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Abstract 

Given its ability to map chromatin accessibility with single base pair resolution, 
ATAC-seq has become a leading technology to probe the epigenomic landscape of single 
and aggregated cells. Understanding ATAC-seq data presents distinct analysis challenges, 
compared to RNA-seq technologies, because of the relative sparseness of the data 
produced and the interaction of complex noise with multiple chromatin structure scales. 
Methods commonly used to analyze chromatin accessibility datasets are adapted from 
algorithms designed to process different experimental technologies, disregarding the 
statistical and biological differences intrinsic to the ATAC-seq technology. Here, we 
present a Bayesian statistical approach, termed ChromA, to analyze ATAC-seq data. 
ChromA annotates the cellular epigenetic landscape by integrating information from 
replicates, producing a consensus de-noised annotation of chromatin accessibility. Our 
method can analyze single cell ATAC-seq data, improving cell type identification and 
correcting many of the biases generated by the sparse sampling inherent in single cell 
technologies. We validate ChromA on several biological systems, including mouse and 
human immune cells and find it effective at recovering accessible chromatin, establishing 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/567669doi: bioRxiv preprint 

https://doi.org/10.1101/567669


 2 

ChromA as a top preforming general platform for mapping the chromatin landscape in 
different cellular populations from diverse experimental designs. 

Main 

The genome of eukaryotic cells is tightly packed into chromatin [1] with only a 

fraction of chromosomal regions accessible within any given cell population at any given 

time. Chromosomal accessibility plays a central role in several nuclear processes including 

the regulation of gene expression and the structure and organization of the nucleus [2]. 

Transcription factor proteins (TFs) bind to accessible DNA regions to control the 

expression of genes [3] and to inaccessible chromatin, altering the accessibility of 

targeted regions [4]. Differential expression and regulation of TFs act as a combinatorial 

code that gives rise to the wide repertoire of cellular phenotypes observed in mammalian 

organisms [5], [6].  

The heterogeneity of cellular types and the importance of regulation of chromatin 

structure is well illustrated in the vertebrate immune system. The immune system is 

composed of well-defined cellular types for which the action of TFs and their targets are 

known for a subset of key transcriptional regulatory networks [7]. Master regulators 

dictating the diversification of different lineages of T lymphocytes in the immune system 

have been extensively characterized [8],[9],[10] and recently, multiple new regulators for 

the RORg TF expressing lineage, Th17, have been identified [12],[13]. This functional and 
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mechanistic context combined with the extensive experimental data available for these 

cell types, make them an ideal platform to quantify accessible chromatin and associated 

regulatory elements.  

The development of high-throughput chromatin accessibility assays (ATAC-seq) 

has enabled the analysis of chromatin accessible regions, the discovery of nucleosome 

positions and the characterization of transcription factor occupancy with almost single 

base pair resolution [14]. In part due to the small initial starting material (on the order of 

10000 cells) and from a desire to query the chromatin structure of particular cellular 

types, ATAC-seq has become widely adopted.  Recent advances have improved the 

technique and enabled the mapping of the accessible chromatin landscape of individual 

cells [15]. This, in turn, raises the possibility of both describing the variability of chromatin 

accessibility and enabling classification of cellular types based on their chromatin 

structure [16] [17].  

Compared to techniques for assaying RNA expression at single-cell and bulk levels 

[18], chromatin profiling presents considerable challenges. Specifically, there is at present 

no systematic approach for characterizing the variability of read counts present at each 

base within an accessible region. Although many genes localize in already known genomic 

loci, such as annotated exons and introns, several additional genomic elements remain 

uncharacterized and much of the chromatin landscape in many cell-types exhibits an 

unknown structure [19]. This unstructured landscape combined with the extreme sparsity 
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inherent in the assay (caused by the fact that the maximum information available at each 

genomic locus is at most two reads per cell), inherently limits the signal-to-noise ratio 

when assaying chromatin accessibility. The correct annotation of the chromatin 

landscape is of paramount importance in the identification of different cellular types and 

the linkage of distal elements to promoter regions. A fact supported by studies that 

identified distal enhancer elements as regulatory regions driving lineage commitment 

[20], [21].  Thus far, ATAC-seq experiments have primarily been analyzed using statistical 

tools developed to understand MNase or DNAse assays [22] [23].  As a consecuence, 

ATAC-seq lacks a proper statistical model suited to its analysis. Such a model should 

consider not only a data-driven read generative model but also the high degree of 

biological variability in the size of accessible regions, which varies from a few tens of base 

pairs to thousands.  

 

Here, we present ChromA, a Bayesian statistical approach that models ATAC-seq 

information to infer chromatin accessibility landscape and annotate open (accessible) and 

closed (inaccessible) chromatin regions. ChromA harnesses recent developments in 

hidden semi-Markov models to create a scalable statistical inference method that can be 

applied to genome wide experiments [24]. When modeling experimental replicates, 

ChromA is able to integrate information from different experiments and create a 

consensus chromatin annotation. To validate our method, we used Th17 bulk [12], A20 
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and GB12878 single-cell datasets identifying accessible chromatin and its regulatory 

elements, establishing ChromA as an effective platform for mapping the chromatin 

landscape in different cellular populations. 

Results 

A Hidden Semi-Markov Model for Chromatin Accessibility Annotation.  

