 3). Biweeks with 

atypically large incidence occurred significantly more often than expected in Brazil in 2015 (Fig. 

2a, 2b). In 2017, Brazil experienced an increase in both atypically high and atypically low 

biweeks compared to expectation. In Colombia, a significant increase in atypically low biweeks 

was observed in 2016 and 2017 (Fig. 2c, 2d) (see Methods and Supplementary Fig. 4, 5 for 

further details). 

 

Hierarchical models characterize departures in expected dengue incidence. To attempt to 

explain the significant departures that we saw in each location, we built a set of hierarchical time 

series models that incorporated a number of subnational covariates. These models forecasted 

dengue incidence using combinations of seasonal dengue terms, year effects, and recent 

incidence of Zika. For a baseline, we also fit models incorporating chikungunya incidence. 

CHIKV shares climate and vector determinants as DENV and ZIKV but is of a different viral 

family and thus is not expected to interact immunologically with flaviviruses. 

In models incorporating year effects, we found that biweekly expected dengue incidence 

in 2015 was higher than that of corresponding biweeks in other years in both Brazil (mean: 2.21-

fold increase, 95% CrI: 1.45 to 3.37) and Colombia (mean: 1.11-fold increase, 95% CrI: 0.96 to 

1.29). In contrast, we found that biweekly dengue incidence in 2017 was lower in both Brazil 

(relative incidence mean: 0.63, 95% CrI: 0.46 to 0.86) and Colombia (relative incidence mean: 

0.23, 95% CrI: 0.18 to 0.29). At the subnational-level there are differences in the significance 
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and direction of these effects (Fig. 3b, 3d), with the exception of 2017 in Colombia, where there 

is a significant reduction in biweekly dengue incidence in all departments (Fig. 3d). 

We found a positive association between the previous biweek’s Zika incidence and 

dengue transmission potential in Brazil (mean coefficient: 0.16, 95% CrI: 0.05 to 0.26, Fig. 3a). 

Putting this coefficient in context, 1000 Zika cases observed in the previous biweek translates to 

a multiplicative increase of about 3 times as many expected dengue cases in the following 

biweek (mean: 2.92, 95% CrI: 1.40 to 6.15). We also found a positive association between 

cumulative Zika incidence on dengue transmission potential in Brazil (mean coefficient: 0.04, 

95% CrI: 0.003, 0.08). No significant association were found between Zika incidence and 

dengue transmission potential in Colombia. 

In Brazil, cumulative (mean coefficient: 0.04, 95% CrI: 0.01 to 0.08, Fig. 3a) and 

biweekly (mean coefficient: 0.11, 95% CrI: 0.04 to 0.17, Fig. 3a) chikungunya incidence were 

positively associated with expected dengue transmission in the following biweek (Fig. 3a, 3c, 

Supplementary Fig. 6). No significant association were found between chikungunya incidence 

and dengue transmission potential in Colombia. 

In Brazil, states with positive effects of Zika on dengue transmission potential often 

observed positive effects of chikungunya on dengue (Supplementary Fig. 6). Totals of 

suspected Zika and suspected chikungunya cases at state- and department-level were 

positively correlated (Supplementary Fig. 7), consistent with potentially shared environmental 

suitability conditions for transmission of these viruses. 

We tested whether the direction of country-level effects was an artifact of our model 

implementation, by replacing 2015 to 2017 with a random three consecutive years of data 

preceding 2015 and then repeating the model fitting procedure. We did not find agreement in 

the directionality of the country-level effects across the resulting models (see Supplementary 

Fig. 8), supporting our main results. 
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In 2017, low dengue incidence rates (Fig. 1), atypically high numbers of biweeks with 

lower than expected dengue incidence (Fig. 2), and negative country-level effects (Fig. 3a and 

3c) indicate a reduction in dengue incidence in Brazil and Colombia. Utilizing available Zika 

case data, we were unable to establish a direct link between this reduction and the Zika 

epidemic. It is important to note that there are limitations to using passive surveillance data (as 

we have done here), particularly when novel pathogens are involved. In the case of ZIKV 

invasion in the Americas, many cases that occurred early in the epidemic were not reported, 

since it took time to first identify the presence of ZIKV and then to establish reporting protocols. 

