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Abstract

Toxoplasma gondii, one of the world’s most com-
mon parasites, can infect all types of warm-blooded
animals, including one-third of the world’s hu-
man population. Most current routine diagnos-
tic methods are costly, time-consuming, and labor-
intensive. Although T.gondii can be directly ob-
served under the microscope in tissue or spinal
fluid samples, this form of identification is diffi-
cult and requires well trained professionals. Nev-
ertheless, the traditional identification of parasites
under the microscope is still performed by a large
number of laboratories. Novel, efficient and reli-
able methods of T.gondii identification are there-
fore needed, particularly in developing countries.
To this end, we developed a novel transfer learn-
ing based microscopic image recognition method
for T.gondii identification. This approach em-
ploys Fuzzy Cycle Generative Adversarial Network
(FCGAN) with transfer learning utilizing knowl-
edge gained by the parasitologists that Toxoplasma
is in banana or crescent shaped form. Our ap-
proach aims to build connection between micro
and macro associated objects by embedding fuzzy
C-means cluster algorithm into Cycle Generative
Adversarial Network (Cycle GAN). Our approach
achieves 93.1% and 94.0% detection accuracy for
400X and 1000X Toxoplasma microscopic images
respectively. We show the high accuracy and effec-
tiveness of our approach in the newly collected un-
labeled Toxoplasma microscopic images, compar-
ing to other current available deep learning meth-
ods. This novel method for Toxoplasma micro-
scopic image recognition will open a new win-
dow for developing cost-effective and scalable deep
learning based diagnostic solution, potentially en-
abling broader clinical access in developing coun-
tries.

∗Contact Author

1 Introduction

Toxoplasma gondii is a ubiquitous, single cell protozoan par-
asite that can infect all warm-blooded animals as well as
one-third of human population worldwide [Khan and Grigg,
2017]. Most infections in humans are life-long and several
studies have suggested that such infections may contribute to
severe neurological and psychiatric symptoms. That makes
diseases caused by T.gondii is one of the biggest health care
problems globally. Diagnosis of T.gondii is typically per-
formed by testing blood or other body fluids for antibodies
or the parasite’s DNA [Burrells et al., 2018]. Large number
of laboratories still perform identification of T.gondii in tis-
sue or spinal fluid samples under the microscope. However,
the microscopic detection and quantification of T.gondii is
time-consuming, labor-intensive and needs well trained pro-
fessionals. Moreover, the intensity of illumination, image
brightness, contrast level and background of staining, have
large variations in different Field of View (FoV), shown in
Figure 1. In addition, T.gondii is found both inside and out-
side of nucleated cells with separated and aggregated form,
which makes T.gondii recognition task more challenging.

Recently, deep learning technology has significantly im-
proved the efficiency and accuracy in macroscopic com-
puter vision task, thereby attracting considerable attention
in microscopic image analysis [Christiansen et al., 2018;
Andrea et al., 2018; Baris et al., ; Xing et al., 2017]. Sivara-
makrishnan [Sivaramakrishnan et al., 2018] evaluated the
performance of pre-trained Convolutional Neural Network
(CNN) as feature extractor in the classification of parasites
and host cells, which improved the infection disease screen-
ing. Furthermore, Mehanian [Mehanian et al., 2017] devel-
oped a computer vision system with deep learning to identify
malaria parasites under the microscope in the field-prepared
thick blood films. However, most of the existing deep learn-
ing methods on parasite analysis are under supervised learn-
ing framework, which requires many well-trained profession-
als to label a number of image datasets. Furthermore, la-
beling, annotating, and sorting the output data is time con-
suming, costly, and labor-intensive. This severely limits their
scalability in practical applications.

