
Introduction

Immune function is critical for effective vaccine responsive-
ness, wound healing, and protection against infection, autoimmuni-
ty, and cancer (1). Although the ability to measure elements of the 
immune response has improved dramatically with advances in gene 
expression analysis, cytokine profiling, and flow cytometry (2-4), clin-
ical assessment relies predominantly on the comparatively simple 
complete blood count as the indicator of immune health (Mayo Clin-
ic) (5). This disparity between our true technical capabilities and the 
methods employed in healthcare offers the potential for dramatic 
improvements in assessments of immune health. 

Mass cytometry has great potential as an immune monitoring 
tool (6-8). The ability to measure over forty proteins per single cell en-
ables deep profiling of the immune system from a patient’s blood or 
tissue sample, yielding information regarding the phenotype as well 
as the behavior of cells, such as signaling activity (4). These and other 
studies have leveraged mass cytometry to assess immune differenc-
es in individuals in different clinical contexts (6, 7, 9, 10), but a refer-
ence for healthy human immune variation at steady-state is lacking. 

The Cross-Species Immune Atlas presented here and in the ac-
companying paper by Bjornson-Hooper et al.† profiles blood from 86 
human subjects, 88 non-human primates (rhesus macaques, cyno-

molgus macaques, African green monkeys), and 50 mice using mass 
cytometry. Each specimen was divided and exposed to 15 immune 
stimuli, including cytokines, growth factors and microbial products, 
and was then analyzed by mass cytometry using a 39-parameter im-
mune profiling antibody panel. This project had two objectives. The 
first, addressed here, was to create a reference of human immune 
variation that can serve as a baseline in immunological studies, sim-
ilar to efforts made in genomics and other fields (11), and comple-
mentary to single-cell mapping initiatives across tissues such as the 
Human Cell Atlas (https://www.humancellatlas.org/). The second 
was to determine which aspects of immune cell phenotype and sig-
naling responses are conserved across species to guide our use of 
animal models in drug discovery; the accompanying paper by Bjorn-
son-Hooper et al. describes these findings. 

Great care was taken to standardize the immune stimuli and 
antibody panels across the five species to the largest extent possi-
ble. Technical error was minimized through the use of automation, 
single lots of reagents, and complete documentation practices. The 
data are publicly available and curated for ease of use as a reference 
by other researchers. 

Analysis of this dataset provided a set of reference ranges for a 
large set of measured immune parameters and revealed coordinated 
sets of immune features that were grouped into modules based on 
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correlated variation as measured across individuals. Immune mod-
ules revealed an immune system structure of coordinated signaling 
capacity across cell types, and enabled stratification of our donors 
across sex and age. We found that women had stronger inter- and 
intra-module correlation than men, suggesting a greater degree 
of immune cell signaling coordination in women, and that women 
demonstrated an increased signaling capacity in inflammatory sig-
naling pathways in innate immune cells. Such differences in immune 
responses between sexes may inform the immune bases for ob-

served differences in pathology such as infection susceptibility and 
autoimmune syndrome prevalence.

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●

●●

●●
●

●
● ●● ●

●

●

●

●
●

●

●

●

●
●

●
●●

●
●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ● ●●

●
●

●
●

●

●

●●

●

●●

●

●

●●●●
●
● ●

●
●

●

●

●
●●

●

●●

● ●●●

●

●
●●

●

●
●

●

●

●●
●

●

●

●
●
●

●

●
●
●

●
●
●

●●

●

●

●

●

●
●

●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●
●●

●
●●
●

●

●

●●
●

0

2

4

C
D

40
L_

B
.C

el
ls

_I
kB

a
C

D
40

L_
B

.C
el

ls
_p

C
R

E
B

C
D

40
L_

B
.C

el
ls

_p
E

rk
1.