The unavailability of Zika case count data during the height of the ZIKV epidemic in northeast 

Brazil, one of the most severely affected regions33, may have contributed to our inability to 

identify a relationship between cumulative Zika cases and observed dengue incidence. In both 

Brazil and Colombia, misclassified cases (potentially resulting from shared symptoms between 

case definitions of dengue, Zika, and chikungunya) also may have restricted our ability to detect 

such a relationship. Other factors such as climatological effects12 or additional mosquito control 

efforts1,11 and avoidance behavior may have played a role in reducing dengue incidence. 

 

Stochastic simulations incorporating immune-mediated interactions. We tested whether 

immune-mediated interactions between DENV and ZIKV could produce the dengue dynamics 

observed in Brazil and Colombia by simulating the arrival of Zika in a dengue endemic 

population (Fig. 4). We used a stochastic compartmental model that incorporated combinations 

of cross-protection or enhancement between the two viruses. In simulations where ZIKV 

infection temporarily reduces an individual’s risk of DENV infection, Zika epidemics are followed 

by a trough in dengue incidence ranging from 2.2 years to 3.4 years depending on the scenario 

(Fig. 4). Multiple simulations showed increases in dengue after troughs ranging from a 1.2-fold 

increase to a 2.5-fold increase (Fig. 4). Based on our simulations, which assumed that cross-

protection lasts one year on average, the time until dengue resurgence (trough duration) would 
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likely be longer than the assumed one-year duration of cross-protection. In all scenarios, 

suppression of DENV transmission resulted in subsequent increases in DENV prevalence, 

suggesting that the low period of incidence observed in 2017 may be followed by large 

increases in DENV. 

We also tested the impact of correlation in ZIKV and DENV transmission intensity on 

observed associations between cumulative ZIKV and DENV incidence (see Supplementary Fig. 

9). We consistently observed a reduced impact of ZIKV on dengue in simulations where DENV 

transmissibility was assumed to be higher. When the transmissibility of ZIKV and DENV were 

assumed to be equal, reductions in DENV due to cross protection were not larger in simulations 

with higher ZIKV attack rates as the impact of ZIKV was offset by increased DENV 

transmissibility. These results are consistent with an unclear or variable relationship between 

DENV reductions and cumulative ZIKV incidence as we have observed in the data. 

Our results demonstrate a significant decline in dengue cases in 2017 in Brazil and 

Colombia. Studies involving laboratory confirmed cases and enhanced serosurveillance (see for 

example Ribeiro et al. 201833) will play an important role in pinpointing the mechanism 

underlying this reduction. Our simulation results show that troughs in dengue incidence are 

followed by atypically high dengue levels. Atypically low dengue case counts observed recently 

in Brazil and Colombia suggest that population-level susceptibility to symptomatic dengue has 

been building. Such high levels of susceptibility could fuel large dengue epidemics in upcoming 

seasons. 
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Figure 1: Estimated dengue incidence in Brazil and Colombia (per 100,000). States are 
arranged by region and then by latitude from North to South. Note that Zika incidence was not 
systematically reported prior to 2016 in Brazil (a) or late 2015 in Colombia (c) and that 
Chikungunya was not systematically reported prior to 2015 and late 2014 respectively in Brazil 
(a) and Colombia (c). In Brazil, updated data from the following year’s bulletin for 2014 to 
Epiweek 42, 2017 is used.  
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Figure 2: Comparison between predicted and observed dengue incidence. Results for 2014-
2017 are shown for Brazil (a, b) and Colombia (c, d) (see Supplementary Fig. 4, 5 for full time 
series). b, d Red or blue indicate that the observed incidence fell above or below the median of 
500 draws from the posterior of predicted values for that biweek. Medium or dark shading 
indicates that the observed incidence fell outside of the 90% or 95% prediction interval (PI) for 
that biweek. a, c The number of biweeks with observations falling below (blue) or above (red) 
the 90% PI are displayed with a quantile of the observed number of significant biweeks out of a 
distribution generated by 10,000 bootstrapped replicates. In these replicates, year labels were 
randomly re-assigned for each location before counting the biweeks in each year that were 
above or below the 90% PI (see Methods for further details).  
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Figure 3: Spatial hierarchical biweekly dengue incidence models. Shared coefficients from the 
year model are highlighted in yellow. Mean and 95% credible intervals (CrI) for the shared effect 
coefficients for Brazil (a) and Colombia (c). Zika and chikungunya coefficients are estimated 
from autoregressive dengue models. Positive (negative) coefficients indicate increases 
(decreases) in expected dengue incidence for the year model and indirectly as effects on 
transmission for the Zika and chikungunya models. Mean and 95% CrI for the year multiplier on 
expected dengue incidence for Brazil (b) and Colombia (d). Shared multipliers in the top row of 
panels b and d are translated from coefficients in panels a and c. Other rows display 
subnational effects (combined shared and location specific effects).   
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Figure 4: Simulation results incorporating immune-mediated interactions between DENV and 
ZIKV. Mean and 95% inter-quantile range from stochastic simulations spanning 10 years post 
ZIKV-introduction. 100 simulations per scenario. ZIKV introduced after a 100 year burn-in period 
for four DENV serotypes. a-d Individuals with previous dengue exposure experience 20% of the 
DENV force of infection (FOI) that a fully susceptible person would. e-h Individuals with previous 
ZIKV exposure experience 80% of the FOI that a fully susceptible person would. i-l Individuals 
with ZIKV exposure experience 20% of the DENV FOI (same amount of cross-protection 
between dengue and Zika than between dengue serotypes).  
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Methods 
 