Moreover, current existing parasite recognition models are
limited mainly to malaria. Here, we propose a deep learning
method for T.gondii recognition. To improve learning effi-
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Figure 1: Typical variations of color, illumination, background
in different fields of view and microscope magnification. (a)
Stained T.gondii images from different slides captured by a micro-
scope with 400X magnification; (b) Stained T.gondii images from
different slides captured by a microscope with 1000X magnification;
(c) Unstained T.gondii image captured by a microscope with 100X
magnification; (d) Training image data with similar macro objects
source (banana and crescent) and different macro object (star).

ciency in the task, we employed transfer learning strategy by
leveraging knowledge from the parasitologists that T.gondii
is in crescent shaped form, which is similar to banana. Even
more, the shape of aggregated parasites resembles the im-
ages of a bunch of bananas, where host cells are significantly
different. It is assumed that microscopic object has an in-
herent connection with macroscopic world. Based on this
assumption, we designed a Micro-Macro Associated Object
Pulling (M2AOP) strategy and propose a Fuzzy Cycle Gen-
erative Adversarial Network (FCGAN) for T.gondii recogni-
tion. This strategy embeds fuzzy C-means cluster algorithm
[Bezdek†, 1973] into Cycle Generative Adversarial Network
(Cycle GAN)[Zhu et al., 2017], which can learn degrees of
membership belonging to each cluster (class) point. Then the
degrees are utilized as the translated coefficient to replace the
microscopic and macroscopic domain labels in Cycle GAN
when the microscopic images are inductive transferred into
macroscopic world. FCGAN can exploit more discriminative
information using a third associated object to asymmetrically
pull T.gondii and host cell samples.

We tested two T.gondii image datasets consisting of totally
13,138 microscopic images with magnification of 400X, and
14,992 microscopic images with magnification of 1000X. A
number of experiments were conducted demonstrating the ef-
fectiveness of our FCGAN method with high accuracy and
precision.

2 Material and Methods
Our proposed method is empowered by a Micro-Macro Asso-
ciated Object Pulling strategy for microscopic parasite recog-
nition. We utilized Fuzzy Cycle Generative Adversarial Net-
work (FCGAN), shown in Figure 2, where cycle-consistency
and fuzzy discriminator loss are optimized along with a fuzzy
C-means algorithm.

2.1 Preliminary Knowledge
To extract robust feature for microscopic images, we con-
struct a deep neural network to compute the representation
of each sample x by passing it to multiple layers of non-
linear transformations. The key advantage of using such a
network to map x is the nonlinear mapping function can be
explicitly obtained. Assume there are M + 1 layers in the
designed network and p(m) units in the m-th layer, where
m = 1, 2, . . . ,M . The output of x at the m-th layer is com-
puted as

f (m)(x) = h(m) = φ(W(m)h(m−1) + b(m)) ∈ Rp(m)

(1)

where W(m) ∈ Rp(m)×p(m−1)

and b(m) ∈ Rp(m)

are the
weight matrix and bias of the parameters in this layer, and φ
is a nonlinear activation function which operates component-
wisely, such as widely used tanh or sigmoid functions. The
nonlinear mapping f (m) : Rd → Rp(m)

is a function param-
eterized by {W(i)}mi=1 and {b(i)}mi=1. For the first layer, we
assume h(0) = x and p(0) = d.

In this paper, we employ two typical convolutional net-
works as base framework in FCGAN, including Visual Ge-
ometry Group Network (VggNet) [Simonyan and Zisserman,
2014] and Cycle Generative Adversarial Network [Zhu et al.,
2017].

The VggNet architecture was introduced by Simonyan and
Zisseman in their 2014 paper, Very Deep Convolutional Net-
works for Large Scale Image Recognition [Simonyan and
Zisserman, 2014]. This network is characterized by its sim-
plicity, using only 3 × 3 convolutional layers stacked on top
of each other increasing depth. Reducing volume size is han-
dled by max pooling. Two fully-connected layers, each with
4096 nodes are then followed by a soft max layer.