2
C

D
40

L_
B

.C
el

ls
_p

M
A

P
K

A
P

K
2

C
D

40
L_

B
.C

el
ls

_p
P

38
C

D
40

L_
B

.C
el

ls
_p

TB
K

1
IF

N
a2

_B
.C

el
ls

_p
S

TA
T1

IF
N

a2
_B

.C
el

ls
_p

S
TA

T5
IF

N
a2

_B
.C

el
ls

_p
S

TA
T6

IF
N

b_
B

.C
el

ls
_p

S
TA

T1
IF

N
b_

B
.C

el
ls

_p
S

TA
T5

IF
N

b_
B

.C
el

ls
_p

S
TA

T6
IF

N
g_

B
.C

el
ls

_p
S

TA
T1

IL
−4

_B
.C

el
ls

_p
S

TA
T5

IL
−4

_B
.C

el
ls

_p
S

TA
T6

P
M

A
Io

no
_B

.C
el

ls
_p

C
R

E
B

P
M

A
Io

no
_B

.C
el

ls
_p

E
rk

1.
2

P
M

A
Io

no
_B

.C
el

ls
_p

M
A

P
K

A
P

K
2

A
nt

hr
ax

_b
as

op
hi

ls
_p

E
rk

1.
2

A
nt

hr
ax

_b
as

op
hi

ls
_p

P
38

G
M

−C
S

F_
ba

so
ph

ils
_p

C
R

E
B

G
M

−C
S

F_
ba

so
ph

ils
_p

E
rk

1.
2

G
M

−C
S

F_
ba

so
ph

ils
_p

M
A

P
K

A
P

K
2

G
M

−C
S

F_
ba

so
ph

ils
_p

P
38

G
M

−C
S

F_
ba

so
ph

ils
_p

S
TA

T5
IF

N
a2

_b
as

op
hi

ls
_p

S
TA

T1
IF

N
a2

_b
as

op
hi

ls
_p

S
TA

T5
IF

N
b_

ba
so

ph
ils

_p
S

TA
T1

IF
N

b_
ba

so
ph

ils
_p

S
TA

T5
IF

N
b_

ba
so

ph
ils

_p
S

TA
T6

IF
N

g_
ba

so
ph

ils
_p

S
TA

T5
LP

S
_b

as
op

hi
ls

_p
P

38
P

M
A

Io
no

_b
as

op
hi

ls
_p

C
R

E
B

P
M

A
Io

no
_b

as
op

hi
ls

_p
E

rk
1.

2
P

M
A

Io
no

_b
as

op
hi

ls
_p

S
TA

T1
A

nt
hr

ax
_C

D
14

..M
on

oc
yt

es
_I

kB
a

A
nt

hr
ax

_C
D

14
..M

on
oc

yt
es

_p
E

rk
1.

2
A

nt
hr

ax
_C

D
14

..M
on

oc
yt

es
_p

P
38

A
nt

hr
ax

_C
D

14
..M

on
oc

yt
es

_p
TB

K
1

G
M

−C
S

F_
C

D
14

..M
on

oc
yt

es
_p

E
rk

1.
2

G
M

−C
S

F_
C

D
14

..M
on

oc
yt

es
_p

M
A

P
K

A
P

K
2

G
M

−C
S

F_
C

D
14

..M
on

oc
yt

es
_p

S
TA

T5
IF

N
a2

_C
D

14
..M

on
oc

yt
es

_p
S

TA
T1

IF
N

a2
_C

D
14

..M
on

oc
yt

es
_p

S
TA

T5
IF

N
a2

_C
D

14
..M

on
oc

yt
es

_p
S

TA
T6

IF
N

b_
C

D
14

..M
on

oc
yt

es
_p

S
TA

T1
IF

N
b_

C
D

14
..M

on
oc

yt
es

_p
S

TA
T5

IF
N

b_
C

D
14

..M
on

oc
yt

es
_p

S
TA

T6
IF

N
g_

C
D

14
..M

on
oc

yt
es

_p
S

TA
T1

IF
N

g_
C

D
14

..M
on

oc
yt

es
_p

S
TA

T5
IL

−4
_C

D
14

..M
on

oc
yt

es
_p

S
TA

T6
IL

−6
_C

D
14

..M
on

oc
yt

es
_p

E
rk

1.
2

IL
−6

_C
D

14
..M

on
oc

yt
es

_p
S

TA
T3

LP
S

_C
D

14
..M

on
oc

yt
es

_I
kB

a
LP

S
_C

D
14

..M
on

oc
yt

es
_p

4E
.B

P
1

LP
S

_C
D

14
..M

on
oc

yt
es

_p
E

rk
1.

2
LP

S
_C

D
14

..M
on

oc
yt

es
_p

M
A

P
K

A
P

K
2

LP
S

_C
D

14
..M

on
oc

yt
es

_p
P

38
LP

S
_C

D
14

..M
on

oc
yt

es
_p

TB
K

1
P

M
A

Io
no

_C
D

14
..M

on
oc

yt
es

_p
4E

.B
P

1
P

M
A

Io
no

_C
D

14
..M

on
oc

yt
es

_p
E

rk
1.