Data sources. We collated data from Brazil (27 states) and Colombia (32 departments) into a 

public data repository13. For Brazil, monthly dengue data is available for some states starting in 

1986 from the National Health Foundation-FUNASA and for all 27 states starting in 1999. We 

used monthly data from 1999 to 2012. Monthly data for 2001-2012 were taken from the 

centralized System for Reporting of Notifiable Conditions (SINAN)14. For 2013-2017, we entered 

weekly data found in the Epidemiological Bulletins15 published by the Secretariat of Health 

Surveillance in the Ministry of Health, Brazil where the number of probable cases, severe 

dengue, dengue with alarm symptoms, and dengue deaths were reported. Severe dengue and 

dengue with alarm symptoms cases are clinically diagnosed based on symptoms. Case 

definitions have changed over time, but we use probable case counts (including both confirmed 

and unconfirmed cases) in all of our analyses. Zika and chikungunya case counts were first 

reported in the Epidemiological bulletins for Epidemiological week (Epiweek) 13, 2016 and 

Epiweek 9, 2016 respectively. 

Data entry accuracy was checked by re-entering 10% of the weekly bulletins. Within 

these bulletins, we found that less than 0.01% of the numeric fields entered were inconsistent 

between the primary and secondary entries.     

The Epidemiological Bulletins published in Brazil for 2014-2017 also report the 

corresponding dengue data for the previous year. We use the available previous year data 

reported in the 2014-2018 bulletins to obtain probable dengue case counts for 2013-2017 

Epiweek 42 since these data are most comparable to the preceding historical data. Analogous 

updated probable Zika and chikungunya case counts were first reported in 2017 and 2016 

respectively. We use these updated counts in our analyses. We also use data on the cumulative 

number of microcephaly cases and other central nervous system disorders in newborns34 

reported in Brazil since Epiweek 45, 2015 through the end of 2016. Cumulative number of cases 
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later disregarded from the system was also reported. We therefore deduct the disregarded 

counts from the case counts. 

For Colombia, we use weekly department-level probable dengue case count data from 

the Colombian Instituto Nacional de Salud (INS) website16. This dataset includes weekly dengue 

case counts for 2007-2017, with severe dengue cases reported separately for 2014-2017. We 

excluded cases with an unknown department and those that were considered imported from 

other countries. When combined counts for districts with the counts for the department in which 

they are located, whenever they were reported separately. We extracted additional data for 

probable Zika and chikungunya cases from the weekly Epidemiological Bulletins17 for 2015-

2017. According to the Epidemiological Bulletins published by Colombia’s Directorate of 

Surveillance and Risk Analysis in Public Health, Zika has been in the country since 2015 

Epiweek 40 with the number of cases first reported in the 2016 Epiweek 1 bulletin. In the 

updated Colombia dataset, the first documented Zika cases were in 2015 Epiweek 25. Case 

counts in the bulletins of both countries were given as cumulative counts. 

We also gathered subnational level population size data for both Brazil and Colombia13 

from the Instituto Brasileiro de Geografia e Estatística35 and Departamento Administrativo 

Nacional de Estadística Colombia36 respectively. 