Cycle GAN is a Generative Adversarial Network (GAN)
that uses two generators and two discriminators. We call one
generator G, and have it convert images from the X domain
to the Y domain. The other generator is called F , and con-
verts images from Y to X . Each generator has a correspond-
ing discriminator, which attempts to tell apart its synthesized
images from real ones. Along with two components to Cy-
cle GAN objective functions, an adversarial loss and a cycle
consistency loss are essential to getting good results. Detail
description can be seen in [Zhu et al., 2017]

2.2 Micro-Macro Associated Object Pulling
Strategy

A set of unlabeled microscopic images is classified as target
domain T including T.gondii and host cells, another set of its
associated macro object images is used as source domain S,
such as bananas. It is expected that source data shares the
same cluster point with target T.gondii images, and host cell
images belong to another cluster point. Then we calculate the
degree of membership of each cluster point for each sample
in T . Furthermore, an image translator is used to pull the tar-
get T.gondii images closer to source banana images and the
host cell images away from banana, which is achieved by re-
placing the domain label with the degrees of membership of
each cluster point. Through the whole process, labeling of
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Figure 2: Schematic representation of FCGAN. Losses are shown in dashed rectangles. After training with source and target data alter-
natively, the generators and are used to pull T.gondii into source domain and keep host cells in the target domain according to their shape
and texture information. Discriminators and are not shown in the architecture. Source fake images are the output of target images through
generator and target fake images are the output of source image through generator . Features are extracted by a classifier for both images
from source and target.

T is not required and necessary. We integrate Cycle GAN
to the image translator combined with a fuzzy C-means al-
gorithm to enhance its selectivity, which discriminator labels
are replaced by degrees of membership obtained in fuzzy C-
means.

For a set of unannotated target domain T and its desired as-
sociated source domain S, Cycle GAN learns two mappings
without any supervision, G : S → T and F : T → S
with two generators G and F , at the same time. To bypass
the infeasibility of pixel-wise reconstruction with unpaired
data, i.e. G(S) ≈ T or F (T ) ≈ S , Cycle GAN introduces
an effective cycle-consistency loss for F (G(S)) ≈ S and
G(F (T )) ≈ T . The idea is that the generated target domain
data is able to return back to the exact data in the source do-
main where it generated from. To guarantee the fidelity of
fake data G(S) and F (T ), Cycle GAN uses two discrimi-
nators DS and DT to distinguish real or synthetic data and
thereby encourage generators to synthesize realistic data.

To solve the task of learning generators with unpaired im-
ages from two domains, and , we adopted the idea of the orig-
inal cycle-consistency loss [Zhu et al., 2017] for generatorsG
and F , forcing the reconstructed synthetic sample F (G(xS))
and G(F (xT )) to be identical to their inputs xS and xT .

Lcyc(G,F ) = ExS∼Pdata(S)[‖F (G(xS))− xS‖1]
+ ExT ∼Pdata(T )[‖G(F (xT ))− xT ‖1]

(2)

where xS is the image from source domain S and xT is from
target domain T . Lcyc uses the L1 loss, which shows better
visual results than the L2 loss.

2.3 Challenges in M2AOP Strategy
Lacking supervision with a direct reconstruction error be-
tween G(S) and T or F (T ) and S brings some uncertain-
ties and difficulties towards the desired strengthened output of

T.gondii and weakened output of host cells. The conventional
Cycle GAN cannot evaluate the importance of each sample
and it will transform all images in T domain without any se-
lectivity. That makes our task even more challenging.

Such problem cannot exploit the discriminative informa-
tion from the associated object in S and cannot select effec-
tive target samples from T in an unsupervised manner. Our
goal is to pull target T.gondii images closer to banana images
in S and make the other host cell images remain a large dis-
tance from source banana images. So, we design the FCGAN
approach, consisting of source-target image translated consis-
tency, fuzzy pulling cluster generator and discriminator, and
its optimization.

2.4 Fyzzy Cycle Generative Adversarial Network
Aiming to obtain selectivity on Cycle GAN in T.gondii recog-
nition without the help of microscopic annotations, we con-
sider using cluster algorithm. Specifically, fuzzy clustering
algorithm resolves this dilemma by introducing a degree of
membership for each data point belonging to arbitrary num-
ber of clusters [Simon, 1996].