ChromA (Chromatin Accessibility Tool) is a probabilistic graphical model developed 

to annotate chromatin regions as open (accessible) or closed (not accessible) when 

experiments are performed on pooled (bulk), single cells or a combination of both. Our 

algorithm takes as an input ATAC-seq aligned sequencing reads (.bam files) or locations 

of Tn5 binding events (.tsv files) and recovers chromatin accessibility annotations and 

quality control metrics for the dataset (Figure 1A).  

ChromA is based on a Bayesian statistical model that encompasses a set of latent 

variables (S) representing accessibility at each base and a set of observations (O) 

composed by the reads (Figure 1B). In our model, the chromatin state of each base is a 

binary variable representing two chromatin conditions, open (Sb = 1) and closed (Sb = 0). 

Bayesian inference creates posterior estimates of model’s parameters by combining our 

prior belief about parameter values with the likelihood of the observations being 
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generated by the model. In our case, ChromA aims to estimate posterior chromatin state 

by combining our prior belief on the accessibility of each base with the likelihood of 

generating the observed reads. 

To model the duration of accessible regions from ATAC-seq experiments, we 

reason that contextual information plays a key role in defining each base’s annotation. 

Hidden Markov models (HMM) enjoy a huge popularity in genomic applications because 

they integrate contextual information into their statistical postulates by adding 

dependencies between adjacent base pairs. This contextual dependency translates into a 

modelling assumption about the duration of each state, d, given in HMMs by a geometric 

distribution [25] (eqn. 1). 

            	"~$%&("	; 	))⇔ ,("|)) = )(1 − ))123           1. 

where the symbol ~ denotes that duration variable d is distributed according to a 

geometric distribution and p is the probability of dwelling in the state before transitioning 

away into another state. To improve upon the duration behavior of standard HMMs we 

propose to model the duration of each accessible region through a hidden semi-Markov 

model (HSMM) that exhibits a negative binomial (NB) duration distribution [26] (eqn 2).  

            	"~45("; 6, ))⇔ ,(" = 8 + 1|6, )) = :;<=23; >)=(1 − ));           2. 
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The NB distribution has two parameters: an integer parameter r > 0, and a probability 

parameter 0<p<1. We use this distribution to capture the notion that chromatin 

accessible regions might require a certain characteristic length to host the cis-regulatory 

transcriptional machinery necessary for accessing DNA-binding domains. The maximum 

or mode of a negative binomial distribution is given by its parameters (mode = ?(=23)(32?)  ). This 

is contrary to models based on the geometric distribution for which the maximum is fixed 

and always reached at 1 (supplementary figure 1a). An example of better fitness when 

the NB distribution is used in genomic applications is given by the characteristic length of 

a gene. The negative binomial distribution can be used to effectively describe gene 

lengths across different chromosomes, consistent with the idea that genes might need a 

certain characteristic length to create functional proteins (supplementary figure 1b).  

Recent developments in approximate posterior calculation provide efficient 

techniques for the estimation of HSMM parameters. These techniques are advantageous 

when the duration of HSMM states are distributed according to a NB distribution [24]. To 

harness the advantage of such developments, we focus on the parameter that encodes 

the duration of each state in HMMs and HSMMs, the transition matrix. An HMM possess 

a simple transition matrix, Aij, denoting that the probability of transitioning into a new 

state j at base b depends on the state i of the previous base (Markovian Property) (eqn. 

3).  
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,:@A = BC@A23 = D> = EF,G.                                                     3. 

The transition matrix of a HSMM, E′F,G, under the assumption of independence on the 

previous state duration, can be written using two terms: the probability of transitioning 

into a new state, EF,G, and the probability of dwelling in the new state for a duration of d 

bases, ,:I = "C@J = B> [eqn. 4]. 

,K@[J,J<1] = BN@J23 = DO = E′F,G = ,:I = "C@J = B>EF,G                                    4. 

To facilitate inference, we begin by re-writing the NB distribution as a sum of 

shifted geometric distributions. 

            	"~45("	; 6, )) 			⇔ 	" = 1 +	∑ QF=FR3 						QF~@ℎDTU%"$%&(1 − ))                        5. 

where @ℎDTU%"$%&(1 − ))  is )(Q|)) = )V(1 − )) with z an integer z ³ 0 [24]. Equality 5 permits 

to write an HSMM’s transition matrix with NB distributed states, establishing a 

correspondence to a transition matrix in which each state solely dependent on the 

previous one (HMM) (figure 1C). The new formulation creates an HMM embedding of a 

HSMM. An HMM embedding permits the use of inference machinery developed for the 

estimation of parameters in HMMs with a computational complexity that scales as O(r) 

for each state.  
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Next, we model the data generating distribution that represents the likelihood that 

reads in a certain genomic region are generated by open or closed chromatin. The core 

element of the ATAC-seq assay is a modified version of the Tn5 transposon, binds a 9 bp 

region when binding to DNA [7]. After preferential binding to open DNA, Tn5 tagments 

DNA, leaving behind a DNA adaptor. A correctly oriented second event can be used to 

sequence the intervening fragment to identify tagmented locations [27]. Observations 

representing Tn5 binding on each individual base pair can be modelled using Bernoulli 

distribution (Tn5 bound or not bound at a particular base). A complete ATAC-seq assay 

consists of millions of reads caused by transposition events on thousands of cells, 

statistically, this is equivalent to repetitive Bernoulli trials. These events can be 

represented by the one-parameter Binomial distribution (setting as the number of trials 

the maximum number of binding events on a base pair per chromosome). However, we 

find that the binomial distribution cannot differentiate between open and closed 

chromatin effectively due to the sparse nature of each binding event (especially in the 

case of small sample size and single-cell data sets, supplemental figure 2a).  We observed 

that a geometric distribution better represents the number of events present at each base 

of open and closed chromatin (supplemental figure 2b), and this completely specifies our 

initial Bayesian approach. In summary, the presented probabilistic graphical model 

provides predictive insight into chromatin state and as such defines its accessibility. 