  

Incidence time-series construction. We construct biweekly time series for probable dengue, 

Zika, and chikungunya case counts for each state in Brazil and department in Colombia. The 

Epidemiological Bulletins provide estimates for the cumulative number of cases since Epiweek 1 

reported up until the corresponding Epiweek. These cumulative counts are not fixed and are 

updated as new information becomes available, such as updated knowledge of clinical 

symptoms or related test results. When the diagnosis of a case is changed to another disease 

or when samples are negative for the originally designated pathogen, these cases are removed 
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from the cumulative counts. Thus, the published cumulative counts sometimes decrease in 

consecutive bulletins. 

To avoid negative biweekly incidence values, we constructed strictly nondecreasing 

upper, middle, and lower approximations of the cumulative time series. Working backward from 

the most recent time point, we accounted for decreases in the cumulative count by either 

subtracting the difference from all previous time points (lower approximation) or by setting the 

higher incidence equal to the lower incidence in the following biweek (upper approximation). 

This process was repeated for all time points, resulting in a strictly nondecreasing time series. 

The middle approximation is constructed by averaging the values of the upper and lower 

approximation at each time point. 

To determine which approximation to use in our analyses, we calculated the sum of 

squared errors for each of the approximations using the updated previous year data (2014-

2016) reported in the 2015-2017 Epidemiological Bulletins from Brazil. We found that the middle 

approximation best represented our target time series; this approximation was thus used for the 

construction of all case count time series for both Brazil and Colombia. For Brazil, we use the 

final (updated previous year) data to construct our time series, when it is available. When 

performing our analysis, we used updated data for Brazil up through Epiweek 42, 2017 (since 

updated data for the rest of 2017 was unavailable).  

For each location and disease, we fit a spline to the adjusted cumulative incidence curve 

by using the smooth.spline function from the stats package in R. A knot was assigned to each 

data point. We used a binning procedure to translate the continuous spline into a biweekly 

sequence of predicted case counts. Cases were assigned to biweeks with probabilities based 

on the difference in predicted case counts at endpoints of consecutive biweeks. When 

consecutive predicted spline values decreased, the probability of assigning cases to the first 

biweek was set to zero. We repeated the reassignment process 1000 times to create 1000 case 

count time-series and then calculated the mean incidence for each biweek (averaged over the 
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1000 simulations), rounded down to the nearest integer to obtain the final biweekly case count. 

In what follows, we refer to this value as the “observed incidence”. 

 

Seasonality evaluation. For each dengue season, we identified the biweeks with the three 

greatest numbers of cases in each subnational location (states in Brazil and departments in 

Colombia). In Brazil, dengue seasons were defined to range from biweek 18 to biweek 17 of the 

next year, to avoid splitting the season into multiple years. In Colombia, there was not a clear 

start and end of a dengue season, so we did not define a particular season that spans across 

multiple calendar years. See Supplementary Fig. 1 which describes the seasonality for states 

and regions. 

 

Time series models. For each year of available data, we fit a one-step autoregressive model 

with negative binomial errors for each state in Brazil and each department in Colombia using 

incidence data from that location in all other years. For each the location, the number of dengue 

cases in the following biweek is modeled as follows: 

𝐶𝑗,𝑡+1 ~ 𝑁𝐵(𝜆𝑗,𝑡 , 𝜃)  

log 𝜆𝑗,𝑡 = 𝛽0 + 𝛽𝑗 log(𝐶𝑗,𝑡 + 1) + log 𝑁𝑡 

where 𝛽0 is an intercept, 𝛽𝑗 is a multiplicative factor scaling transmission for biweek 𝑡 in biweek 

category 𝑗 ∈ {1, … , 26}, 𝐶𝑗,𝑡 is the number of probable dengue cases in biweek 𝑡, 𝑁𝑡 is the 

population size (specific to the year and location), and 𝜃 is the dispersion parameter. We did not 

fit a separate model for Vaupés, Colombia, since there are no probable dengue case counts 

reported for this department in 2007, 2008, 2009, 2011, and 2015. We also did not fit any 

regression models for the capital of Colombia, Bogotá, since there is limited corresponding 

dengue incidence and these cases are considered to originate from other departments. 
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Fitting procedure and model performance. We fit all time series models using the rstanarm R 

package37 by implementing Bayesian MCMC methods. For each model, we sampled four chains 