We embedded the degree of membership into Cycle GAN
which denotes the degree of each sample belonging to
T.gondii cluster point and host cell point. We assumed that
T.gondii shares a same cluster point with banana images in S,
then the cluster closer to source banana point is the T.gondii
cluster, and the other point represents host cell images. Then,
we developed the generator loss especially for discrimina-
tors embedded with degrees of membership into adversarial
loss. It could strengthen the generativity of embedded Cycle
GAN for samples belonging to group, weaken the samples
belonging to host cell group. As a result, the cluster points of
T.gondii and host cell can be separated with a larger distance
in the embedded Cycle GAN.
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For this idea, we introduced the Fuzzy C-Means (FCM)
algorithm [Bezdek, 1973]. To learn representative features,
we designed a feature extractor C improved from Visual
Geometry Group(VGG) network [Simonyan and Zisser-
man, 2014]. For images {x1, · · · , xk, · · · , xN} in target
domain T in parameter initialization (their translated fake
source images are {F (x1), · · · , F (xk), · · · , F (xN )}),
we can get their feature space after translation of
{C(F (x1)), · · · , C(F (xk)), · · · , C(F (xN )} through
the feature extractor C. Partition of these features into P
clusters with minimization is defined as following objective
function:

Lfuzzy =
P∑
i=1

N∑
k=1

umik‖C(F (xk))− vi‖2 (3)

where, xk is the kth image in domain T , vi is d-dimensional
center of the ith cluster, uik denotes the degree of member-
ship of feature C(F (xk)) to cluster vi, N is the total num-
ber of features in each domain, ‖C(F (xk)) − vi‖ is any
norm expressing the similarity between the measured feature
C(F (xk)) and the cluster center vi. m denotes a weight-
ing exponent parameter (m > 1) on each fuzzy membership
value, and it determines the amount of fuzziness of the result-
ing classification according to:

uik ∈ [0, 1];
P∑
i=1

uik = 1, ∀k; 0 <
N∑

k=1

uik < N, ∀i (4)

The first main step of this iterative algorithm is to update
the membership function to determine in which cluster the
feature belongs according to

uik =
1∑C

j=1(
‖vi−C(F (xk))‖
‖vj−C(F (xk))‖ )

2
(m−1)

(5)

where C is a feature extractor.
The second main step concerns the updated centroids based

on the new membership matrix according to

vi(x) =

∑N
k=1 (uik)

mC(F (xk))∑N
k=1(uik)

m
(6)

Finally, we compute the objective function related to Eq.3
and check the criteria termination (the objective function con-
vergence).

The fuzzy membership matrix U consists the degree of
membership belonging to each cluster for each sample fea-
ture. We embed U , which has two degrees belonging to
T.gondii and host cell for each feature, denoted as U =
{US , UT }, into our Cycle GAN, and design the fuzzy Cy-
cle GAN loss for generators {G,F} and discriminators
{DS , DT }. Their corresponding loss constraints are,

LF = ExT ∼pdata(T )
[log(US −DS(F (xT )))],

LDS = ExS∼pdata(S) [logDS(xS)]
+ ExT ∼pdata(T )

[log(UT −DS(F (xT )))],
(7)

 LG = ExS∼pdata(S) [log(1−DT (G(xS)))],

LDT = ExT ∼pdata(T )
[logDT (xT )],

(8)

where US is the degrees of membership belonging to the
shared cluster point of source banana images in S and
T.gondii images in T , and UT is the degrees of membership
belonging to host cell cluster point in T . From these two con-
straints, US (UT ) instead of label 1 in DS (DT ) makes fake
images from T.gondii images more similar to images in S
than host cells images.

Algorithm 1 summarizes the main step of this sequential
iterative algorithm with back-propagation and Lagrange Mul-
tiplier method.

2.5 Architecture and Training Detail
The architecture of our method is composed by original Cycle
GAN and VGG layers. Cycle GAN originally designs gener-
ators with multiple residual blocks [He et al., 2016], and dis-
criminators with several convolutional layers combined with
binary L2 loss [Zhu et al., 2017], which setting is followed to
maintain the generativity in Cycle GAN. Differently, in our
discriminators, we make several critical modifications.