2
P

M
A

Io
no

_C
D

14
..M

on
oc

yt
es

_p
S

TA
T1

R
84

8_
C

D
14

..M
on

oc
yt

es
_I

kB
a

R
84

8_
C

D
14

..M
on

oc
yt

es
_p

E
rk

1.
2

R
84

8_
C

D
14

..M
on

oc
yt

es
_p

M
A

P
K

A
P

K
2

R
84

8_
C

D
14

..M
on

oc
yt

es
_p

P
38

R
84

8_
C

D
14

..M
on

oc
yt

es
_p

TB
K

1
TN

Fa
_C

D
14

..M
on

oc
yt

es
_I

kB
a

TN
Fa

_C
D

14
..M

on
oc

yt
es

_p
M

A
P

K
A

P
K

2
TN

Fa
_C

D
14

..M
on

oc
yt

es
_p

P
38

TN
Fa

_C
D

14
..M

on
oc

yt
es

_p
TB

K
1

A
nt

hr
ax

_C
D

16
..M

on
oc

yt
es

_p
E

rk
1.

2
A

nt
hr

ax
_C

D
16

..M
on

oc
yt

es
_p

TB
K

1
G

M
−C

S
F_

C
D

16
..M

on
oc

yt
es

_p
C

R
E

B
G

M
−C

S
F_

C
D

16
..M

on
oc

yt
es

_p
E

rk
1.

2
G

M
−C

S
F_

C
D

16
..M

on
oc

yt
es

_p
M

A
P

K
A

P
K

2
G

M
−C

S
F_

C
D

16
..M

on
oc

yt
es

_p
S

TA
T5

IF
N

a2
_C

D
16

..M
on

oc
yt

es
_p

S
TA

T1
IF

N
a2

_C
D

16
..M

on
oc

yt
es

_p
S

TA
T5

IF
N

a2
_C

D
16

..M
on

oc
yt

es
_p

S
TA

T6
IF

N
b_

C
D

16
..M

on
oc

yt
es

_p
S

TA
T1

IF
N

b_
C

D
16

..M
on

oc
yt

es
_p

S
TA

T5
IF

N
b_

C
D

16
..M

on
oc

yt
es

_p
S

TA
T6

IF
N

g_
C

D
16

..M
on

oc
yt

es
_p

S
TA

T1
IF

N
g_

C
D

16
..M

on
oc

yt
es

_p
S

TA
T5

IL
−4

_C
D

16
..M

on
oc

yt
es

_p
S

TA
T6

LP
S

_C
D

16
..M

on
oc

yt
es

_p
4E

.B
P

1
LP

S
_C

D
16

..M
on

oc
yt

es
_p

E
rk

1.
2

LP
S

_C
D

16
..M

on
oc

yt
es

_p
M

A
P

K
A

P
K

2
LP

S
_C

D
16

..M
on

oc
yt

es
_p

P
38

LP
S

_C
D

16
..M

on
oc

yt
es

_p
TB

K
1

P
M

A
Io

no
_C

D
16

..M
on

oc
yt

es
_p

C
R

E
B

P
M

A
Io

no
_C

D
16

..M
on

oc
yt

es
_p

E
rk

1.
2

R
84

8_
C

D
16

..M
on

oc
yt

es
_p

C
R

E
B

R
84

8_
C

D
16

..M
on

oc
yt

es
_p

E
rk

1.
2

R
84

8_
C

D
16

..M
on

oc
yt

es
_p

M
A

P
K

A
P

K
2

R
84

8_
C

D
16

..M
on

oc
yt

es
_p

P
38

R
84

8_
C

D
16

..M
on

oc
yt

es
_p

TB
K

1
TN

Fa
_C

D
16

..M
on

oc
yt

es
_p

C
R

E
B

TN
Fa

_C
D

16
..M

on
oc

yt
es

_p
E

rk
1.

2
TN

Fa
_C

D
16

..M
on

oc
yt

es
_p

M
A

P
K

A
P

K
2

TN
Fa

_C
D

16
..M

on
oc

yt
es

_p
P

38
TN

Fa
_C

D
16

..M
on

oc
yt

es
_p

TB
K

1
IF

N
a2

_C
D

4.
T.

ce
lls

_p
S

TA
T1

IF
N

a2
_C

D
4.

T.
ce

lls
_p

S
TA

T4
IF

N
a2

_C
D

4.
T.

ce
lls

_p
S

TA
T5

IF
N

a2
_C

D
4.

T.
ce

lls
_p

S
TA

T6
IF

N
b_

C
D

4.
T.

ce
lls

_p
S

TA
T1

IF
N

b_
C

D
4.

T.
ce

lls
_p

S
TA

T4
IF

N
b_

C
D

4.
T.

ce
lls

_p
S

TA
T5

IF
N

b_
C

D
4.

T.
ce

lls
_p

S
TA

T6
IL

−2
_C

D
4.

T.
ce

lls
_p

S
TA

T5
IL

−4
_C

D
4.