Validating chromatin accessibility annotations.  
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We focused on validating our method on data collected from Th17 cells for which 

a validated regulatory network delineating their differentiation has been identified [12]. 

ATAC-seq, several methylation marks, and ChIP-seq on focal transcription factors all of 

which play a deterministic role in cell fate commitment have been assayed in FACS-sorted 

Th17 cells [12] [13]. We combine this information to manually annotate chromatin 

accessibility. We annotate 10 of the best studied loci for this cell-type, each approximately 

100kb in size, consisting of regulatory regions surrounding highly expressed genes (Actb, 

Rpl13a, Alas1, Ctcf, Tfrc) and master-regulator transcription factors (Rorga, Batf, Fosl2, 

Irf4, Stat3) (figure 2a). We based our curated annotations on the integration of 

information from three different sources: I) the existence of ATAC-seq regions with higher 

number of binding events than the surrounding background, ii) the occurrence of H3k27 

acetylation marks [11], and iii) the presence of an accumulation of ChIP-seq binding 

events for the different transcription factors assayed (supplementary figure 3). These 

annotations serve as ground truth values for comparison, in order to evaluate our model’s 

performance. 

Next, to assay chromatin annotations (Figure 2b), we used two different metrics: 

the fraction of the total number of manually annotated peaks that contains at least one 

peak generated using ChromA (Fraction of peaks covered), and the average fraction of 

coverage of each peak (average peak coverage). We used these metrics to compare 

ChromA annotations against peakdeck [20] and macs2 [29], two of the most commonly 
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used tools to annotate ATAC-seq data. In both cases, ChromA annotations not only 

recovered a higher fraction of correctly annotated peaks but also on average generated 

better coverage of each of the accessible regions (figure 2c-d). ChromA annotations are 

performed by thresholding the inferred posterior estimate of chromatin state. This 

algorithmic parameter does not play a major factor in ChromA’s annotations, highlighting 

the robustness of our model (figure 2e, AUC = 0.96). 

Next, we examine ChromA’s performance genome-wide, again focusing on Th17 

cells. In this case, manual annotation is not feasible for computing a ground truth metric 

(with changes in chromatin accessibility spanning the full genome [12] [13]). Instead, we 

reasoned that ChIP-seq locations can be used as a proxy to indicate chromatin accessible 

regions and therefore used ChIP-seq data for validation experiments. Compared to other 

existing methods, ChromA’s predictions faithfully recover the greatest number of ChIP-

seq calls, while maintaining a comparable total number of peaks. In addition, ChromA 

annotates the highest genome fraction as accessible, consistent with ChIP-seq 

information (figure 3a-b-c). While, macs2 and ChromA exhibit NB distributed sizes, 

Peakdeck exhibit a discontinuous size distribution in which an algorithmic parameter 

(peak size parameter) is a major determinant of its shape (figure 3d). Lastly, we validated 

ChromA’s performance on four additional data sets, two of them consisting of Th17 cells 

and the remaining two consisting of CD4+ cells differentiated into Th17 cells (Table 1). To 

differentiate CD4+ into Th17, CD4+ sorted cells were purified by cell sorting and cultured 
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for 48hrs in Th17 differentiating media [12]. On these data sets, ChromA’s recovered on 

average 45% more peaks than macs2 (supplementary figure 4). Taken together, these 

results established ChromA as a top performing tool for discovering accessible chromatin 

regions from ATAC-seq datasets.  

Chromatin accessibility annotations from single-cell measurements 

With minor modifications we can extend ChromA’s core model beyond bulk 

processing to characterize chromatin accessibility at the single cell level (we describe 

modifications to the model for hybrid experimental designs that include bulk and single 

cell data in the next section). Here, we focus our analysis on single cell data sets of mouse 

B lymphocyte A20 and human lymphoblastoid GM12878 cells (dataset obtained from 10x 

Genomics, see methods section for a description of the samples). Single-cell datasets 

exhibit higher dynamic range (DR) than their bulk counterparts (bulk DR ~ 4 bits, single-

cell DR ~ 11 bits; Supplemental Figure 5). To characterize single-cell chromatin datasets 

and compare them to bulk datasets, we employ a set of metrics aimed to quantify dataset 

quality. We compute a signal to noise ratio (SNR) centered around gene promoter regions, 

the fraction of reads in accessible regions, and a ratio between read lengths centered 

around mono-nucleosome and nucleosome-free regions (supplemental methods, Table 

1, supplemental Figure 6).  
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To study the robustness of ChromA’s single-cell approach, we varied the total 

number of cells in our data sets and studied how chromatin annotations varied as we 

down-sampled data to different depths. Next, we annotate human and mouse single cell 

datasets with ChromA and competing approaches (Figure4a) and assess the accuracy of 

genome wide annotations using ChIP-seq locations, available solely for GM12878 cells 

(supplementary methods). Once more, ChromA recovered the highest number of ChIP-

seq calls and annotated the highest accessible genome fraction at every cell depth, 

consistent with ChIP-seq information (Figure 4b-c-d). ChromA features generalize at the 

single cell level, allowing the recovery of broad peaks, which are ideal for transcription 

factor foot-printing. Thus, our explicit modeling of length/duration via HSSM makes 

ChromA particularly robust to under-sampling. When cells are down-sampled and data is 

sparse, the correct treatment of regulatory element’s durations by ChromA’s HSMM 

permits correct annotation of accessible chromatin regions.  By contrast, other methods 

tend to fragment annotations into many disjointed loci or select the null model 

inappropriately (Figure 4b-e).  