First, using VGG network [Simonyan and Zisserman,
2014] to learn feature representation is critical to maintain
the discriminative information for microscopic images, as it
has achieved much faster convergence and locally smooth re-
sults in malaria recognition [Mehanian et al., 2017]. Sec-
ond, we adopted the degrees of membership into the gener-
ative adversarial loss function to enhance the generativity of
sample group belonging to the closed cluster between source
domain, weaken the sample group belonging to the distant
cluster between source domain for genera-tors and discrimi-
nators. Such approach can separate the different group with a
large distance.

We implemented our network on TensorFlow framework
[Abadi et al., 2016] with Tesla K40C and 128G memory in
Ubuntu 16.04 system, and use the Adam solver [Kingma and
Ba, 2015] for FCGAN network with a learning rate of 2e− 4
for generators, 2e− 6 for feature extractor, closely following
the settings of Cycle GAN and VGG Network to train genera-
tors, discriminators and feature extractors. After jointly train-
ing for 4000 epochs, we apply early stop when the fuzzy loss
no longer decreases for about 5 epochs (usually takes 4000
jointly training epochs to reach a desired point). In training,
the number of training data in two domains can be different.
Our parameters in Algorithm 1 are set as m = 2, P = 2 and
loop = 100.

2.6 Image Collection and Evaluation
T.gondii microscopic images were captured under two bright-
field light microscopes (Leica DM2700P and Olympus
IX53), where preserved slices of parasites infection samples
are mounted onto slides and stained with Giemsa. The first
dataset is captured with 40X objectives (the magnification
is 400X, T400) in Leica DM2700P microscope, obtaining
8,156 T.gondii images and 4,979 host cell images. The sec-
ond dataset is captured with 100X oil immersion objectives
(the magnification is 1000X, T1000) in Olympus IX53 mi-
croscope, which obtains 6,969 T.gondii images and 8,023
host cell images. In addition, we crawl 2,382 banana images,
2,053 crescent images and 1,860 star images on the Internet
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Algorithm 1 Fuzzy Cycle Generative Adversarial Network
1:Input: Training set XS , XT ; a weighting exponent parameter m,
the clusters number P , and fuzzy update interval loop = 100
2:Initialization: Initialize weight parameters in our network and
degrees matrix U (0) and its correlated cluster center vector V (0)

for iterations = 0 to M , t = 0 do
Sample a mini-batch xS ∈ S, xT ∈ T
Update G, F , DS , DT by descending the gradient accord-

ing Lcyc, Lfuzzy , LF , LG, LDS , LDT ,of Eq.2, 3,7,8 using back-
propagation algorithm by independent adam solver, alternatively.

if iterations%loop == 0 do
t = t+ 1
Update the membership of U t+1 function using Eq.5.
Update the cluster centers of V t+1 function using Eq.6.
Update the membership of Lt+1

fuzzy function using Eq.3.
end for

as different source data to compare macroscopic associated
objects.

Notably, different magnification microscope slides typi-
cally display variations in color, background, and illumina-
tion between slides from different technicians, laboratories,
clinics, and regions. Color variation can result from differ-
ences in staining pH, time and purity of dye, duration of
the staining procedure, and the sensor settings (Figure 1). If
uncorrected, these variations may degrade the model perfor-
mance. To overcome negative effects of variations, we adopt
white balancing techniques to compensate some of these vari-
ations. For all images, we use white balancing technique to
pool the pixels from all fields of view and compute a global
color balance affine transform for each image. Then we
use a level-set based algorithm [Lankton and Tannenbaum,
2008] to crop T.gondii and host cells, and resize all images in
256× 256 before feeding into the deep learning network.

To evaluate the overall recognition performance, we cal-
culate the average recognition accuracy for our parasites
datasets, and compute the F1-score, recall and precision for
parasites and their host cells. The average values are sum-
marized in Table 1. We also perform average area under the
Receiver Operating Characteristic (ROC) curves for binary
classification [Sirinukunwattana et al., 2016], and the ROC
curves are drawn in Figure 3. AUC measures the probability
that given a pair of samples with different class label. If a
sample from class , the classifier will be signed a high predic-
tion score, compared to the samples from other classes. Here,
the prediction score is calculated by its degree of member-
ship.