T.
ce

lls
_p

S
TA

T6
IL

−6
_C

D
4.

T.
ce

lls
_p

S
T A

T1
IL

−6
_C

D
4.

T.
ce

lls
_p

S
TA

T5
P

M
A

Io
no

_C
D

4.
T.

ce
lls

_p
C

R
E

B
P

M
A

Io
no

_C
D

4.
T.

ce
lls

_p
E

rk
1.

2
TN

Fa
_C

D
4.

T.
ce

lls
_I

kB
a

IF
N

a2
_C

D
8.

T.
ce

lls
_p

S
TA

T1
IF

N
a2

_C
D

8.
T.

ce
lls

_p
S

T A
T4

IF
N

a2
_C

D
8.

T.
ce

lls
_p

S
T A

T5
IF

N
b_

C
D

8.
T.

ce
lls

_p
S

TA
T1

IF
N

b_
C

D
8.

T.
ce

lls
_p

S T
AT

4
IF

N
b_

C
D

8.
T.

ce
lls

_p
S

TA
T5

IF
N

b_
C

D
8.

T.
ce

lls
_p

S
TA

T6
IL

−2
_C

D
8.

T.
ce

lls
_p

S
TA

T5
IL

−4
_C

D
8.

T.
ce

lls
_p

S
TA

T6
IL

−6
_C

D
8.

T.
ce

lls
_p

S
TA

T1
P

M
A

Io
no

_C
D

8.
T.

ce
lls

_p
C

R
E

B
P

M
A

Io
no

_C
D

8.
T .

ce
lls

_p
E

rk
1.

2
TN

Fa
_C

D
8.

T.
ce

lls
_I

kB
a

A
nt

hr
ax

_c
D

C
s_

Ik
B

a
A

nt
hr

ax
_c

D
C

s_
pE

rk
1.

2
G

M
−C

S
F_

cD
C

s_
pC

R
E

B
G

M
−C

S
F_

cD
C

s_
pE

rk
1.

2
G

M
−C

S
F_

cD
C

s_
pP

38
G

M
−C

S
F_

cD
C

s_
pS

TA
T5

IF
N

a2
_c

D
C

s_
pS

TA
T1

IF
N

a2
_c

D
C

s_
pS

TA
T5

IF
N

a2
_c

D
C

s_
pS

TA
T6

IF
N

b_
cD

C
s_

pS
TA

T1
IF

N
b_

cD
C

s_
pS

TA
T5

IF
N

b_
cD

C
s_

pS
TA

T6
IF

N
g_

cD
C

s_
pS

TA
T1

IF
N

g_
cD

C
s_

pS
TA

T5
IL

−4
_c

D
C

s_
pS

TA
T6

LP
S

_c
D

C
s_

Ik
B

a
LP

S
_c

D
C

s_
pC

R
E

B
LP

S
_c

D
C

s_
pE

rk
1.

2
LP

S
_c

D
C

s_
pM

A
P

K
A

P
K

2
LP

S
_c

D
C

s_
pP

38
LP

S
_c

D
C

s_
pT

B
K

1
P

M
A

Io
no

_c
D

C
s_

Ik
B

a
P

M
A

Io
no

_c
D

C
s_

p4
E

.B
P

1
P

M
A

Io
no

_c
D

C
s_

pC
R

E
B

P
M

A
Io

no
_c

D
C

s_
pE

rk
1.

2
P

M
A

Io
no

_c
D

C
s_

pS
TA

T1
R

84
8_

cD
C

s_
Ik

B
a

R
84

8_
cD

C
s_

pC
R

E
B

R
84

8_
cD

C
s_

pE
r k

1.
2

R
84

8_
cD

C
s_

pM
A

P
K

A
P

K
2

R
84

8_
cD

C
s_

pP
38

R
84

8_
cD

C
s_

pT
B

K
1

TN
Fa

_c
D

C
s_

Ik
B

a
TN

Fa
_c

D
C

s_
pC

R
E

B
TN

Fa
_c

D
C

s_
pE

rk
1.