For both bulk and single-cell data sets, ChromA uses approximate Bayesian 

algorithms to perform scalable inference. Moreover, additional acceleration is achieved 

through biologically inspired approximations (Supplementary Section 1, Supplementary 

Figure 7-8). Taken together, our computational experiments validate our algorithms as an 

effective platform for chromatin annotation under different experimental settings.  
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Integrating Information from Different Replicates to Create a Consensus 

Chromatin Annotation. 

High throughput genomic data sets can suffer from high variability, making 

experimental replication an essential element of any genomics experimental design. 

Bayesian inference is ideally suited to accommodate many-trial experiments. We design 

ChromA to infer a consensus chromatin state representation by harnessing the statistical 

power from different experimental replicates, thus inferring a more confident posterior 

estimate. Furthermore, a consensus representation can gather information from both 

single-cell and bulk experiments, combining both platforms to inform chromatin state. In 

addition, when analyzing experiments from different cellular populations, this mode 

facilitates both the creation of a shared peak universe and the identification of sample-

specific peaks. Therefore, consensus ChromA probabilistic model enables the processing 

of replication, the integration of different experimental platforms and, the comparison of 

diverse cellular populations. 

Our model consists of consensus and individual experiment chromatin state 

variables (indicated with letter C and Se, respectively; figure 5a). The challenge in this 

context is to integrate state persistence into each experimental state sequence, while 

augmenting the model to share information among experiments (while maintaining 
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computational tractability and scalability). To execute these goals coherently, we 

maintain negative binomial HSMM dependencies in our consensus chromatin state 

variables, C. Next, variables Se behave under semi-Markovian dynamics and incorporate 

a dependency on the state of the consensus representation. To model this dependency, 

we resort to the HMM NB-embedding of the HSMM. We augment individual experiment 

NB-embedding to include a transition matrix depending on the consensus representation 

(supplemental equations, figure 5). The link between each experiment and the consensus 

representation is possible because the HMM NB-embedding, indicated with C, Se below, 

creates a base by base dependency. This dependency can be tailored to connect individual 

replicates or data-sets (and their embeddings, S) to our consensus model, C, as follows. 

We begin by writing the probability that represents the transition matrix in this model. 

,K@W[A,A<1]N@WA23, X[A,A<1]O = Y,(I = "|@WA = B)ZF,G[,K@W[A,A<1]NX[A,A<1]O           6. 

where the letter e is an index for each experimental replicate. Equation 6 represents the 

HSMM probability of transitioning from a state at base b-1 into a state spanning bases b 

to b + d, given consensus variables at those bases. This probability factorizes into a HSMM 

transition term times a term linking each experiment to the consensus variables. We re-

write the previous equality by using the HMM NB-embedding transition matrix, Ae, and a 

base-by-base consensus link transition matrix H.  
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,:@WA = BC@WA23 = D, XA = \> = EF,GW ]^,G           7. 

Thus, the segmentation of each experimental data set should be made based on the 

observed density of the states throughout the entire sequence. Finally, we use prior 

information to encode our belief that each experimental sequence is more likely to 

transition into an open state if the current consensus state is open rather than closed. We 

named our consensus approach consensus-ChromA. 

To demonstrate the model’s efficacy in integrating information from replicate 

experiments, we apply this new statistical tool to an ATAC-seq data set comprised of two 

replicates of Th17 sorted cells. The raw signals of replicates are highly correlated 

(correlation coefficient = 0.99), measured by correlating binned raw bam files using 

deeptools ([31], multiBamSummary). Additionally, to study the model’s robustness to 

outliers, we select a dataset of our naïve CD4+ T cells cultured in Th17 conditions for 48 

hours. This dataset of differentiated Th17 cells exhibits lower correlation when compared 

against Th17 cells (correlation coefficient = 0.68, figure 5c). How does read correlation 

translate into chromatin accessibility correlation? To answer this question, we segment 

accessible regions using consensus-ChromA in two steps: first, we segment both Th17 

replicates; second, we annotate both replicates together with 48hrs cultured cells (figure 

3d). Bases in which mismatches occurred experience a trajectory consistent with the 

approximate finite memory of the process by pooling information from every replicate 
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(supplemental figure 9). Bases in which every replicate agrees, generate a consensus state 

coinciding with the mutual state of every replicate.  

To assess our model’s performance, we measured the level of correlation among 

data sets based on the number of Tn5 transposition events occurring at each accessible 

chromatin region. In this case, replicates continue to be highly correlated, as expected 

(correlation coefficient = 0.99, accessible regions calculated with consensus-ChromA run 

only on Th17 cells replicate 1 and 2). This correlation remains unaltered even, when the 

outlier is included into the analysis (correlation coefficient = 0.99, accessible regions 

calculated with consensus-ChromA run on Th17 cells replicate 1, 2, and 48hrs cultured 

CD4+. figure 4e). Although consensus-ChromA builds accessible regions common to the 

three data sets, this common basis does not alter the fact that 48hrs cultured CD4+ cells 

correctly stand as an outlier, the individual model, S,  for the  48hrs cultured CD4+  cells 

is not perturbed (correlation coefficient Replicate 1 vs 48hrs = 0.651, correlation 

coefficient Replicate 2 vs 48hrs = 0.655; accessible regions calculated with consensus-

ChromA run on Th17 cells replicate 1, 2, and 48hrs cultured CD4+. figure 3e).  