To validate the effectiveness of our FCGAN approach on
T.gondii recognition task, we first compare FCGAN with
three supervised deep Convolutional Neural Network (CNN)
networks, including deep Residual Network (ResNet) [He et
al., 2016], Visual Geometry Group Network (VggNet) [Si-
monyan and Zisserman, 2014], Google Inception v4 network
(GoogleNet) [Szegedy et al., 2017]. We select half sam-
ples to train each supervised network and test on the left im-
ages for two datasets Besides, to discuss effects of compo-
nents in our FCGAN, we implement some unsupervised ex-
periments to evaluate effects of each component in FCGAN.
VggFCM (ResFCM, GoogleFCM) is a combination of VGG

(Res, Google) network with fuzzy C-means (FCM) cluster
algorithm, and CycleFCM is combined the VGG+FCM and
conventional Cycle Generative Adversarial Network (Cycle
GAN), which can prove the efficiency of the embedded fuzzy
component in Cycle GAN. Then, we also replace Cycle GAN
with Generative Adversarial Network (GAN) [Radford et al.,
2015], and produce two baselines as fuzzyGAN with fuzzy
domain labels, GanFCM with conventional GAN and FCM.
Furthermore, we choose star and crescent as another source
macroscopic objects besides banana, because star is not sim-
ilar, but crescent is close to T.gondii.

To prove the main idea that the more similar of the macro
object, the better performance will be achieved in the FC-
GAN, we also perform extensive evaluations, including (a)
cross domain image generation to test fuzzy component, (b)
feature map visualization for convolutional layers, (c) t-SNE
plots for feature extraction.

3 Result
3.1 Recognition performance of the model
As shown in the Table 1 of recognition performance in 400X
and 1000X T.gondii datasets, our FCGAN with banana source
data achieves the best performance in all unsupervised mod-
els with a small difference to supervised deep learning mod-
els (ResNet , VggNet and GoogleNet). By comparing with
supervised methods, we select three widely used supervised
CNN networks including VggNet, GoogleNet, and ResNet.
As shown in Table 1, it can be seen that ResNet, GoogleNet
and VggNet obtain 98.4%, 98.7% and 97.2% accuracy in
T400 dataset. FCGAN with banana source achieves a com-
petitive result of 93.1% accuracy, 0.939 F1-score, 0.960 re-
call, and 0.919 precision on T400 dataset, and 94.0% accu-
racy, 0.939 F1-score, 0.929 recall, and 0.949 precision on
T1000 dataset. The values of accuracy, F1-score, precision
and recall in our model are similar to those from ResNet, Vg-
gNet and GoogleNet. All those results demonstrate our FC-
GAN can achieve similar performance compared with super-
vised deep learning methods, while FCGAN do not require
labeling of any microscopic images. It should be emphasized
that T.gondii labeling under microscope is time-consuming,
labor intensive and requires well trained professionals.

In comparison with unsupervised methods, we test five un-
supervised baselines together with our FCGAN, including
VggFCM, ResFCM, GoogleFCM, CycleFCM and GanFCM.
The results are illustrated in Table 1, and Receiver Operating
Characteristic (ROC) curves with AUC (area under the curve)
value are drawn in Figure 3. As shown, it is easy to prove
that our FCGAN achieves the best performance compared
to other unsupervised methods, leaving the baselines at least
6.2% (93.1%-86.9%) accuracy, 0.05 (0.939-0.889) F1-score,
0.005 (0.960-0.955) recall, and 0.003(0.919-0.916) precision
on T400 dataset.

To discuss the effectiveness of source object, we then com-
pare the results from banana, crescent and star images as
source. In morphology, star is less similar to T.gondii than
banana and crescent, and its results and ROC curves have
a distance between FCGAN+Banana and FCGAN+Crescent
in Table 1 and Figure 3. The accuracy results are 93.1%

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/567891doi: bioRxiv preprint 

https://doi.org/10.1101/567891


Table 1: Results of FCGAN and baselines on T400 and T1000 Toxoplasma dataset.