2
TN

Fa
_c

D
C

s_
pM

A
P

K
A

P
K

2
TN

Fa
_c

D
C

s_
pP

38
TN

Fa
_c

D
C

s_
pT

B
K

1
G

M
−C

S
F_

N
eu

tro
ph

ils
_p

E
rk

1.
2

G
M

−C
S

F_
N

eu
tro

ph
ils

_p
M

A
P

K
A

P
K

2
G

M
−C

S
F_

N
eu

tro
ph

ils
_p

S
TA

T5
IF

N
b_

N
eu

tro
ph

ils
_p

S
TA

T5
IF

N
g_

N
eu

tro
ph

ils
_p

S
TA

T5
IL

−4
_N

eu
tro

ph
ils

_p
S

TA
T6

LP
S

_N
eu

tro
ph

ils
_p

M
A

P
K

A
P

K
2

LP
S

_N
eu

tro
ph

ils
_p

P
38

LP
S

_N
eu

tro
ph

ils
_p

TB
K

1
P

M
A

Io
no

_N
eu

tro
ph

ils
_p

C
R

E
B

R
84

8_
N

eu
tro

ph
ils

_p
M

A
P

K
A

P
K

2
R

84
8_

N
eu

tro
ph

ils
_p

P
38

R
84

8_
N

eu
tro

ph
ils

_p
TB

K
1

TN
Fa

_N
eu

tro
ph

ils
_p

M
A

P
K

A
P

K
2

TN
Fa

_N
eu

tro
ph

ils
_p

P
38

TN
Fa

_N
eu

tro
ph

ils
_p

TB
K

1
IF

N
a2

_N
K

.C
el

ls
_p

S
TA

T1
IF

N
a2

_N
K

.C
el

ls
_p

S
TA

T4
IF

N
b_

N
K

.C
el

ls
_p

S
TA

T1
IF

N
b_

N
K

.C
el

ls
_p

S
TA

T4
IF

N
b_

N
K

.C
el

ls
_p

S
TA

T5
IF

N
b_

N
K

.C
el

ls
_p

S
TA

T6
IL

−1
2_

N
K

.C
el

ls
_p

S
TA

T4
IL

−2
_N

K
.C

el
ls

_p
E

rk
1.

2
IL

−2
_N

K
.C

el
ls

_p
S

TA
T5

IL
−2

_N
K

.C
el

ls
_p

S
TA

T6
IL

−4
_N

K
.C

el
ls

_p
S

TA
T6

TN
Fa

_N
K

.C
el

ls
_I

kB
a

TN
Fa

_N
K

.C
el

ls
_p

C
R

E
B

TN
Fa

_N
K

.C
el

ls
_p

P
38

Condition_Feature

va
lu

e

Thresholded features

IL-2
IL-6
IFNg
Anthrax
LPS
R848
TNFa

86 Human donors

88 Non-human primates
from 3 species

50 mice 15 Immune Stimuli
Barcoding
39-antibody panel

Automated stimulation, barcoding, 
staining, and CyTOF analysis

1 billion total
cells profiled immuneatlas.org

Interactive web resource 
of curated data

Five species Immune Atlas 
of mass cytometry data

Immune Feature 

va
lu

e 
(A

rc
S

in
h 

ra
tio

 o
ve

r b
as

el
in

e)

Thresholded Immune Features 

A.

B.

C.

iv: Distribution of pP38 response in CD14+ 
Monocytes to LPS across donorsi. Gated immune cell types

0

2

4

6

0.0 0.5 1.0 1.5

co
un

t

pP38 ArcSinh ratio over baseline

ii: Immune feature derivation

Stimulation condition

Cell type

Signaling protein

iii: Set of immune features 
comprising immune state

Condition
Anthrax
CD40L
GM-CSF
IFNa2
IFNb
IFNg
IL-12
IL-2
IL-4
IL-6
LPS
PMA/Iono
R848
TNFa

B cells basophils CD14+ monocytes CD16+ monocytes CD4+T cells CD8+T cells Dendritic cells (cDCs) Neutrophils NK Cells

CD16

C
D

14

4.75%

7.44%

84.45%

CD16

C
D

14

4.75%

7.44%

84.45%

LPS
Basal

Figure 1

Figure 1: Detailed immune profiling of healthy individuals using mass cytometry
(A) Generation of immune reference data set. Whole blood samples taken from 86 human donors, 88 non-human primates (rhesus macaques, 
cynomolgus macaques, African green monkeys), and 50 mice were divided into 16 aliquots. Aliquots were stimulated with a cytokine or 
microbial agent or left untreated. Samples were barcoded and stained with a 50-parameter antibody panel, and cells were analyzed by mass 
cytometry. The gated and curated data is available at https://flowrepository.org (accession FR-FCM-Z2ZY) and https://immuneatlas.org 
(B) Generation of immune features. Panel i: Cells were gated into immune cell types. Panel ii: Cell type-specific responses were calculated by 
subtracting the arcsinh transformed median value in the unstimulated condition from the arcsinh transformed median value in the stimu-
lated condition (shown: p38 response to LPS in CD14+ monocytes). Panel iii: Immune state was defined as the set of immune features, and 
immune features were defined as the signaling response of each protein in each cell type in response to each stimulus. A total of 2,160 im-
mune features (16 signaling proteins in 9 cell types across 15 conditions) were defined. Panel iv: The distribution of donor-specific values for 
the immune feature p38 response to LPS in CD14+ monocytes. 
(C) Box plots of reference ranges of the 199 immune features that exceeded a mean value of 0.2 arcsinh ratio. Immune features are grouped 
by cell type and colored by condition.
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Results