Discussion 

A major goal in epigenomic analysis is to systematically dissect chromatin 

accessible regions in cell types under different conditions. We developed ChromA, a 
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powerful probabilistic model for the analysis of ATAC-seq experiments as a means to 

annotate chromatin accessible areas in the genome. We validated our approach with 

curated regions in the mouse genome and by assessing our algorithm performance 

against chromatin immunoprecipitation binding events, a proxy of accessible 

chromatin. The correlation between binding events and the ATAC-seq signal permitted 

us to directly assess accessibility. To test the generalizability of our method, we tested 

our algorithm in single cells. Here, we demonstrate that our probabilistic algorithm is 

useful both in single cell and aggregate populations. These analyses show that our 

method can be readily extended to more complex models as new technologies and 

more complex experimental designs emerge. 

We found that ChromA facilitates complete genome chromatin accessibility 

annotations for human and mouse genomes from ATAC-seq information. Our algorithm 

has several advantages over previous approaches. First, ChromA recovers wider 

accessible regions, facilitating transcription factor foot-printing. ChromA also exhibits 

higher sensitivity allowing for the recovery of less prominent peaks. As a result, single 

cells datasets, in which there is an extended dynamic range compared to bulk 

measurements can also be analyzed with our software. Finally, by integrating different 

experiments, ChromA is able to create a consensus annotation and thereby increase 

the signal-to-noise. This consensus representation is not a simple intersection or 

sumation of the experiments under analysis. Rather, ChromA combines information by 
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merging and intersecting accessible regions of individual experiments, as well as 

including new accessible regions, as information and context demands. This analysis 

indicates that additional insights can be extracted by integrating different sources of 

information. In the future, we plan to extend ChromA to integrate different 

experimental procedures, extracting and combining information from a wide range of 

approaches [32, 33]. Given the broad importance of ATAC-seq information in mapping 

the chromatin landscape and the advent of commercial platforms to reliably expand 

the technique at the single-cell experimental designs, ChromA provides a useful tool to 

analyze such data and generate unique insights into epigenetic regulation.  

In summary, our hierarchical probabilistic model reaches a more robust (in a 

formal statistical sense) posterior estimate of chromatin state than its single experiment 

counterparts by sharing information across replicates. This demonstrates the flexibility of 

our generative model, which can be further elaborated to incorporate complex 

dependencies between chromatin states. Finally, our consensus annotation method 

provides a principled manner of integrating bulk and single cell experiments to create 

robust annotations.  
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Online Methods 

Bulk ATAC-seq libraries and Pre-processing 
ATAC-seq libraries were downloaded from NCBI’s GEO Database under accession 
GSE113721. The following preprocessing pipeline was used to generate aligned 
reads. Adapters were trimmed using cutadapt. Reads were aligned using BOWTIE2 to the 
murine mm10 reference genome and then filtered for mapping quality greater than Q30. 
Duplicates were removed using PICARD (http://picard.sourceforge.net) and 
subsequently, mitochondrial, unmapped and chromosome Y reads were removed. For 
peak-calling, ChromA corrects the read start sites to represent the center of the 
tagmentation binding event, the + strand were offset by +4 bp, and all reads aligning to 
the – strand were offset −5 bp. Additionally, ChromA filters peaks using a custom list that 
combines blacklisted genomic regions from the ENCODE project 
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mm10.blacklist.bed.gz).  This filtering step takes place when building the set of 
transposition events by removing all the events falling into the blacklisted regions.   
 
Single-cell ATAC-seq libraries 
Single cell datasets were downloaded from 10X genomics 
https://support.10xgenomics.com/single-cell-atac/datasets/1.0.0/atac_v1_hgmm_10k. 
Briefly, they consist of a mixture of fresh frozen human (GM12878) and mouse (A20) cells 
collected with the Chromium Single Cell ATAC platform, and demultiplexed and pre-
processed with the single-cell ATAC Cell Ranger platform. Cells were sequenced on 
Illumina NovaSeq with approximately 42k read pairs per cell. Down-sampled datasets are 
provided from the online website. Tsv files are provided listing binding events. ChromA 
incorporates the ability of importing tsv files directly from Cell Ranger pipelines.  
 
Dataset Metrics 
ChromA reports different quality control metrics to assess dataset quality. Given ChromA 
annotations, the fraction of reads in peaks (FRIP) is calculated as the number of reads 
laying within peaks versus the total number of reads in chromosome 1. This is calculated 
using properly paired and mated reads. Signal to noise ratio (SNR) is calculated by defining 
promoter regions in the mouse or human genome as regions spanning 1kb upstream, 3kb 
downstream from gene start sites. Insert size distribution is reported as an additional file 
and insert size metric is computed as the ratio between the number of reads with insert 
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size between 190-210bp to the number of reads with insert size between 60-80bp for 
chromosome 1. Finally, we extrapolate the number of properly paired and mated reads 
by computing that number for chromosome 1 and multiplying by the total length of the 
genome and then dividing by the length of chromosome 1.  
 