with 10,000 iterations each (5,000 iterations included as warmup) for subnational level models 

and 10,000 iterations each for national models. Convergence was evaluated by using the 

launch_shinystan function of the rstanarm R package37. We primarily assessed the 

convergence of our models using the Gelman-Rubin convergence statistic38 and deemed 

convergence adequate when R̂ is less than 1.1. We also checked to see whether there were 

any parameters with an effective sample size less than 10% of the total sample size or any 

parameters with a Monte Carlo standard error greater than 10% of the posterior standard 

deviation. We noted whether there were any divergent transitions after the warmup period. We 

evaluated model performance by calculating R2 values for the focal year of predictions (out-of-

sample values) and predictions of the data used to fit the models (in-sample values) (see 

Supplementary Fig. 3). 

  

Comparisons between predicted and observed dengue incidence. Starting with the second 

biweek of data for a given location, we sampled 500 values from the posterior distribution for 

predicted incidence for the corresponding model (fit using data from all other years). We then 

evaluated the quantile of the observed incidence in that biweek in the cumulative distribution of 

posterior predicted values. We consider the observed state- or department-level incidence in a 

particular biweek to be statistically atypical if it falls outside of the 90% prediction interval (PI), 

i.e. if the observed quantile is less than 0.05 or greater than 0.95 (see Fig. 2 and Supplementary 

Fig. 4). We repeated this analysis using a Bonferroni adjusted quantile (Supplementary Fig. 5). 

Further, we implemented a permutation test to consider whether the number of atypically 

high or low observed incidence values in each year (separately for each country) was 

significant. For each location, we reassigned the years (sampling without replacement). Then for 

each year we counted the number of statistically high or low values of observed incidence. We 
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repeated this procedure 10,000 times and then found the quantile of the observed numbers of 

atypically high or low biweeks within the cumulative distribution function generated from the 

permuted data (see Fig. 2a and 2c). This permutation procedure preserves temporal correlation 

within the years. We considered a second permutation test that preserved spatial correlation 

within each biweek. For this test, we reassigned biweek labels. For each biweek, we sampled 

without replacement from the years of available predictions for the corresponding biweek 

category (ranging from 1-26). We then reassigned the quantiles of that particular biweek to be 

the corresponding incidence from that biweek category in the resampled year. Again, we 

performed 10,000 permutations and found the quantile of the observed counts of statistically 

high or low biweeks in the corresponding cumulative distribution function. Results were similar 

between the two permutation tests. Between the two tests, quantile differences for each year 

were less than 5% (median value 0.012, n=58) and significant results (q>95%) presented in 

Figure 2 were maintained. Note that we did not include 1999 in the permutation test for Brazil 

since data is not available for the entire year in Acre (the first dengue case in the dataset is in 

August 1999). 

 

Hierarchical regression models. Separately for Brazil and Colombia, we fit a set of spatial 

hierarchical models for dengue incidence (using state-level data for Brazil models and 

department-level data for Colombia models) with negative binomial errors. We considered 

models with either a log-additive effect for recent years (2015, 2016, 2017) or a multiplicative 

effect of either Zika or chikungunya case counts (previous biweek or total count recorded up to 

and including the previous biweek) on expected dengue cases. We focus on an absolute 

incidence version of the year effect model, where a dengue seasonality (biweek) indicator is 

used instead of the log-dengue case count predictor used in the other models. The subnational 

location-specific effects account for deviation from the country-level shared effects. During the 
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fitting procedure, a variance term is also fit for the distribution of location-specific effects. These 

models take the following form: 

𝐶𝑖,𝑗,𝑡+1 ~ 𝑁𝐵(𝜆𝑖,𝑗,𝑡 , 𝜃)  

Additive model: 

log 𝜆𝑖,𝑗,𝑡 = 𝛽0 + 𝛽𝑖,𝑗 +  𝛼year(𝑡) + 𝛼𝑖,year(𝑡) + log 𝑁𝑖,𝑡 

𝛼𝑖,year ∼ 𝑁(0, 𝜎year) 

Multiplicative model: 

log 𝜆𝑖,𝑗,𝑡 = 𝛽0 + 𝛽𝑖,𝑗 log(𝐶𝑖,𝑗,𝑡 + 1) + (α + α𝑖)log(𝑋𝑖,𝑡 + 1) + log 𝑁𝑖,𝑡 

𝛼𝑖 ∼ 𝑁(0, 𝜙) 