Dataset T400 dataset T1000 dataset
Models Accuracy F1-score Recall Precision Accuracy F1-score Recall Precision

Supervised Learning Method
ResNet 98.4% 0.986 0.982 0.990 98.9% 0.989 0.984 0.995
VggNet 98.7% 0.989 0.996 0.982 99.1% 0.991 0.990 0.991
GoogleNet 97.2% 0.974 0.950 0.998 99.6% 0.997 0.999 0.993

Unsupervised Learning Method
ResFCM 84.3% 0.851 0.817 0.889 80.0% 0.801 0.803 0.800
VggFCM 77.4% 0.760 0.650 0.916 87.6% 0.863 0.785 0.960
GoogleFCM 74.3% 0.758 0.730 0.789 81.5% 0.797 0.728 0.880
CycleFCM 86.9% 0.889 0.955 0.832 86.2% 0.862 0.861 0.863
FuzzyFCM 86.0% 0.887 0.992 0.802 91.7% 0.918 0.933 0.904
GANFCM 81.0% 0.838 0.890 0.792 88.9% 0.892 0.911 0.873
FCGAN+Star 74.8% 0.767 0.749 0.786 87.0% 0.867 0.845 0.889
FCGAN+Crescent 92.0% 0.927 0.916 0.938 92.3% 0.926 0.950 0.903
FCGAN+Banana 93.1% 0.939 0.960 0.919 94.0% 0.939 0.929 0.949

(94.0%) of banana source, 92.0% (92.3%) of crescent source
and 74.8% (87.0%) of star source on T400(T1000) dataset.
It can be seen that FCGAN+Banana obtains a better per-
formance than FCGAN+Crescent and FCGAN+Star in both
dataset. Those results indicate the more similar of the macro-
scopic object, the better performance will be achieved in our
FCGAN model.

Taken together, our Micro-Macro Associated Object
Pulling strategy with banana source can achieve competitive
results for T.gondii. recognition without any microscopic im-
age labels.

3.2 Evaluation of the fuzzy component
In Figure 4, we illustrate a few samples of the translated im-
ages generated from FCGAN with different source objects
and GAN-based baselines. FCGAN preserves most informa-
tion in translated images including shape, nucleus and tex-
ture information, with the same background and color to their
source objects. But for GAN-based methods, CycleFCM
keeps most background information of images, and Fuzzy-
GAN only generates target objects partially, missing some
part of morphology information both in T.gondii and host cell.
Similarly, GAN+FCM leaves out some morphology feature
for host cell. Besides, compared with different source ob-
jects, FCGAN with banana source produces a clear outline
without any background, compared to other source objects.

Together, our FCGAN can create the texture and shape re-
lationship between microscopic object and macroscopic ob-
ject with selectivity of associated information. The compar-
ison of different models can show that our FCGAN with ba-
nana source can achieve a better performance indicating FC-
GAN can exploit associated information (for example, shape
and texture information) to boost the cluster results.

3.3 Analysis of network layers
To analyze the network layers, we do feature map visualiza-
tion for the first convolutional layer (Figure 5). Feature visu-
alization is a key technique that helps identify and recognize

patterns inside of neural networks. T-distributed Stochastic
Neighbor Embedding (t-SNE) plots for the last layer are per-
formed for all models (Figure 6). t-SNE is a non-linear di-
mensionality reduction approach that allows embedding high
dimensional data in a lower-dimensional space.

FCGAN can extract outline of target images with more
clear morphology than other baselines. It demonstrates the
FCGAN focus on their texture information and produce clear
feature map for these information. FCGAN with banana
source preserves the nucleus information in T.gondii image.
Nucleus information of T.gondii is lost in crescent and star
source. FCGAN achieves the best in t-SNE plot performance
compared to other baselines. t-SNE plot shown the feature
extracted by the last layer in FCGAN with banana source is
the most discriminated. All these conclusions can prove that
our FCGAN focuses on a clear outline of T.gondii in shallow
convolutional layers and can extracts discriminative informa-
tion in the network.