Detection of Chromatin Accessible Regions 

To perform experiments to validate our algorithm, we ran ChromA in each sample 
individually using standard priors (described below). An example of running ChromA on a 
wild type dataset of Th17 cells, using the mouse genome with our bulk model is detailed 
next: chrom.py -b “Th17_1_noMito.bam" --species mouse -sp th17_wt1.pkl -sb 
th17_wt1.bed -inf mo -sen low  >> logwt1l.log.  We ran peakdeck (parameters –bin 75, -
STEP 25, -back 10000, -npBack100000). Peaks were identified using the macs2 software. 
We run macs2 using two sets of parameter and always compare against the best 
performing set (parameters: -m 10,30 -g 1865500000 --bw=200 or --nomodel --shift -100 
--extsize 200 --broad --keep-dup all). 
 
Transcription Factor Binding Prediction  
TF ChIP-seq and control sequencing data were downloaded from GEO (GSE40918), 
mapped to the murine genome (mm10) with bowtie2 (2.2.3), filtered based on mapping 
score (MAPQ > 30, Samtools (0.1.19)), and duplicates removed (Picard). Peaks were 
identified using the macs2 software (version 1.4.2) using the settings (parameters: -m 
10,30 -g 1865500000 --bw=200) and retained for raw p- value < 10-10.  All data sets were 
processed against an appropriate control. We retained summit locations to create a 
binding event localizing at a particular base pair. 
Transcription factor binding events for Gm12878 were downloaded from ReMap [31] 
(http://pedagogix-tagc.univ-mrs.fr/remap/celltype.php?CT=gm12878) by filtering the 
database for the cell type gm12878. There are 131 TFs in this database that correspond 
to the particular cell line, among which we can find CTCF, PouxFx factors and members of 
the Pax, Stat and Etv families.  
 
Validation of ChromA annotations 
To compare ChromA against different algorithms we used different metrics, the fraction 
of peaks covered, average peak coverage and total coverage. We compute each metric 
from the intersection of bed files originating from the manually annotated regions versus 
algorithmically annotated regions. To compute the fraction of peaks covered (fpc), each 
manually annotated peak is intersected with the list of peaks algorithmically generated. 
If the intersection returns non-empty bases, the peak is considered intersected and 
recorded as such. The final metric value is computed by dividing the number of 
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intersected peaks over the number of peaks (fpc =  #	`a	FbJW=cWdJW1	?We^c
#	febge;;h	ebb`JeJW1	?We^c ).  To compute the 

average peak coverage (apc), we again intersect each manually annotated peak and count 
the base pairs in the intersection over the total number of base pairs in the peak (pc =  

#	AecWc	Fb	JiW	FbJW=cWdJF`b
#	AecWc	Fb	JiW	febge;;h	ebb`JeJW1	?We^ ). The apc is computed as the mean of the pc for every 
manually annotated peak. We report the apc as mean +/- sem. To compute the total 
coverage (tc), we add all the intersected bases and divide by the total number of bases in 
manually annotated peaks (tc =  ∑#	AecWc	Fb	JiW	FbJW=cWdJF`b

∑#	AecWc	Fb	JiW	febge;;h	ebb`JeJW1	?We^ ). 
 
ChromA model and core Algorithm 
ChromA’s probabilistic graphical model is described throughout the text. Here, we 
present in more detail the entire generative process. The observed number of Tn5 binding 
events Xb at each base b is drawn independently through the process here described.  
 

)F~5%UZ(Zj, kj)

lF~mD6(nj)X
              .          

@A~op8U(Eqrst)

uA~$%&(uA; )cr)
           8. 

Sb denotes the chromatin state at base b, and it is distributed according to the transition 
matrix at the previous state. p is the probability of observing Xb number of binding events 
at base b given the current chromatin state. Zj, kj, nj	 are prior parameters.  A denotes the 
HMM embedding of the HSMM and for a two-states model with 3 and 2 states it is written 
as: 
 

⎝
⎜
⎜
⎜
⎜
⎛

)y;`cW1 1 − )y;`cW1
)y;`cW1

1 − )y;`cW1
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⎟
⎟
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9. 

we used 5 and 2 as our fixed number of states and although we perform computational 
experiments to fit p, these values were fixed at 1x10-4. a0 and b0 parametrize pseudo-
counts for the probability of observing a number of binding events in a particular base. 
We set these values to (1, 50) for the state that represents closed chromatin and (20, 10) 
for the state that represents open however, results are insensitive to these values.	nj 
denotes the prior pseudo-counts for the initial state of the Markov process. Given our 
strategy that identifies batches surrounded by empty regions, we assume that the process 
starts in the closed state,	nj = (1000, 1). Again, the algorithm is insensitive to this value, 
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as only the first few bases will be affected by it.  Pseudo-code of ChromA single and 
multiple experiments annotations is described in supplemental figure 8.  

Software availability  
A Python implementation of ChromA is available for download on GitHub: 
https://github.com/marianogabitto/ChromA The website will be updated periodically 
with new versions. To install, run: pip install git+https://github.com/marianogabitto/
ChromA.