Detailed immune profiling of healthy individuals provides a 
window into immune state

The development of a human immune reference required 
validated and well-controlled performance of assays on a large set 
of donors. To this end, an immune profiling panel consisting of met-
al-conjugated antibodies against 23 surface antigens and 16 intra-
cellular signaling proteins was designed, generated, and validated 
(Supplementary Tables 1 and 2). Intracellular signaling was investi-
gated, as it has been informative in several immune profiling studies 
(7, 9, 12, 13). Analogous antibody panels were generated for human, 
mouse, and non-human primates to enable cross-species analyses 
(see Bjornson-Hooper et al.). Due to the potential for antibody degra-
dation and technical variation in small-volume aliquoting, batches of 
antibodies were premixed and lyophilized into stable antibody cock-
tails for long-term storage and use (see Methods).

Eighty-six healthy humans donated peripheral whole blood 
samples for this study (Supplementary Table 3). Samples from each 
volunteer were divided into 16 aliquots and were stimulated with 
15 immune modulators, including cytokines, growth factors, cell 
type-specific agonists, and microbial antigens, or left unstimulated 

(Figure 1A, Supplementary Table 4). All samples from a given donor 
were barcoded (multiplexed), pooled, stained, and analyzed by mass 
cytometry simultaneously to reduce technical variability. The unstim-
ulated condition for each donor served as an internal control to fur-
ther minimize technical variability.

The high-dimensional nature of mass cytometry measure-
ments combined with the large stimulation panel yielded 2,160 im-
mune “features” from the data set. Cells were gated into nine major 
populations that were the focus of this investigation (Supplementa-
ry Figure 1). Note that the large number of surface markers enables 
other researchers to gate and analyze many additional populations 
than those we explore here. Immune features were defined as the 
level of a given signaling protein in a canonical cell type in a stimu-
lation condition relative to the unstimulated control (Figure 1B). The 
set of immune features for a given donor was defined as that donor’s 
immune state. This analysis provided reference ranges for all 2,160 
immune features based on the distribution across the eighty-six hu-
man donors. Because not every stimulus activated every signaling 
pathway in every cell type, we set a threshold to limit the analysis 
to major biological responses. This filter resulted in 199 features for 
further analysis (Figure 1C, Methods). This set of reference ranges of 
healthy immune variation is available for use in future immune pro-
filing studies.
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Figure 2: Immune variation enables detection of response modules predominantly defined by signaling proteins
(A) All features were correlated with one another across donors. Highly correlated features were identified and annotated as groups of cor-
related features, or modules.
(B) Clustered correlation heat map of the 199 features. Immune features were clustered on each axis based on similarity of correlation coeffi-
cient (R-value). Heat map is colored by R-value.
(C) R-values were binned yielding an adjacency matrix. R-values from -1 to -0.5 are red, R-values from -0.5 to 0.5 are white, and R-values from 
0.5 to 1 are blue. Modules were drawn based on visualized groups of highly correlated features (black boxes). 
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Immune variation enables detection of response modules 
predominantly defined by signaling proteins

In order to leverage the multi-parameter profiling of the do-
nors we used each individual in the cohort as an observed instance 
of a genetic or environmental perturbation of immune state. Each 
feature was correlated with every other feature across donors to pro-
duce a correlation map (Figures 2A, 2B) wherein hierarchical cluster-
ing placed features that were correlated near one another. To better 
visualize the grouping of correlated features, correlations below a 
stringent threshold were removed (|R| < 0.5), producing an adjacency 
matrix (Figure 2C). This analysis revealed highly correlated features, 
which were grouped into modules (within-module correlation mean 
R = 0.68 versus correlation between all features mean R = 0.20, Figure 
2C). 