In the additive model, 𝛼year represents the shared effect for 2015, 2016, and 2017. 𝛼i,year and 𝛼𝑖  

are location-specific (subnational) terms for the additive year effect and multiplicative arbovirus-

related incidence effect respectively (with dispersion parameters 𝜎year and 𝜙). There is one 

intercept coefficient (𝛽0) and one coefficient for each state biweek pair (𝛽𝑖,𝑗), where 𝑖 ranges 

over the subnational locations and j ranges over the 26 biweeks. Additionally, there is an offset 

for year-specific subnational population size (𝑁𝑖,𝑡).  𝑋𝑖,𝑡 represents either: Zika or chikungunya 

incidence (either at biweek 𝑡 or the cumulative total number of cases reported up through 

biweek 𝑡 in location 𝑖). We consider year and arbovirus-related incidence coefficients to be 

significant when their 95% Bayesian credible interval (CrI) does not overlap zero. 

 

Stochastic compartmental model. We developed a four serotype DENV model that also 

allowed for ZIKV infection in both mosquito and human populations. There are six mosquito 

compartments: susceptible, infected with one of the four dengue serotypes, and infected with 

ZIKV. The human compartments are based on both DENV and ZIKV status. With respect to 

DENV infection status, individuals in the human population are either susceptible, infectious, 

cross-protected, or recovered. We keep track of primary and secondary DENV infections and 
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assume that after two heterotypic DENV infections, individuals become immune to further DENV 

infections. Homotypic reinfections are not allowed in the model. The human classes are further 

stratified depending on the individual’s ZIKV status: either susceptible, infectious, cross-

protected (from DENV), or recovered. There are 125 total compartments in the model.  

We considered a suite of immune-mediated interaction scenarios, considering the 

possibility of enhancement or cross-protection. The enhancement scenarios we considered 

included: no enhancement, DENV enhances DENV, DENV enhances DENV and ZIKV, and 

enhancement in all directions. We incorporated a symmetric cross-protective effect, i.e. for a 

period of time, a dengue infection would reduce the hazard of a future Zika infection and a Zika 

infection would reduce the hazard of a future dengue infection. Cross-serotype dengue 

protection (80% hazard reduction to other DENV serotypes) was included in all scenarios. The 

average duration of cross-protection between dengue serotypes was one year (𝛾 = 1). We 

considered the case when cross-protection between dengue and Zika also lasted one year on 

average. The scenarios without cross-protection did allow for a reduced hazard for 

approximately 4 days (𝛾 = 1/100). We considered two levels of cross-protection between DENV 

and ZIKV. The high-level matched the level of cross-serotype dengue protection (𝜌 = 0.2). The 

low-level of cross-protection reduced the hazard for the other virus by only 20% (𝜌 = 0.8).  

We ran 100 simulations for each scenario using a tau-leap approximation of the Gillespie 

method in Fortran. ZIKV was introduced into the mosquito population after 100 years of DENV 

only simulations with randomized initial conditions. An additional 20 years of data was simulated 

after the introduction of ZIKV. We considered DENV and ZIKV reproduction numbers for all 

combinations of 2 and 4, and for the case when both are set to 3 (see Supplementary Fig. 9). 

The human population size was 10 million and the mosquito population size was 20 million. 

Simulation data analysis was performed in MATLAB and R.  

 To evaluate the effects of incorporating cross-protection or enhancement, we consider 

changes in trough duration and peak size. All scenarios that incorporated an immune-mediated 
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interaction were evaluated against the baseline determined by the scenario with no 

enhancement and no cross-protection between DENV and ZIKV. We define the trough duration 

to be the length of time that aggregated DENV prevalence is consecutively less than on half of 

the average incidence following the introduction of ZIKV, in the baseline scenario 

(approximately 16 individuals per 100,000 population). We set the trough duration to zero for all 

simulations that did not include a complete trough within the 20 years following the introduction 

of ZIKV. Peak size is defined to be the maximum dengue prevalence value, aggregated across 

all serotypes, in the 20 years following the introduction of ZIKV. Changes in peak size resulting 

from incorporating an immune-mediated interaction were evaluated by dividing the average 

peak size by the average peak size in the baseline case (where the average is taken across the 

100 simulations of each scenario). 