Data availability  
The accession number for the single-cell and bulk ATAC-seq data reported in this paper 
is GEO:. [[and repeat citations, does 10x-scATAC have a geo ?]]  
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Figure Legend

Figure 1: Overview of Chromatin Accessibility Annotation Algorithm. 
(a) ChromA is an easy to use algorithm that combines single and multiple bam files (raw reads) or tsv files (list of Tn5
binding events) to create chromatin accessibility annotations. ChromA produces different metrics to inform users the
quality of the processed dataset.
(b) Probabilistic graphical model describing ChromA’s structure. In this representation, nodes describe random
variables and arrows depict dependencies among the variables. ChromA models the number of Tn5 binding events
observed at each base using observed variables X (representing the number of binding event), and latent variables S
(representing chromatin state). Subscripts denote base position, ranging from 1 to the length of a chromosome, B.
Observed variables X are modelled using a geometric distribution with parameter pg. Chromatin state variables S are
subjected to semi-Markovian dynamics, depending on the previous chromatin state. p described the initial chromatin
state, and p and r characterize the semi-Markovian transition matrix dictating chromatin state context.
(c) Our ATAC-seq pipeline using bulk measurements annotates chromatin using two states, open Op, or closed Cl.
Both states are characterized by semi-Markovian dynamics. The probability of annotating chromatin in bases b to b +
d given previous chromatin states depends on two factors: the probability of transitioning between states, symbolized
by transition matrix a, and the probability of dwelling in the new states during d bases. When the duration is
characterized by a negative binomial (NB) distribution with parameters p and r, the transition matrix can be re-written
using an embedding matrix A. In the figure, we reproduce a simple transition matrix A in which p and r are the NB
parameters, a is the transition matrix between states, and B represents the binomial coefficient.

Figure 2: Validation of ChromA on Ground-Truth Datasets. 
(a) Genomic loci were selected to create a validation data set from highly expressed and transcription factor genes
regulating Th17 development. To manually curate genomic regions, information from ChIp-seq and ATAC-seq
experiments were combined.
(b) Example of curated genomic locus flanking the Actin-b gene in the mouse genome. ATAC-seq, ChIp-seq,
peakdeck (PD), macs2 (M2), ChromA and manual annotations are displayed.
ChromA algorithm recovers a greater number of ground truth peaks than competing algorithms and covers each peak
more thoroughly. (c) Fraction of manually annotated peaks covered with at least one peak. (b) Average fractional area
recovered from each peak. (c) Our results are insensitive to the threshold used to annotate chromatin accessibility.
ROC curve comparing ChromA against manually ground truth annotations.
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Figure 3: Genome-wide Validation of Chromatin Accessibility Annotations. 
ChromA outperforms different chromatin accessibility algorithms genome-wide. 
 (a-c) ChromA effective genome-wide performance recalls the highest number of ChIp-seq calls mantaining a 
reasonable number of peaks. (a) Number of ChIp-seq peaks recalled. (b) Total number of peaks and (c) fraction of the 
genome annotated as accessible. 
(d) Distribution of accessible regions for different chromatin annotation algorithms. Histograms depicting size of
accessible chromatin regions annotated by peakdeck, macs2 and ChromA. Posterior size distribution of ChromA’s
accessible regions resembles a negative binomial distribution, also observed in macs2. peakdeck distribution is highly
dependent on algorithmic parameters, such as window size, etc.

Figure 4: ChromA Annotations Generalize to Single-cell Datasets. 
(a) Annotations of mouse A20 single cell datasets at the Stat3 genomic locus. Cells are down-sampled from 10000 to
500 cells. ChromA annotations are consistent at different cell depths.
(b-e) ChromA extends its effective genome-wide performance to single-cell data sets, again, recalling the highest
number of ChIp-seq calls in GM12878 single-cell data sets. ChromA is particularly effective at low cell depths. (b)
Number of ChIp-seq peaks recalled, (c) total number of peaks and (d) fraction of the genome annotated as accessible
for each down sampled data-set. (e) Correlation between annotations at different cell depths calculated against the
entire dataset possessing 10000 cells.

Figure 5: Consensus ChromA Integrates Information from Different Data Sets and Replicates. 
(a) Consensus ChromA probabilistic hierarchical graphical model. The model is divided into a top (light brown) and
a bottom layer (light blue). The bottom layer shows ChromA’s probabilistic model for each data set analyzed (akin to
figure 1.b). The top layer schematic shows how consensus variables, C, are explicitly linked to latent state variables
for each replicate (or integrated experiment) according to Markovian dynamics. p, pg and A variables are as in figure
1.b.
(b) Consensus and experiment variables C and Se evolve alternating between open, Op, and closed, Cl, states. The top
and the bottom layers are linked by introducing into each experiment a dependency on the state of the consensus
variable. This dependency is represented in a transition matrix h. Prior information on the parameters of the matrix
encode our belief that at each base, experimental states should be more likely to transition into the state of the
consensus variable.
(c) Raw read correlation between replicates of sorted Th17 cells’ datasets (right) and Th17 cells against CD4+ cells
incubated in Th17 differentiation media for 48hrs (left).
(d) Consensus ChromA annotations integrates information from different replicates creating and deleting accessible
regions based on context. Raw reads from sorted Th17 cells’ replicates and sorted CD4+ cells at a genomic locus.
ChromA annotations for single CD4+ dataset. Consensus ChromA annotations for Th17 replicates and Th17 replicates
and CD4+ cells are shown in red.
(e) ChromA Consensus creates a common representation of chromatin accessible regions. When both Th17 replicates
are combined together with CD4+ cells, the resulting consensus representation maintains the high correlation observed
only when both Th17 cells’ replicates are used. CD4+ peaks are filtered, and only correlated peaks survived.