The features contained within each module were predomi-
nantly grouped by signaling protein, rather than by cell type or by 
stimulation condition (Table 1, Supplementary Table 5). This group-
ing revealed that if an individual had lower phosphorylated levels 
of a given signaling protein in a given cell type and condition com-
pared to the population average, that individual was likely to also 
have lower levels of that phosphorylated signaling protein across 
other cell types and conditions. For example, if an individual had 

lower-than-average pSTAT1 in CD4+ T cells responding to IFN-a2, 
then that individual was likely to have lower levels of pSTAT1 in other 
cell types and conditions. This suggests a level of immune regulation 
and structure based on signaling pathway activity that is present 
across many cell types within an individual. The consistency of sig-
naling capacity across conditions suggested that the ex vivo stim-
ulations probed an intrinsic regulation of each signaling pathway 
across an individual’s cells. In contrast, modules were not organized 
by specific cell lineages. Whereas lymphoid and myeloid cells tended 
to be grouped together, several cell types shared highly correlated 
activity of a particular signaling pathway. Similarly, although many 
of the stimuli used are pleiotropic and activated several signaling 
pathways, modules for the most part were not organized by stimulus 
with the exception of Modules 3, 5, and 9. These results demonstrate 
that the activation of different signaling pathways elicited by a par-
ticular stimulus is not as coordinated as the activity of a given sig-
naling pathway to different stimuli. Therefore, the immune set point 
in healthy individuals reveals the coordination of signaling pathway 
activity, which defines each person’s propensity to respond to nu-
merous immunological stimuli.

At a practical level, these results also imply the evaluation of 
a smaller number of conditions may provide nearly equally mean-
ingful information (i.e. a surrogate) with respect to general immune 
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Figure 3: Immune modules enable improved stratification of immune responses across sex and age
(A) Schematic of modeling approach for sex differences. 
(B) Receiver operating characteristic curve for ridge, lasso, group lasso, and sparse group lasso. Performances on test data were as follows 
(stated as percent correct classification, area under the curve): ridge, 68%, .78; lasso, 60%, .69; group lasso, 60%, .76; sparse group lasso, 74%, 
.79. 
(C) Schematic of modeling approach for modeling age. 
(D) Correlation of actual ages versus ages predicted for test set using the sparse group lasso model (R = 0.66).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 9, 2019. ; https://doi.org/10.1101/567784doi: bioRxiv preprint 

https://doi.org/10.1101/567784


state. Therefore, with this dataset as a foundation, future studies us-
ing more focused diagnostic immune monitoring can be performed 
using a subset of proteins and conditions as a traditional flow cy-
tometry assay (Supplementary Table 6). This is especially important 
in the clinical setting, where typically only flow cytometry is readily 
available. Surrogate markers for the majority of modules are present 
in this subset of proteins and conditions and their normalized values 
were highly correlated with derived module scores, the normalized 
average of the immune features within each module (Supplementa-
ry Figure 2, Methods).

Immune structure stratifies immune responses between men 
and women

Having observed that measured immune responses were or-
ganized into signaling-based modules, we next sought to determine 
whether this organization could characterize differences in immune 
state between individuals. We were first interested in whether this 
modular structure enabled stratification by sex (Figure 3A). We per-
formed predictive modeling, including models that allowed for input 
of the module assignments as a means of incorporating the higher 
order relationships from the data. The data were split into a training 
set of 50 donors and a test set of 36 donors. Four models were op-
timized using the training data including two regularized methods 
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Figure 4: Women have increased coordination of immune cell signaling capacity
(A) Adjacency matrices of 199 immune features across male donors. R-values were binned; R-values from -1 to -0.5 are red, from -0.5 to 0.5 are 
white, and from 0.5 to 1 are blue. Feature order was set by the clustering order on the full dataset. 
(B) Adjacency matrices of 199 immune features across female donors. R-values were binned; R-values from -1 to -0.5 are red, from -0.5 to 0.5 
are white, and from 0.5 to 1 are blue. Feature order was set by the clustering order on the full dataset. 
(C) Distribution of correlation coefficients (R-values) of each pairwise feature in male donors (turquoise) compared to female donors (pink). 
Distributions were significantly different (p-value = 2.2x10-16, Wilcoxon sum-rank test).  
(D) Box-plots of correlation coefficients (R-values) within modules grouped by sex. Modules are numbered as in Figure 2C. Women (pink) had 
higher levels of correlation in modules 1, 3, 4, 8, 10, 11, and unassigned (Wilcoxon sum-rank test, adjusted p-value < .05). Men (turquoise) had 
higher levels of correlation in module 9 (Wilcoxon sum-rank test, adjusted p-value < .05). 
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Similarly, of the 15 features significantly higher in female donors, all 
were features involving pP38, pCREB, or pERK1/2 (Figure 5D). These 
were the same proteins that were selected by our lasso model of 
sex-differences. Interestingly, responses to TNFa, LPS, and R848 were 
higher in men in certain cell-type specific proteins and higher in 
women in others, suggesting that the response to the same stimu-
lus can be differentially regulated across signaling pathways. In con-
trast, all significantly different responses to GM-CSF were exclusively 
higher in women than in men, whereas responses to interferons, IL-6 
and Bacillus anthracis antigen were exclusively higher in men. In ad-
dition, not all pathways responsive to a given stimulus were different 
between sexes; for example, whereas GM-CSF stimulates both a pERK 
and a pSTAT5 response in monocytes, only the response to pERK was 
higher in women. Notably, all of the features higher in female donors 
were from inflammatory cell types and signaling pathways known 
to be involved in inflammation, consistent with higher rates of auto-
immunity and enhanced responses to infection observed in women 
(Figure 6). 