3.4 Application of the system for unstained
T.gondii detection

To investigate if our AI system can be used in the diagnosis
of other T.gondii microscopic images, we conduct the same
transfer learning framework to analysis of unstained parasite
images (Figure 1(c)). 500 unstained T.gondii and 500 un-
stained host cell images are collected under a bright field mi-
croscope to feed into our model. We achieve 90.3% accuracy,
0.910 f1-score, 0.986 recall and 0.846 precision on this new
unstained dataset. This result shows our FCGAN works not
only on large scale stained parasite dataset, but also on un-
stained one with a limited number of data.

Microscope staining is a key technique used to enable bet-
ter visualization under the microscope. A variety of stain-
ing techniques can be used with light microscopy. Label-
ing and staining of parasite in microscope image has always
been challenging. As a result, AI powered system for para-
site recognition without any staining might open a new area
for parasite detection that showed potential to overcome the
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Figure 3: ROC curves of different methods for Toxoplasma recognition in T400 and T1000 datasets. The AUC value is labeled before
the name of each method. FCGAN with banana source achieves the best performance compared to other unsupervised methods.

Figure 4: Image translation generated from different sources by
FCGAN and other GAN-based methods. Compared to the GAN-
based methods, the images generated from FCGAN contain more
texture and shape details. Most notably, FCGAN with banana source
has learned to reconstruct the nucleus of T.gondii.

drawbacks of staining techniques.

4 Discussion and conclusion
To our knowledge, this is the first study of T.gondii recogni-
tion task and transfer learning based Fuzzy Cycle Generative
Adversarial Network approach. The model is inspired by the
knowledge from parasitologists that T.gondii is in banana or
crescent shaped form.

In this context, resemblances between macro images and
micro images are exploited in order to train the dataset. We
design a Micro-Macro associated object pulling strategy and
propose the FCGAN method for T.gondii microscopic image
recognition without any data annotation. This method uses
the fuzzy clustering algorithm to help selectivity and optimize

Figure 5: Visualization of the convolutional feature map learned
by FCGAN and baselines. Object outline has been extracted and
visualized for the first convolutional layer of FCGAN and other
baselines.

cycle-consistency and associated objects pulling loss.
Using two T.gondii microscopic image datasets with mag-

nification of 400X and 1000X, we successfully demonstrate
that our FCGAN model has stronger associated information
selectivity and better pulling effect than the other deep learn-
ing approaches. We employ different source objects data with
different similarity to T.gondii. The ranking of performance
in different source objects is banana > crescent > star, which
is consistent with their similarity to Toxoplasma in shape.

Our method achieves similar classification accuracy when
separating T.gondii from regular host cells without using la-
beled Toxoplasma images to train the model, but instead us-
ing banana, crescent and star images. The proposed tech-
nique while obtaining worse results than established super-
vised techniques, outperforms unsupervised techniques by
using an “analogy” macroscopic dataset instead of a real mi-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/567891doi: bioRxiv preprint 

https://doi.org/10.1101/567891


Figure 6: t-SNE plot of FCGAN and other baselines. t-SNE mappings provide a method to evaluate and refine clustering of parasite and
cell images. Data points are colored according to cluster membership.

croscopic dataset of T.gondii.
However, the performance of our model depends highly on

the macro object images looking like the objects in the mi-
croscopic images. Therefore, the performance of this model
would likely be enhanced by testing on a more similar source
image dataset. If this approach needs to be applied to another
biomedical image domains, the macro object that best match
the micro objects of interest is required.

In addition, the variation present in macro object photos
is significantly influenced by the fact that they are 2D views
of 3D objects whereas cells and parasites are flattened 3D
objects with the sharpest focus image acquired. Therefore,
multiple microscopic images taken at different focus distance
need to be tested in the future.

Nevertheless, our method for Toxoplasma microscopic im-
age analysis can potentially speed up the detection and pave
the way for a rapid, low-cost diagnostics. Moreover, FCGAN
can be applied to other biomedical image recognition tasks,

which has complicated procedure in data collection and an-
notation. Our model can learn useful knowledge from macro
related object without time consuming and labor intensive im-
age annotation and labeling.
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