Table 1: Quality Metrics for Bulk and Single-Cell ATAC-seq Data Sets. 
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Supplementary Figure Legend  

Supplementary Figure 1: The Negative Binomial Distribution Effectively Describes Genomic Elements. 
(a) Example of negative binomial distribution with parameters r=3, p=0.1 and geometric distribution with parameter 
p=0.1. The mode of the geometric distribution is always 0, which is not ideal to model genomic elements. 
(b) Gene length is correctly described by a negative binomial distribution. Histogram of gene sizes in chromosome 4 
of mouse. Mouse genome annotation was downloaded from Ensembl, 
https://useast.ensembl.org/Mus_musculus/Info/Annotation. 
 
Supplementary Figure 2: The Number of Tn5 Binding Events at Open and Closed Chromatin can be Described 
by a Geometric Distribution. 
(a) Histogram depicting the number of Tn5 binding events in manually annotated open and closed chromatin. Both 
distributions possess their maximum at 0 and can be effectively described with a geometric distribution. 
(b) Parameter posterior estimates calculated for a Bernoulli, binomial or geometric distribution using the number of 
Tn5 binding events in open and closed chromatin. Each distribution possesses a random probability measure, p. The 
gap between the mean open and close chromatin measures, p, is computed as the difference between the mean value 
of p at each state. 
 
Supplementary Figure 3: Example Manual Annotations on Selected Genomic Regions. 
Manual annotations on two out of ten selected genomic regions. ChIp-seq binding locations collected for different 
transcription factors are used to delineated chromatin accessible regions. 
 
 
Supplementary Figure 4: Extended Validation of ChromA Annotation Algorithm. 
(a, b, c) We validate ChromA’s performance by annotating the same genomic loci in 5 datasets of wild type and  
CD4+ treated after 48hr Th17 cells and re-computing validation metrics. 
(a) Average fraction of manually annotated peaks covered with at least one peak. 
(b) Average fractional area in which a peak is covered.  
(c) Average total area covered on our manual annotations. 
(f-h) Entire genome annotations. 
(f) Number of ChIpseq peaks recalled, (g) total number of peaks and (h) fraction of the genome annotated as accessible. 
 
Supplementary Figure 5: Single-cell Data Sets Exhibit Extended Dynamic Range Compared to Bulk data sets. 
Histogram of Tn5 binding events in single-cell data set of 10000 gb12878 human cells (left) and bulk Th17 mouse 
cells (right). Counts are depicted in log scale. Due to high level of sparsity, the number of reads in bulk dataset do not 
typically surpasses more than 50 Tn5 binding events per base. This is in contrast to single cell datasets in which the 
number of Tn5 binding events can reach on the order of thousands. 
  
Supplementary Figure 6: Insert Size Distribution for bulk and Single Cell Datasets. 
Histogram depicting insert size distribution computed for every dataset used in this work. In every plot, first peak 
corresponds to nucleosome-free regions and subsequent peaks correspond to mono, bi and tri nucleosome reads. 
 
Supplementary Figure 7: Scaling of ChromA Parameters’ Inference. 
Parameter inference in ChromA (performed for each batch of data or set of replicate datasets) is accelerated by 
distributing computational load in batches.  
(a) Chromosomal regions are divided into batches of data by identifying flanking regions lacking a significant number 
of reads. These batches of data have a minimum length of 100 kbp and experimentally determine maximum of less 
than 600kbp. 
(b) To ensure computational scalability, we compare parameter inference with no batch acceleration (Full) against  
stochastic (SO) and memoized optimization (MO). Algorithms run for 10 iterations on a dataset composed of 
chromosome 19 of Th17 cells using our two-state bulk inference algorithm. MO and SO algorithms converge faster 
when compared to the Full algorithm, seeing as a faster convergence of the expected lower bound and the open and 
closed chromatin states’ parameters. 
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(c) Entire chromosomes can be annotated by using open and closed states’ parameters that generalize chromosome 
wide. Histogram depicting open and closed probability parameters fit independently in each data batch. On red is the 
posterior parameter value when using a single set of open and closed parameters chromosome wide. 
 
 
Supplementary Figure 8: ChromA Running Time and Complete Computational Pipeline. 
(a) ChromA running time of one iteration on mouse chromosome 1 (mean +/- sem). Minimal computational overhead 
is observed when using batch algorithms. Full refers to our algorithm that uses no batches. MO: memoized 
optimization and SO: stochastic optimization.  
(b) ChromA computational pipeline. 
 
 
Supplementary Figure 9: Consensus Annotations Integrate Context Information from Different Data Sets. 
(a, b, c, d) Chromatin annotations are integrated using two replicates of wild type Th17 sorted cells. Many examples 
throughout the genome highlight that annotations are not just intersection or union of replicates’ annotations. 
(a) Extracted genomic region as an example to highlight intersection of replicates in region 1 (b), rescue of lost peak 
in region 2 (c), and addition of a missing peak in region 3 (d). 
(b) In region 1, chromatin annotations resemble a simple intersection of replicates’ annotations. 
(c) In region 2, a peak only present in one replicate is annotated on the consensus representation, presumably, because 
of the presence of an accumulation of reads in both data sets. 
(d) In region 3, no replicate includes a peak in the genomic locus however, when information is combined, the 
consensus state discovers missing information. 
(e)-(f) Example of chromatin consensus annotation in which we include posterior chromatin consensus state variable 
before thresholding. 
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