 

Legends for Supplementary Figures: 

 

SI Figure 1: Dengue seasonality by biweeks with the top three highest incidence values for 

each season. Seasons are defined to range from biweek 18 to biweek 17 of the following year 

(biweek 26 is represented as biweek 0 below). Frequencies of peak biweek are displayed for 

each state in Brazil (a) and department in Colombia (b). Black lines show the average frequency 

for each biweek across locations within each region.   

 

SI Figure 2: Variation in the stan model coefficients for each biweek. Results are shown for 

coefficients aggregated at the region (a, c) and state (Brazil in b) or department (Colombia in d) 

level.  

 

SI Figure 3: Bayesian R-squared plots for subnational location specific stan model predictions 

versus observed incidence for Brazil (a) and Colombia (b). The gray line corresponds the R-
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squared value for all of the biweeks that were included in the model fitting. The black dots show 

the Bayesian R-squared value for the year when it was left out of the model fitting. The x-axis 

indicates the year that was left out, and ranges over all years in the dataset 1999-2017 in Brazil 

and 2000-2017 in Colombia.   

 

SI Figure 4: Comparison between predicted and observed incidence. Red and blue indicate 

that the observed incidence was above and below the median value of the posterior distribution 

of predicted values for that biweek, respectively. Dark biweeks indicate that the observed 

incidence was outside of the 95% prediction interval and medium shaded biweeks indicate that 

the observed incidence was outside of the 90% prediction interval. Results are shown for Brazil 

(a) and Colombia (b). 

 

SI Figure 5: Bonferroni adjusted quantile plot for full time series and recent years. Quantile 

values are based on the location of the observed incidence in the cumulative distribution of 500 

sampled posterior prediction values. Results are shown for Brazil (a) and Colombia (b). 

 

SI Figure 6: Dengue time series model results with spatial hierarchical structure and arboviral 

disease covariates. Mean and 95% Bayesian credible intervals are displayed for the shared 

effect (top row) and for the location specific effects (other rows ordered by region and then 

latitude) for Brazil (a-d) and Colombia (e-h). Location specific effects are displayed as the sum 

of shared coefficient and location specific coefficient. Models are displayed for biweekly Zika 

cases (b, f), biweekly chikungunya cases (d, h), cumulative Zika cases (a, e), and cumulative 

chikungunya cases (c, g). 
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SI Figure 7: Correlation between arbovirus related case count totals for states in Brazil (a, b, d, 

e) and departments in Colombia (c). Correlation coefficients are displayed in the bottom right 

corner of each panel.   

 

SI Figure 8: Hierarchical model shared effects for permuted recent year datasets. Mean and 95% 

Bayesian credible intervals are displayed for shared effect coefficients from models fit using the 

actual dataset (leftmost panels) and alternative datasets where 2015 to 2017 where replaced with 

three consecutive years of data preceding 2015 for Brazil and Colombia. Nonsignificant results 

are displayed with light shading.  

 

SI Figure 9: Effects of immune-mediated interactions between DENV and ZIKV on case counts 

in stochastic simulations. For each combination of cross-protection, enhancement, and R0 pair, 

the average ratio (over 100 simulations) between cumulative DENV cases over 1 year (a) and 2 

years (b) after the introduction of ZIKV is plotted against the ratio of cumulative ZIKV cases with 

and without immune-mediated interactions with DENV. Values above 1 indicate increases in 

counts and values below 1 indicated decreases compared to the average value from the 

corresponding scenario without enhancement or ZIKV cross-protection against DENV. For each 

enhancement and cross-protection scenario pair, linear model fits to the averages (over the 5 R0 

pairs considered) are displayed as gray lines. Negative slopes are consistent with the 

hypothesis that higher ZIKV incidence is associated with lower DENV incidence. For the case 

when DENV R0 = 2 and ZIKV R0 = 2, panel c shows the relative changes in cumulative DENV 

incidence over 2 years post-ZIKV introduction (blue points) and changes in DENV peak size 

(red points). Black vertical lines separate the enhancement scenarios and the level of cross-

protection increases from left to right within these sections. Relative changes in peak size are 

based on the highest DENV incidence in 20 years post-ZIKV introduction versus 20 years pre-

ZIKV. 
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Simulation code is available upon reasonable request.  
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