Discussion

The goals of this analysis were 1) to generate a set of mass 
cytometry data collected from healthy human subjects, curated 
with explicit immune features to be used as a reference in immune 
monitoring studies and 2) to leverage the multi-parameter measure-
ments of healthy immune variation to gain insights into immune 
organization. This highly controlled dataset consists of immune 
measurements on samples from 86 individuals. Mass cytometry 
measurements included 16 signaling protein responses to 15 differ-
ent immune modulators in nine canonical cell types. This resulted 
in 2,160 feature measurements for each individual, filtered to 199 
features that met our threshold of responsiveness. The raw data as 
well as the curated and filtered immune features have been made 
available to the research community for use as a reference in immune 
monitoring studies at https://flowrepository.org (accession FR-FCM-
Z2ZY) and https://immuneatlas.org.

Using each feature as a standalone measurement does not 
utilize the data to its full potential, as this high-dimensional data-
set contains information about how the immune system is precon-
figured to respond in a coordinated manner to immune stimuli. To 
extend the analysis beyond univariate measurements toward an un-
derstanding of the relationship between features, we leveraged the 
multi-parameter measurements available wherein individuals were 
used as instances of genetic or environmental perturbation. The mer-
its of this type of approach have been shown with the identification 
of co-regulated features and module detection in gene expression 
data (28) and in cytometry data in specific immune modulatory con-
texts(12). Here we identified modules of correlated immune features 
across humans as a group, and men or women as sub-cohorts. The 
attribute common across features within a module was a shared sig-
naling protein. This result reveals that 1) the immune system is struc-
tured in such a way that the signaling propensity of a given pathway 
in an individual is coordinated across cell types and across different 
immune perturbations and 2) that there is a degree of redundant in-
formation contained in these measurements such that future studies 
may perform smaller assays that can be readily performed in the clin-
ical setting. An example of a restricted set of parameters that could 
be used for representative immune monitoring using traditional flow 
cytometry is provided in Supplementary Table 6. 

In our predictive models, the elucidated immune structure 
informed stratification of both sex and age. Incorporating module 
assignments from this work, which leveraged not only the features 
themselves but also the relationships between immune features, 
enabled the detection of differences in immune responses, demon-
strating that the detected internal structure captures feature rela-
tionships that vary with demographic group in humans. The modular 
structure improves prediction and also improves the interpretability 
of resulting models. This in turn suggests this framework may be use-
ful in analyses of infection susceptibility, autoimmunity burden, and 
treatment response. 

Analysis of this dataset allowed for a detailed characteriza-
tion of differences between the male and female immune systems. 
Significantly higher responses in male donors than in females were 
predominantly detected in pSTAT1 in lymphocytes and pTBK1 in my-
eloid subsets, whereas female donors had higher levels of pERK1/2, 
pCREB, and pP38 features in monocytes and neutrophils (Figure 6). 
The female immune system has been shown to have higher inflam-
matory phenotypes than the male immune system both clinically 
and at the cellular level (29), which is consistent with our findings of 
increased MAP-kinase signaling in innate immune inflammatory cells 
in women compared to men. In contrast, neutrophils and monocytes 
were more abundant in males than in females (Supplementary Figure 
6). Perhaps this disparity is the reason that inflammatory pathways 
within monocytes and neutrophils have a greater response capacity 
in women. Notably, most immune profiling studies using flow cytom-
etry examine only cell frequencies rather than cell-specific signaling 
pathways responses, and therefore do not capture this larger set of 
differences. Interestingly, males have worse outcomes in a multitude 
of microbial infections (26). It was therefore surprising that pSTAT1 
and pTBK1 capacity was higher in men than women; this could be a 
compensatory mechanism to counter the fact that males have lower 
interferon alpha production in response to inflammatory stimuli and 
therefore require more sensitive signaling responses (30). 

Our analysis also revealed more nuanced aspects of sex-spe-
cific immune regulation. Women had a greater degree of correlation 
of responses across immune features than men, which may point to 
greater coordination of immune responses and structure. It is unclear 
why immune cell signaling responses in males are more independent 
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Figure 6: Model of immune differences between men and women
Summary of immune differences detected between men and wom-
en.
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